
Time-Division Multiplexing vs Network Calculus:
A Comparison

Wolfgang Puffitsch, Rasmus Bo Sørensen, Martin Schoeberl
Department of Applied Mathematics and Computer Science

Technical University of Denmark
{wopu, rboso, masca}@dtu.dk

ABSTRACT
Networks-on-chip are increasingly common in modern multicore
architectures. However, general-purpose networks-on-chip are not
always well suited for real-time applications that require bandwidth
and latency guarantees. Two approaches to provide real-time guar-
antees have emerged: time-division multiplexing, where traffic is
scheduled according to a precalculated static schedule, and network
calculus, a mathematical framework to reason about dynamically
scheduled networks. This paper compares the two approaches to
provide insight into their relative advantages and disadvantages. The
results show that time-division multiplexing leads to better worst-
case latencies, while network calculus supports higher bandwidths.
Furthermore, time-division multiplexing leads to a simpler hardware
implementation, while dynamically scheduled networks-on-chip al-
low the integration of best-effort traffic in the on-chip network in a
more natural way.

CCS Concepts
•Networks → Network on chip; Network performance model-
ing; •Computer systems organization→ Real-time systems;

Keywords
Network-on-Chip; Time-Division Multiplexing; Network Calculus

1. INTRODUCTION
Packet-switched networks-on-chip (NoCs) are becoming more

and more common in modern multicore architectures. They enable
a modular, tile-based design methodology and provide better scala-
bility than traditional bus-based interconnects. Consequently, chips
with dozens or hundreds of cores are now available commercially.

However, congestion can lead to excessive worst-case latencies in
NoCs. Congestion is problematic in hard real-time systems, where
the applications require that all deadlines are met. There are two
common approaches to avoid congestion in on-chip networks for
real-time systems: (1) static arbitration according to a predetermined
schedule and (2) dynamic arbitration with routers that buffer packets
and network interfaces that shape traffic to avoid buffers overflows.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RTNS 2015, November 04-06, 2015, Lille, France
© 2015 ACM. ISBN 978-1-4503-3591-1/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2834848.2834868

Both approaches rely on knowledge about the application’s commu-
nication requirements in terms of latency and bandwidth.

This paper aims at shedding some light onto the advantages and
disadvantages of these two approaches. We evaluate two concrete
instances of each approach with regard to the latencies and band-
widths they can guarantee. Furthermore, we discuss properties of
the two approaches that cannot be captured by these two simple
measures.

NoCs based on time-division multiplexing (TDM) [22, 9, 10,
14] are examples of the first approach. In a TDM NoC, traffic is
scheduled statically such that congestion in the network is avoided.
A packet is delayed at the source until its slot in the schedule;
afterwards, it travels through the NoC without being delayed by
flow control, buffering, or interference from other traffic.

Network calculus [5, 6, 19, 20] is a mathematical framework that
is used to bound buffering requirements and latencies in the second
approach. Traffic is modeled through arrival and departure curves,
which permit the computation of the maximum backlog and delay
in network routers. By limiting the rates of packets at the sources of
traffic, backlog and delay can be reduced and bounded.

TDM NoCs fit a bottom-up, constructive approach to time pre-
dictability: The predictability of a system emerges from the pre-
dictability of its building blocks. Each layer can rely on the pre-
dictable behavior of lower layers. A bottom-up approach can provide
tight guarantees by leveraging the predictable behavior of all layers,
but requires a time-predictable hardware platform.

In contrast, network calculus can also be used in a top-down,
analytical approach to time predictability: The system is analyzed
from the top down to establish guarantees on its behavior. Such
an approach is useful when lower layers cannot be changed, for
example when using commercial-off-the-shelf hardware platforms.

The research in our group is centered around time-predictable
computer architectures. In the T-CREST project, we followed a
bottom-up approach in the design of a time-predictable platform [24]
and used a TDM NoC for the on-chip communication. This paper
tries to answer the question whether our approach provides the
benefits we expect or whether a network calculus approach may be
a more promising direction for future research.

