
Timing Organization of a
Real-Time Multicore Processor

Martin Schoeberl, Jens Sparsø

Department of Applied Mathematics and Computer Science
Technical University of Denmark

Email: masca@dtu.dk, jsp@dtu.dk

Abstract—Real-time systems need a time-predictable com-
puting platform. Computation, communication, and access to
shared resources needs to be time-predictable. We use time
division multiplexing to statically schedule all computation and
communication resources, such as access to main memory or
message passing over a network-on-chip. We use time-driven
communication over an asynchronous network-on-chip to enable
time division multiplexing even in a globally asynchronous,
locally synchronous multicore architecture. Using time division
multiplexing at all levels of the architecture yields in a time-
predictable multicore processor where we can statically analyze
the worst-case execution time of tasks.

I. INTRODUCTION

A real-time system needs to deliver a result in time, that
means it must deliver it before a given deadline. The deadline
is usually constrained by the environment with which the
system interacts. For example, a control loop operating at
a certain frequency, demands one computation per iteration.
Therefore, the deadline is the period of that control loop.

If the real-time system is part of a safety-critical system,
it needs to be certified. Part of the certification is to show
that all deadlines are met. As “testing shows the presence,
not the absence of bugs” (Dijkstra in [1]), testing alone is
not a valid approach to certify that all deadlines are met in
a safety-critical system. Instead, formal methods are needed
to statically determine the worst-case execution time (WCET)
of tasks. To enable static WCET analysis the program needs
to be analyzable (e.g., all loops need to be bounded) and the
executing platform needs to be time-predictable [2].

This paper presents the timing organization of a time-
predictable multicore processor that enables static WCET
analysis. Figure 1 shows the T-CREST multicore processor [3].
It consists of several processing cores connected to two
networks-on-chip (NoCs): (1) one core-to-core NoC [4] for
message passing between processing cores and (2) a memory
NoC [5], in a tree structure, to access a shared memory
controller and main memory.

This paper is organized in 6 sections: The following section
presents related work. Section III provides background on
time-division multiplexing (TDM) and the use in the multicore
processor. Section IV explores time-driven communication
in a globally asynchronous, locally synchronous multicore
processor. Section V shows how WCET can be bounded on
the multicore platform. Section VI concludes.

T-CREST Multicore

Processor
core

Processor
core

Processor
core

Memory
controller

Message passing NoC
(bi-torus)

Memory NoC
(tree)

Memory

Fig. 1. The T-CREST multicore architecture with several processor cores
connected to two NoCs: one for core-to-core message passing and one for
access to the shared, external memory

II. RELATED WORK

The Tilera processor TILE-Gx (now part of Mellanox
Technologies Ltd.) is available with 36 or 72 processor cores
(called tiles). Those cores are connected by the iMesh NoC
consisting of five mesh networks [6]. The choice to have phys-
ically separate NoCs is intended to separate traffic to avoid
interference. With T-CREST we also split between memory
and core-to-core traffic to avoid interference. In contrast to
the Tilera processor our focus is in time predictability instead
of maximum bandwidth.

Epiphany is a high-performance energy-efficient multicore
processor [7]. Epiphany is intended as an accelerator processor
for real-time embedded systems. The multicore processor
Epiphany is a distributed memory architecture. Each core
contains 32 KB of local memory that is mapped into a global
address space. The processors contain no caches. Accesses
to memory of a remote core is performed over a NoC. The
NoC is organized as a mesh and favors writes over reads, as
writes are posted writes where the processor does not need
to wait for the write to finish. Packets are single word long
and routing is performed in a single cycle per hop. A second
NoC is dedicated for read responses and a third NoC supports



off-chip traffic, e.g., external shared memory. In contrast to
Epiphany our multicore processor contains a NoC with explicit
support for message passing. Processor-local memories are
only accessible from the local processor.

Æthereal [8] is a NoC that uses TDM where slots are
reserved to allow a block of data to pass through the NoC
router without waiting or blocking traffic. A credit-based flow
control is applied for end-to-end control. Guaranteed services
are combined with best effort routing to utilize unreserved
resources. aelite, a light version of Æthereal, only offers
guaranteed services, resulting in a simpler router design [9].
In the latest version of aelite, called dAElite [10], the static
routing tables are in the routers to support multicast routing. In
contrast to the Æthereal family of NoCs our NoC implements
TDM arbitration from end-to-end. I.e., access to the scratchpad
memory (SPM) with a DMA controller is scheduled with the
NoC TDM schedule.