More generally, this paper aims at providing a better insight into
the advantages and disadvantages of a TDM-based approach and
a network calculus approach. In particular, the paper provides a
quantitative evaluation of a network calculus approach and a TDM
NoC by comparing two concrete platforms. We compare the worst-
case latencies and bandwidths that can be guaranteed by the two
approaches for a generic all-to-all communication graph and for
communication graphs used in network benchmarking. Furthermore,
we discuss benefits and drawbacks that are not captured by latency

and bandwidth numbers, but may influence the choice between the
two approaches nonetheless, for example hardware costs.

The paper is organized as follows. Section 2 presents the context
of this paper and highlights related work. Section 3 describes the
system model and details the assumptions made throughout the
paper. Section 4 compares latencies and bandwidths for a generic
all-to-all communication graph and for several application-specific
communication graphs. Section 5 discusses benefits and drawbacks
of the two approaches that cannot be captured by mere latency and
bandwidth numbers. Section 6 concludes the paper.

2. BACKGROUND AND RELATED WORK
This section presents the context of the work described in this

paper and presents related work. As the literature in the area of TDM
based NoCs and network calculus is too extensive to be described
comprehensively, we focus on the approaches that are of immediate
importance for our work.

2.1 TDM NoCs
The use of TDM in communication protocols for hard real-time

systems has long been advocated by Kopetz [18, 17]. While the
approach proposed by Kopetz had off-chip networks in mind, the
principle of using time to avoid dynamic traffic scheduling is also
realized in TDM NoCs.

In TDM NoCs, shared resources such as network links are allo-
cated to communication channels according to a predefined schedule.
Due to the predefined schedule, bandwidths and latencies of chan-
nels are guaranteed, which makes TDM NoCs attractive for hard
real-time applications. While TDM NoCs may waste bandwidth,
they can avoid buffering in the NoC and can thus be implemented
efficiently [25].

TDM NoCs require a common notion of time throughout the
whole system. In synchronous hardware designs, this common no-
tion of time can be established when the system is reset by resetting
the counters that keep track of the current TDM slot. However,
signal distribution issues make it difficult to design large systems
that are fully synchronous.

In mesochronous hardware designs, different parts of the system
operate at the same frequency but with unknown phase differences.
Such a timing organization can solve the signal distribution issues,
but leads to skew in the local notions of time. As both the clock
signal and the reset signal may be skewed, the local notions of
time can deviate by several cycles. The Argo NoC [14, 15] solves
this problem by combining mesochronous network interfaces with
asynchronous routers. The asynchronous routers compensate the
skew in the notions of time at the network interfaces, such that
a common notion of time is established without requiring a fully
synchronous hardware design.

Examples for TDM NoCs are Nostrum [22], Æthereal [9], and
aelite [10]. For the scope of this paper, we use the Argo NoC [14,
15] as reference TDM NoC. As pointed out above, Argo combines
TDM with an asynchronous hardware implementation of the routers.
Furthermore, communication in Argo is based in DMA transfers
rather than individual read/write transactions, which enables an
efficient hardware implementation of the network interfaces.

In a TDM NoC, the worst-case latency depends on the time
between the slots of a channel and the time to traverse the routers
and links. Let Tr be the length of the TDM schedule. For the simple
case of one slot per channel per TDM round, a packet has to wait
at most Tr−1 cycles until its slot arrives. If there is more than one
slot per channel in a TDM round, the worst-case latency depends
on the maximum distance between slots in the schedule. However,
Tr−1 is a conservative upper bound. The worst-case latency over n

time

departure curve

delay

backlog

cu
m

u
la

ti
v
e

d
at

a

arrival curve

Figure 1: Arrival and Departure Curves

hops in a TDM NoC is given by

LTDM
max = Tr−1+(n−1)p+nd + lmax (1)

In this equation, n denotes the number of hops of a flow, lmax denotes
the maximum packet length including header data, and p and d
denote the time to traverse a router or link, respectively. The first
part of the equation, Tr− 1, models the time until a packet’s slot
arrives. The second part, (n−1)p, models the time to traverse the
routers. As there are no collisions, the time to traverse a router is
constant. The final part of the equation, nd + lmax, models the link
traversal times. As there are no collisions in a TDM NoC, packets
can be forwarded immediately, and the packet size has to be counted
only once.

2.2 Network Calculus
Network calculus is a set of mathematical rules that give insight

into the behavior of packet-switched networks. In particular, net-
work calculus is useful to reason about the delays that packets may
experience and to compute the maximum backlog in routers. Net-
work calculus was pioneered by Cruz [5, 6] and then later simplified
and extended by Le Boudec [19, 20].

Network calculus models traffic through arrival and departure
curves. An arrival curve models the traffic arriving at an incoming
port of a router; a departure curve models the traffic departing at
an outgoing port of a router. Network calculus provides results on
how curves can be combined and which guarantees can be given for
particular types of curves.

Figure 1 illustrates an arrival and a departure curve, with time
on the x-axis and the cumulative amount of data on the y-axis. In
this representation, the delay and backlog in a router can be found
easily. The delay packets may experience in a router is given by
the horizontal distance between the two curves and the backlog in a
router is given by their vertical distance.

While network calculus was originally applied to off-chip net-
works, it has also been applied to on-chip networks [2, 23, 29].
These works investigated the applicability of network calculus to
NoCs and assumed a rather generic NoC model. An apparent benefit
of network calculus is that it can be applied to NoCs that were not
designed with real-time communication in mind.

There are numerous variations of network calculus that are adapt-
ed and optimized for different types of networks. We base our
comparison on the variant that applies to the NoC of the Kalray
MPPA-256 processor [8, 7], which itself is based on the work by
Zhang [31]. We use this approach for the comparison for two
reasons. First, the approach models the NoC of a commercially
available platform, such that we can be sure that all of its assump-
tions are realistic. Second, the NoC of the MPPA-256 was designed
with network calculus in mind, such that network calculus is given
a chance to present itself in a favorable light.

In the approach presented by Dupont de Dinechin et al. for the
MPPA-256 [8, 7], data flows are characterized by two parameters,

ρ and σ. The parameter ρ represents the bandwidth of the flow
and is defined as the number of words Nmax that a flow may inject
into the network over a sliding time window of length Tw: ρ =
Nmax/Tw. The parameter ρ is therefore also referred to as injection
rate. In the MPPA-256, a rate control unit ensures that flows cannot
exceed their assigned injection rate. The parameter σ represents the
“burstiness” of the flow and can, for the MPPA-256, be computed as
σ = ρ(1−ρ)Tw.

The burstiness parameter models the fact that packets may be
spread out evenly over the time window or arrive in a burst. For
ρ = 0, the flow never sends data and cannot create bursts. For ρ = 1,
the flow constantly sends data, such that the traffic is necessarily
spread out evenly over the time window. For intermediate values,
flows can exhibit bursty behavior. The worst case is ρ = 0.5, where
packets could be spread out evenly by sending in every other slot,
or arrive in a single burst that occupies half of the time window.

The approach by Dupont de Dinechin et al. uses network calculus
to compute the maximum bandwidths the network can sustain. The
input to the approach is a set of flows with predetermined routes.
They then formulate a set of constraints on the injection rates ρ of
all flows and subsequently maximize the bandwidth according to
proportional fairness [16]. On the one hand, the constraints bound
the utilization of links. On the other hand, the constraints apply
constraints to limit the backlog and avoid buffer overflows in the
routers. If all constraints are met, the bound for the end-to-end delay
of packets is given by

LRC
max =

σ

ρ
+

(n−1)lmax

ρ
+n(d + lmax) (2)

As in Equation 1, n denotes the number of hops of a flow, lmax
denotes the maximum packet length including header data, and d
denotes the link traversal time.

The first part of Equation 2, σ/ρ, models the delay introduced
by the rate control. When substituting σ with its definition, σ/ρ

becomes (1− ρ)Tw. A flow that is assigned the full bandwidth
(ρ = 1) is never affected by the rate control, whereas a flow with
minimal bandwidth (ρ = 1/Tw) may have to wait for Tw−1 cycles
before the rate controller forwards a packet.