Paukovits and Kopetz use a time-triggered NoC for the time-
triggered system-on-chip (TTSoC) architecture [11], which
has been used in the GENESYS multiprocessor system-on-
a-chip [12]. The aim of GENESYS is to provide higher level
of abstractions by core services such as global time, NoC
based communication, configuration, and execution control.
The main difference to other NoC designs is the absolute time
format, which is not directly related to the clock frequency.
The macro tick is a power of two fraction of a second and the
basis for the TDM slotting. The idea behind this time format
is a good integration with off-chip versions of time-triggered
networks. In contrast to the TTSoC, our TDM schedule uses
a common time base established by mesonchronous clocking
of the network interfaces. Therefore, we can schedule com-
munication at clock cycle granularity, even without the need
of a global system clock.

III. TIME-DIVISION MULTIPLEXING

Access to shared resource, such as the shared NoC or
shared memory, needs arbitration. The result of this arbitration
influences the execution time. If this arbitration is dynamic,
different tasks can interfere. When using time for arbitration,
called time-division multiplexing (TDM), there is no interfer-
ence between tasks executing on different cores. Using time as
arbitration mechanism is known as TDM or as time-triggered
architecture [13]. The main benefit of time based arbitration
is that the arbitration decision is performed offline, which
results in a static schedule. This static schedule has two main
advantages: (1) it is time predictable, as the timing and the time
to wait for an access slot can be bounded and (2) the hardware
for enforcing the static schedule is simpler and scales better.
The later allows, under the assumption that all clients have a
common notion of time, to have distributed arbitration.

TDM arbitration is simple. Simple systems are good for
safety-critical systems as it is easier to analyze the WCET and
it is easier to show that the analysis is correct. TDM arbitration
results in a static schedule. No dynamic scheduling decisions
need to be done and in the case of multiple arbitration
points, such in a NoC, when those TDM arbitration points are

coordinated, no buffering and no credit based flow control is
needed. This considerably simplifies the hardware and reduces
the hardware resources.

In our implementation of the message passing NoC and
the memory NoC we use distributed arbitration. The decision
when a time slot is available and a request can be submitted
to the NoC is a local decision.

One known downside of TDM based arbitration is that this
scheme is not what is called “work conserving”. That means
when a client has no need to access the shared resource in its
slot, this slot is not used. This is considered by some a “waste
of resources”. However, implementing work conserving, but
still time-predictable arbitration, does not scale very well
and it does not help for tight WCET bounds. For example,
implementing a true round-robin arbiter for a memory arbiter
needs to look at all clients’ requests and perform the arbitration
decision in the same cycle as the request shall be issued. For
hard real-time systems, where WCET is of utmost importance,
there is no benefit in trying to use unused slots.

Furthermore, when the resources are plenty, as the band-
width in the NoC, having empty slots is not an issue. On a
highly congested resource, such as the single shared memory,
clients are usually memory bound and most of the time there
is an outstanding request for an upcoming access slot.

TDM is an overarching theme for the timing organization
in our architecture as we use it at several levels:
• At the message passing NoC
• In the network interface (NI) for the NoC
• At the memory NoC
• For DRAM refresh

IV. TIMING ORGANIZATION

Using TDM, the Argo NoC [4] provides virtual end-to-
end circuits supported with functionality that can transfer a
block of data from the local SPM in the source processor to
the local SPM in the target processor. This functionality can
be used to implement message passing or other higher level
communication primitives.

Argo uses source routing and wormhole switching and due
to the static TDM schedule packets never collide. As a result, a
router is a simple pipelined 5-ported crossbar that implements
the switching. Such a data-flow style circuit is easily and
efficiently implemented using asynchronous techniques [14].

With the choice of source routing and wormhole switching
follows that the NIs alone are responsible for implementing
the TDM mechanism. This include storing and executing the
TDM schedule. Details about the NI can be found in [15].
Briefly, the source end of every virtual circuit is supported
by a DMA controller that is activated according to the TDM
schedule. As the payload of a packet is only a few words,
the transfer of larger blocks of data (i.e., messages) requires
a sequence of TDM schedule periods. As a result, traffic on
different virtual circuits originating from the same processor
core is transmitted in an interleaved fashion.