The second part of Equation 2, (n−1)lmax/ρ, models the delays
caused by intermediate routers. In every router, packets of the flow
in question have to traverse the router and may be delayed by packets
from other flows. As the available bandwidth may have to be shared,
flows with a lower bandwidth may experience more interference
and hence a longer delay.

The final part of Equation 2, n(d+ lmax), models the link traversal
times. In contrast to the formula for the TDM NoC, the packet length
is counted for every hop.

2.3 Response Time Analysis
Network calculus is not the only approach to reason about laten-

cies in dynamically scheduled NoCs. Response time analysis [13]
is the classic schedulability analysis for periodic and sporadic real-
time tasks. The work by Shi and Burns [26, 27] applies ideas from
response time analysis to NoCs. Similar to network calculus, re-
sponse time analysis evaluates the maximum interference of other
flows (originally tasks) to the flow (task) under investigation.

Network traffic is shaped by allowing only periodic or sporadic
insertion of packets into the NoC. An integral part of the approach
by Shi and Burns is that flows are assigned priorities. Packets are
scheduled on the links according to the priorities of the respective
flows, and higher-priority packets may preempt lower-priority pack-
ets. In contrast, the scheduling of packets on links in the NoC of the
MPPA-256 follows a non-preemptive round-robin policy.

PE

NI

R

Figure 2: A tile, comprising a processing element PE, a network
interface NI, and a router R.

Indrusiak [12] extends the approach by Shi and Burns and com-
bines response time analysis for tasks with a response time analysis
approach for NoC traffic. By doing so, he is able to provide end-to-
end schedulability tests for chains of tasks that communicate over a
NoC.

This paper limits itself to a comparison between TDM and net-
work calculus, and does not consider approaches that are based
on response time analysis. However, future work could extend
the comparison presented in this paper to such approaches. Ap-
proaches based on response time analysis could potentially provide
low latencies to high-priority flows, while still using the available
bandwidth efficiently. However, further work is necessary for a
sound comparison.

3. SYSTEM MODEL
Our system model comprises a set of processing elements that

are connected through an on-chip network. Processing elements
may contain one or more processors cores or hardware accelerators.
The on-chip network comprises network interfaces and routers.
The network interfaces translate between transactions issued by the
processing elements and network packets. The routers steer the
packets through the network according to the route encoded in the
packet (i.e., we assume source routing). A processing element, a
network interface, and a router are grouped into a tile, as shown in
Figure 2. To distinguish between the NoCs we assume for the two
approaches, we call the NoC for the TDM approach “TDM NoC”,
and the NoC for the network calculus approach “rate-controlled
NoC”.

With regard to the topology of the NoC, we consider a platform
with 16 tiles, arranged as a 4× 4 bitorus. Figure 3 illustrates the
NoC topology. The figure shows the logical topology; a hardware
layout would rearrange the tiles to shorten the maximum link length.

In the NoCs we assume, the minimum number of hops n in a
flow is three. A packet has to first traverse the local link from its
source processing element to the tile’s router, then the link to the
next router, and finally the local link from the destination tile’s
router into the processing element. The maximum number of hops
in a 4×4 bitorus is six (the two local links plus four links between
routers).

The routers have five input and output ports (north, south, east,
west, and local). Packets can be routed in parallel as long as they
are routed to different output ports. For example, a packet coming
from east and routed to west does not collide with a packet coming
from south and routed to north. The routers are non-blocking and
therefore have no flow control. The packet flow is regulated at the
source either by a static TDM schedule or by traffic shaping.

Figure 3: Topology of 4×4 bitorus NoC

We model the TDM NoC after the Argo NoC; we assume a router
with a three-stage pipeline and a crossbar to forward packets from
any input to any output. Within the router there is no buffering,
flow control, or dynamic arbitration. When a packet arrives at the
input port, it flows freely through the router in three cycles. The
static (global) TDM schedule ensures that there is no collision on
any output port.

For the rate-controlled NoC we assume a router with a three-stage
pipeline and input buffers that can store whole packets. Each of the
five output ports has four buffers associated to the input ports. The
arbitration between those four packet sources for each output port
is round robin. Except for this arbitration, there is no further flow
control. The arrival rate of packets needs to be restricted so that no
buffer overflow can occur. This router organization is similar to the
routers in the NoC of the Kalray MPPA-256.

The traffic generated by the processing elements is characterized
through flows (also called channels). Flows are unidirectional with
one source and one destination. We model push communication,
where the transmission of data is initiated by the source of the
data. This model fits both the Argo NoC and the Kalray MPPA-256
NoC. Pull communication, where the sink of the data initiates the
transmission of data, could be modeled by two separate flows, one
for the request and one for the data. However, we limit the scope of
this paper to push communication.

We assume that packets are routed along the shortest path. For
the TDM NoC, we allow that different packets take different paths
if there is more than one shortest path. For the rate-controlled
NoC, we assume that all packets of a flow take the same path. In
principle, it would be possible to split flows to allow packets to take
alternative paths in the rate-controlled NoC. On the one hand, this
could lead to higher bandwidths by using spare capacities along the
alternative paths. On the other hand, the alternative paths would
cause more interferences for other flows. Consequently, it is difficult
to predict when flow splitting would have an overall positive effect.
For simplicity, we follow the approach as described by Dupont de
Dinechin et al. and assume that all packets of a flow take the same
path.

We permit multiple packets of the same flow to be in flight at
the same time. However, shortest-path routing ensures that packets
always arrive in order. Neither the Argo NoC nor the NoC of
the Kalray MPPA-256 are restricted to shortest path routing, but
we make this assumption for simplicity. We do not assume flow
control or acknowledgment that a packet has been received at the
destination.

In accordance to the packet format of Argo, we assume that
packets contain 1 header word and 2 payload words, i.e., lmax = 3.
In the scope of this paper, all packets have the same length and
we always include the header word in bandwidth calculations. For

example, a flow that has one slot in a TDM schedule has a bandwidth
of lmax/Tr.

For the router traversal time p we assume 2 cycles, and for the
link traversal time d we assume 1 cycle. These values correspond
to the Argo NoC and may be different in the NoC of the Kalray
MPPA-256. To keep the comparison fair, we chose to assume the
same values for both approaches.

For the network calculus approach, we also require parameters Tw
and Qsize, which model the window size and the buffer sizes in the
routers, respectively. In accordance with the MPPA-256, we assume
that Qsize is 401 and that Tw may vary between 1 and 512. While Tw
may in principle be different for each flow, we assume that Tw is a
global value. The latter assumption is also made by the approach by
Dupont de Dinechin et al. [8, 7].

4. BANDWIDTH AND LATENCY
Bandwidth and latency are important parameters of a NoC. While

general-purpose NoCs typically emphasize bandwidth, real-time
systems require guarantees on the worst-case latency. This section
evaluates these two parameters for a TDM NoC and a network
calculus approach for different communication graphs.

4.1 All-to-All Communication
As a starting point for the comparison between a TDM NoC and

network calculus, we consider an all-to-all communication graph
where all flows have equal bandwidth. What is the maximum end-
to-end delay that packets may experience? What bandwidth can the
two approaches guarantee?

There are k× (k−1) flows in an all-to-all communication graph
with k nodes. For the 4×4 bitorus we consider for this comparison,
this computes to 240 flows. We require that each of these flows
sends one packet per TDM round Tr or time window Tw.

4.1.1 TDM Schedule
To generate TDM schedules, we use the meta-heuristic scheduler

by Sørensen et al. [28]. The scheduler takes as input a commu-
nication graph with bandwidth requirements. While the mapping
of the nodes of the communication graph to the target platform’s
processing elements is fixed, the scheduler decides the routes that
flows take between their source and their destination. The scheduler
always uses the shortest path for routing, but different packets of a
flow may take different paths if there is more than one shortest path.