The combination of clockless asynchronous routers and
clocked NIs (and processor cores) result in an attractive and



Asynchronous

Processor

Network

Processor

Network

Data_in

Write

FIFO

Data_out

Read

ResetClock
SinkSource

Clocked
(mesochronous)

Skew Skew

interface interface

corecore

Fig. 2. A model of a virtual circuit connecting two processors. The
asynchronous ripple FIFO represents the path through the NoC that packets
sent across the virtual circuit follow.

efficient globally asynchronous, locally synchronous timing
architecture that can tolerate some (clock)skew among the
processor cores, while still offering sufficient global synchrony
to implement TDM.

Figure 2 illustrate the principle showing two processors con-
nected by an asynchronous ripple FIFO. The two processors
(source and a sink) operate using the same clock. If the FIFO
is initialized to be half full then the structure allows the two
processors to operate with some skew. At a first glance this is
like a conventional FIFO-based clock-domain crossing circuit.
However, the implementation is fundamentally different as
there are no explicit FIFOs in the design. The FIFO in Figure 2
is a very coarse abstraction representing the entire network
of pipelined asynchronous routers and links, and it is the
self-timed ripple-behavior of these that provide time elasticity
equivalent to that of a FIFO.

The skew between source and sink may be unknown and
varying over time. The design rests on the following funda-
mental assumptions: (i) the FIFO must be initialized half full,
(2) the clock skew must be bounded, and (3) the network
of pipelined asynchronous routers and links must be able to
operate faster than the clocked source and sink. With these
assumptions, the flow control signals (empty on the read port
of the FIFO and full on the write port) can be ignored. This
scenario is identical to the STARI principle introduced in [16].

To fully understand and analyze the operation of the Argo
NoC it can be modeled as a mesh of small ripple-FIFOs
connected by crossbar switches, where each crossbar switch
operate like a transition in a Petri net: collecting one token
from every input (place) and emitting one token to every
output (place). The interesting point is that from this local
synchronization among the ports in the individual routers, and
from the flow of tokens among routers, emerges sufficient
global synchrony to implement TDM. The details are beyond
the scope of this paper. The interested reader is referred to the
following papers for in-depth details [17], [18]. Briefly, clock
skew has the effect of filling or draining a FIFO relative to
their initial states, and this results in a slowdown of the FIFOs.
For a sufficiently large clock skew the assumption that a FIFO
is capable of operating faster than the clock no longer holds.

In [18] we show that a skew of several clock-cycles can easily
be absorbed.

A token in the FIFO, shown as a dot in Figure 2, can be
understood as a container that may contain a word of a packet.
Whether it contains a flit/word is indicated by a valid-bit in
much the same way as a valid bit would be needed in clocked
design. Therefore, a token in the Argo NoC is equivalent to a
clock cycle in a clocked circuit.

V. WORST-CASE EXECUTION TIME ANALYSIS

To derive save upper bounds on the execution time of tasks,
the WCET, we need to analyze the program on a concrete
processor. In the T-CREST multicore processor we use as
processing core a processor called Patmos [19], which is
optimized to support WCET analysis. Patmos is supported
by the standard industrial WCET analysis tool aiT [20]
the research WCET analysis tool platin [21]. To provide
time-predictable access time of main memory accesses in a
multicore architecture, we use TDM for the main memory
arbitration. Furthermore, for providing end-to-end WCET we
need to determine the maximum latency of a message traveling
on the message passing NoC.

For both, the message passing NoC and the memory NoC,
we can derive the worst-case time for a single transaction as

Ttrans = Twait +Trw +TNoC

where Twait is the worst case waiting time for the TDM slot to
arrive, Trw is the time for a read or write action at the source,
and TNoC is the time spent to traverse the NoC. Twait depends
on the phasing of the request relative to the TDM schedule
and is a variable time, whereas Trw and TNoC are constant. The
worst case of Twait is when a request just missed its own slot
by a single clock cycle. For a TDM schedule with N slots,
a slot length of s clock cycles, and a clock period of tclk the
worst-case waiting time is Twait = (N · s−1) · tclk.

The worst-case memory access time is

Tmem = ((N · s−1)+ s+LNoC) · tclk

where N is the number of TDM slots, s the slot length
in clock cycles, LNoC the pipeline latency, and tclk the clock
period.