For an all-to-all communication graph in a 4× 4 bitorus, the
scheduler quickly finds a solution with a schedule length of Tr =
19× lmax = 57 cycles. This is close to the optimal solution with
a schedule length of 18× lmax = 54 cycles [4]. As each flow may
send one packet per round in the generated schedule, the bandwidth
of each flow corresponds to 1

19 of the bandwidth of a single link.
In a 4× 4 bitorus, the minimum number of hops is three and

the maximum number of hops is six. For flows with the minimum
number of hops, n = 3, Equation 1 yields a worst-case latency
LTDM

max = 57− 1+ 2× 2+ 3× 1+ 3 = 66 cycles. For flows with
the maximum number of hops, n = 6, Equation 1 yields LTDM

max =
57− 1 + 5× 2 + 6× 1 + 3 = 75 cycles. This indicates that the
largest factor for the latency in a TDM NoC is the schedule length
Tr, whereas the number of hops has a minor impact. It is also an
indication that a TDM scheduled NoC may scale well to larger
structures.

4.1.2 Network Calculus
The network calculus approach by Dupont de Dinechin et al. [8,

7] takes as input flows with a fixed route. For this comparison,
we use the routes generated by the TDM scheduler. As in the

approach by Dupont de Dinechin et al., we formulate constraints
on the rates of the flows and then maximize the rates according to a
proportional fairness measure [16]. As weights for the flows we use
the bandwidths in the TDM schedule.

We formulate the constraints for the ILOG OPL constraint solv-
er [11]. As this constraint solver does not support floating-point
decision variables, we use the number of packets that a flow may
inject as decision variables. In addition to the rates, we let the
constraint solver also choose a suitable window size Tw.

For the all-to-all graph in a 4× 4 bitorus, the constraint solver
finds a solution where all flows may inject one packet within a time
window Tw of 15× lmax = 45 cycles. As each processing element
has to send to 15 other processing elements, a bandwidth of 1

15 per
flow for all flows is an optimal solution. The bandwidth permitted
by network calculus is 26% higher than the bandwidth of 1

19 in the
TDM schedule.

The minimum and maximum number of hops for a flow are
the same for the TDM schedule and the network calculus. For
flows with the minimum number of hops, n = 3, Equation 2 yields
LRC

max = 42+ 2× 3× 15+ 3× 4 = 144 cycles. For flows with the
maximum number of hops, n = 6, Equation 2 yields LRC

max = 42+
5×3×15+6×4 = 291 cycles. This indicates that the number of
hops has a large impact on the latency as calculated by network
calculus. Consequently, the usefulness of network calculus may be
limited for large NoCs.

4.1.3 Discussion
We make the following observations for all-to-all communication:

• Network calculus achieves a bandwidth that is 26% higher
than the bandwidth under TDM scheduling.

• TDM scheduling results in significantly lower latencies than
network calculus. The advantage of TDM grows as the num-
ber of hops increases.

These observations indicate that network calculus can provide bene-
fits if bandwidth is valued higher than worst-case latency. Further-
more, finding an application mapping that minimizes the number
of hops is of high importance for network calculus, but of lesser
importance in TDM NoCs.

4.2 Application-Specific Flows
As an all-to-all communication pattern is not necessarily real-

istic, we also use application-specific communication graphs for
our comparison. In particular, we use communication graphs ex-
tracted from the MCSL (multi-constraint system-level) NoC traffic
patterns [21]. These traffic patterns contain communication traces
from eight different benchmark applications and exhibit a range of
different communication patterns, such as one-to-many or many-to-
many communication. From the communication traces, we extract
communication graphs by calculating the maximum communication
rate between each pair of processing elements. Table 1 shows a brief
description of the benchmark applications along with the number of
flows in the extracted communication graphs.

4.2.1 TDM Schedule
When converting the extracted communication graphs to the XML

format understood by the TDM scheduler, the communication rates
are normalized such that the flow with the smallest rate sends one
packet per TDM period. In cases where the ratio between the largest
and the smallest rate is high, this would lead to overly long TDM
schedules. To overcome this issue, we compress the schedules
by increasing the smallest communication rates according to the

Benchmark Description Flows

FFT-1024_compl Fast Fourier transformation 226
Fpppp SPEC Fpppp 226
H264-1080_dec H.264 decoder, high resolution 44
H264-720p_dec H.264 decoder, low resolution 44
Robot Robot control 53
RS-32_28_8_dec Reed-Solomon decoder 85
RS-32_28_8_enc Reed-Solomon encoder 28
Sparse Sparse matrix solver 42

Table 1: Benchmark applications

Worst-Case Latency Bandwidth

Benchmark Tr min avg max min avg max

FFT-1024_compl 66 36 73.8 81 .0455 .0583 .2273
Fpppp 123 72 130.6 138 .0244 .0304 .1463
H264-1080_dec 93 69 98.7 108 .0323 .0543 .0645
H264-720p_dec 93 69 98.6 108 .0323 .0543 .0645
Robot 174 135 178.3 186 .0172 .0332 .0862
RS-32_28_8_dec 93 72 100.7 108 .0323 .0421 .0645
RS-32_28_8_enc 87 69 91.7 96 .0345 .0579 .0690
Sparse 30 27 36.7 45 .1000 .1333 .2000

Table 2: Results for TDM scheduling. Latencies are given in cycles,
bandwidths are given as fractions of the capacity of a single link.

method described by Sørensen et al. [28]. To generate the results
presented in this section, we compressed the schedules such that
the actual rates of flows with the highest communication rate are
degraded by no more than 5%. The schedules were then calculated
by running the scheduler with the GRASP meta-heuristic for 200
seconds.

Table 2 presents some key measures for the generated schedules.
The column labeled Tr shows the length of the TDM schedule in
cycles. The columns under the label “Worst-Case Latency” charac-
terize the worst-case latencies of the communication flows. The col-
umn “min” displays the worst-case latency of the flow with the min-
imum worst-case latency, while the column labeled “max” displays
the worst-case latency of the flow with the maximum worst-case
latency. The column “avg” shows the average worst-case latency
over all flows. Similarly, the columns under the label “Bandwidth”
characterize the bandwidths of the individual flows.

Worst-case latencies that are lower than Tr are due to several
packets of a flow being scheduled within one round. Consequently,
these flows do not have to wait the full Tr−1 cycles until their slot
arrives. In contrast, worst-case latencies that are longer than Tr are
due to the traversal time within the NoC, which is computed as
(n−1)p+nd + lmax.

4.2.2 Network Calculus
We use the routes generated by the TDM scheduler as input to the

network calculus approach. If packets of a flow may take different
routes, we use the route of the last packet of the flow. In addition to
the link capacity and buffer size constraints, we also use constraints
for the minimum flow rates ρ, such that each flow has at least the
bandwidth of the TDM schedule.

The TDM scheduler tries to minimize the schedule length and
thus implicitly optimizes for latency. In contrast, the approach
described by Dupont de Dinechin et al. [8, 7] aims at maximizing the
bandwidths. For this comparison, we evaluate the network calculus
approach with two different objective functions. On the one hand,

Worst-Case Latency Bandwidth

Benchmark Tw min avg max min avg max

FFT-1024_compl 57 74 226.8 357 .0526 .0708 .2632
Fpppp 120 151 273.1 735 .0250 .0707 .1500
H264-1080_dec 45 25 144.9 285 .0667 .2727 .9333
H264-720p_dec 45 25 145.6 285 .0667 .2621 .9333
Robot 138 67 182.5 561 .0217 .2112 .6522
RS-32_28_8_dec 45 30 176.0 285 .0667 .1325 .7333
RS-32_28_8_enc 42 37 129.7 222 .0714 .1582 .7143
Sparse 27 19 67.7 147 .1111 .2857 .8889

Table 3: Results for network calculus, optimizing average latency.
Latencies are given in cycles, bandwidths are given as fractions of
the capacity of a single link.