The worst case end-to-end latency for sending a message
is the WCET of the software function implementing the
send primitive (setting up the DMA transfer), which can be
computed by the WCET analysis tool aiT, plus the time it
takes to transfer the message across the Argo NoC. The latter
is the time it takes the DMA controller to inject the necessary
sequence of packets into the network plus the time it takes a
packet to traverse the NoC

Tmsg = ((N · s−1)+((

⌈
Smsg

Schan

⌉
−1) ·N · s+ s)+LNoC) · tclk

where N is the number of TDM slots, s the slot length in
clock cycles, Smsg is the size of the message (in bytes), Schan
is the number of bytes sent across the channel in one TDM



period, LNoC is the number of clock cycles it takes to traverse
the NoC and tclk the clock period. LNoC is the number of
tokens that the asynchronous network has been initialized. In
our implementation, each router is equivalent of three buffers,
initialized with two tokens. Therefore, LNoC is two times the
number of hops.

For 9 cores an all-to-all schedule results in 9 · (9−1) = 72
channels. The static schedule to support those 72 channels is
N = 10 slots long [22]. Each of the 9 processor cores needs 8
out of the 10 slots to send a message to each other core. With
a default packet size of 3 words, each slot being s = 3 clock
cycles long resulting in a packet data load of Schan = 8 bytes.
The resulting TDM period P is 30 clock cycles. During this
interval, each of the 72 channels can transmit 8 bytes.

VI. CONCLUSION

For real-time systems, we need time-predictable processors.
With the T-CREST architecture we present a multicore pro-
cessor that is optimized for the worst-case execution time.
All arbitrations of shared resources are implemented with
time-division multiplexing to provide static arbitration. Static
arbitration is easy to analyze for the worst case and avoids
interference between different processors or tasks.

By having a constant injection rate and drain rate in the
network-on-ship we can even apply time-division multiplexing
on an asynchronous implementation of that network, leading to
a time-predictable globally asynchronous, locally synchronous
processor.

Acknowledgment

The work presented in this paper was partially funded by
the Danish Council for Independent Research | Technology
and Production Sciences under the project PREDICT (http:
//predict.compute.dtu.dk/), contract no. 4184-00127A.

Source Access

The T-CREST project is open-source and the README1

of the Patmos repository provides a brief introduction how
to setup Ubuntu for T-CREST and how to build T-CREST
from the source. More detailed installation instructions, in-
cluding setup on Mac OS X, are available in the Patmos
handbook [23]. To simplify the exploration of T-CREST, we
also provide a VM2 with all packages and tools preinstalled.

REFERENCES

[1] J. N. Buxton and B. Randell, “Software engineering techniques,” in
Report on a Conference sponsored by the NATO Science Committee,
Rome, October 1969, NATO Science Committee, 1970.

[2] M. Schoeberl, “Time-predictable computer architecture,” EURASIP
Journal on Embedded Systems, vol. vol. 2009, Article ID 758480, p. 17
pages, 2009.

[3] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso,
J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann,
S. Hepp, B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch,
W. Puffitsch, P. Puschner, A. Rocha, C. Silva, J. Sparsø, and A. Toc-
chi, “T-CREST: Time-predictable multi-core architecture for embedded
systems,” Journal of Systems Architecture, vol. 61, no. 9, pp. 449–471,
2015.

1https://github.com/t-crest/patmos
2http://patmos.compute.dtu.dk/

[4] E. Kasapaki, M. Schoeberl, R. B. Sørensen, C. T. Müller, K. Goossens,
and J. Sparsø, “Argo: A real-time network-on-chip architecture with
an efficient GALS implementation,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 24, pp. 479–492, 2016.

[5] M. Schoeberl, D. V. Chong, W. Puffitsch, and J. Sparsø, “A time-
predictable memory network-on-chip,” in Proceedings of the 14th In-
ternational Workshop on Worst-Case Execution Time Analysis (WCET
2014), (Madrid, Spain), pp. 53–62, July 2014.

[6] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. Brown, and A. Agarwal, “On-chip intercon-
nection architecture of the tile processor,” Micro, IEEE, vol. 27, pp. 15
–31, sept.-oct. 2007.

[7] A. Olofsson, T. Nordström, and Z. ul Abdin, “Kickstarting high-
performance energy-efficient manycore architectures with Epiphany,” in
in Proc. Asilomar Conference on Signals, Systems and Computers (M. B.
Matthews, ed.), pp. 1719–1726, IEEE, 2014.

[8] K. Goossens and A. Hansson, “The AEthereal network on chip after ten
years: Goals, evolution, lessons, and future,” in Proceedings of the 47th
ACM/IEEE Design Automation Conference (DAC 2010), pp. 306 –311,
2010.

[9] A. Hansson, M. Subburaman, and K. Goossens, “aelite: a flit-
synchronous network on chip with composable and predictable services,”
in Proceedings of the Conference on Design, Automation and Test in
Europe (DATE 2009), (Leuven, Belgium), pp. 250–255, 2009.

[10] R. Stefan, A. Molnos, and K. Goossens, “dAElite: A tdm noc supporting
qos, multicast, and fast connection set-up,” Computers, IEEE Transac-
tions on, vol. 63, no. 3, pp. 583–594, 2014.

[11] C. Paukovits and H. Kopetz, “Concepts of switching in the time-
triggered network-on-chip,” in Proceedings of the 14th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA 2008), pp. 120 –129, August 2008.

[12] R. Obermaisser, H. Kopetz, and C. Paukovits, “A cross-domain multi-
processor system-on-a-chip for embedded real-time systems,” Industrial
Informatics, IEEE Transactions on, vol. 6, pp. 548 –567, nov. 2010.

[13] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings
of the IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[14] J. Sparsø, “Asynchronous circuit design – a tutorial,” in Principles of
asynchronous circuit design – A systems perspective (J. Sparsø and
S. Furber, eds.), ch. 1-8, pp. 1–152, Kluwer Academic Publishers, 2001.

[15] J. Sparsø, E. Kasapaki, and M. Schoeberl, “An Area-efficient Network
Interface for a TDM-based Network-on-Chip,” in Proc. Design, Automa-
tion and Test in Europe (DATE), pp. 1044–1047, 2013.

[16] M. Greenstreet, “Implementing a STARI chip,” in Proc. Int’l. Conf.
Computer Design (ICCD), pp. 38–43, 1995.

[17] E. Kasapaki and J. Sparsø, “Argo: A Time-Elastic Time-Division-
Multiplexed NOC using Asynchronous Routers,” in Proc. IEEE Inter-
national Symposium on Asynchronous Circuits and Systems (ASYNC),
pp. 45–52, IEEE Computer Society Press, 2014.

[18] E. Kasapaki and J. Sparsø, “The Argo NOC: Combining TDM and
GALS,” in European conference on circuit theory and design (ECCTD),
pp. 1–4, 2015.

[19] M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, C. W. Probst,
S. Karlsson, and T. Thorn, “Towards a time-predictable dual-issue
microprocessor: The Patmos approach,” in First Workshop on Bring-
ing Theory to Practice: Predictability and Performance in Embedded
Systems (PPES 2011), (Grenoble, France), pp. 11–20, March 2011.

[20] R. Heckmann and C. Ferdinand, “Worst-case execution time prediction
by static program analysis,” tech. rep., AbsInt Angewandte Informatik
GmbH. [Online, last accessed November 2013].

[21] S. Hepp, B. Huber, J. Knoop, D. Prokesch, and P. P. Puschner, “The
platin tool kit - the T-CREST approach for compiler and WCET
integration,” in Proceedings 18th Kolloquium Programmiersprachen
und Grundlagen der Programmierung, KPS 2015, Pörtschach, Austria,
October 5-7, 2015, 2015.

[22] M. Schoeberl, F. Brandner, J. Sparsø, and E. Kasapaki, “A statically
scheduled time-division-multiplexed network-on-chip for real-time sys-
tems,” in Proceedings of the 6th International Symposium on Networks-
on-Chip (NOCS), (Lyngby, Denmark), pp. 152–160, IEEE, May 2012.

[23] M. Schoeberl, F. Brandner, S. Hepp, W. Puffitsch, and D. Prokesch, “Pat-
mos reference handbook,” tech. rep., Technical University of Denmark,
2014.

http://predict.compute.dtu.dk/
http://predict.compute.dtu.dk/
https://github.com/t-crest/patmos
http://patmos.compute.dtu.dk/