Worst-Case Latency Bandwidth

Benchmark Tw min avg max min avg max

FFT-1024_compl 228 192 381.2 519 .0526 .0708 .2895
Fpppp 120 135 293.8 735 .0250 .0705 .2000
H264-1080_dec 465 52 452.9 686 .0581 .2730 .9355
H264-720p_dec 372 46 389.7 635 .0484 .2652 .9354
Robot 486 193 464.1 975 .0185 .2073 .6420
RS-32_28_8_dec 93 42 218.9 338 .0645 .1332 .7419
RS-32_28_8_enc 126 65 201.7 300 .0714 .1624 .6905
Sparse 120 28 135.6 220 .1000 .2958 .9000

Table 4: Results for network calculus, optimizing bandwidths. La-
tencies are given in cycles, bandwidths are given as fractions of the
capacity of a single link.

we let the constraint solver minimize the average latency. On the
other hand, we let the constraint solver optimize the bandwidths
according to proportional fairness.

As the constraint solver is not always able to find the optimal
solution within a reasonable amount of time, we used an execution
time limit of 100 hours for 10 parallel worker threads. While it is
not guaranteed that the solutions are optimal, we are confident that
they are close enough to the optimum to allow for a meaningful
comparison.

Table 3 shows the results for network calculus when optimizing
the average latency, while Table 4 shows the results when maxi-
mizing the bandwidths. The latencies calculated by the network
calculus approach are not always integral; the minimum and maxi-
mum worst-case latencies in Tables 3 and 4 are rounded up to the
next cycle.

The window lengths Tw are lower than the TDM schedule lengths
Tr when optimizing for latency, but can be substantially longer
when optimizing only bandwidths. The average and maximum
worst-case latencies calculated by network calculus are higher than
for the TDM schedules. However, the worst-case latencies for the
flows with the smallest latencies can be lower than for the TDM
schedules. As enforced by the constraints, the bandwidths calculated
by the network calculus are no less than the bandwidth in the TDM
schedules.

When comparing Tables 3 and 4, we observe that the effect of
the objective function on the bandwidths if relatively minor. In con-
trast, latencies can be affected severely when optimizing bandwidth
without taking latencies into account.

4.2.3 Discussion
The results clearly show that TDM scheduling generally leads to

lower latencies. This is a result we expected because packets in a

TDM NoC are only delayed to wait for their slot, whereas packets
in a rate-controlled NoC may be delayed by the rate controller and
suffer from additional interferences along their route.

When comparing the results for TDM scheduling and network
calculus, an interesting phenomenon is that the network calculus
approach results in substantially higher bandwidths. However, this
is in part caused by the fact that the constraint solver is free to
maximize bandwidths by using spare link capacities. There are
fewer chances to find spare capacities for the benchmarks with a
high number of flows (FFT-1024_compl and Fpppp). Therefore, the
bandwidth advantage of network calculus is smaller for these two
benchmarks.

Even when optimizing for latency, Equation 2 entails that larger
bandwidths lead to smaller latencies for the network calculus ap-
proach. In contrast, the TDM scheduler only allocates the requested
bandwidth and does not make use of spare link capacities. Conse-
quently, the bandwidth figures in Table 2 are not directly comparable
with the bandwidth figures in Tables 3 and 4. A future extension of
the TDM scheduler could include such an optimization to make the
results more comparable. However, we do not expect such an opti-
mization to fully close the bandwidth gap between network calculus
and TDM scheduling.

A second interesting phenomenon is that for some flows network
calculus can guarantee lower latencies than the TDM scheduling.
We believe that this is (at least partly) due to the fact that the TDM
scheduler does not actively try to distribute the slots of flows with
more than one slot over the schedule. For example, the latency
of a flow with two slots could be almost halved by placing its
slots appropriately in the schedule. A future extension of the TDM
scheduler could make use of this observation to reduce latencies.

We are aware that the latency numbers computed by the net-
work calculus approach we evaluated include some pessimism. We
look forward to future research in this area to see in how far this
pessimism can be removed. Future work could revisit the work
presented in this section to follow the developments in the area of
both TDM scheduling and network calculus.

5. DISCUSSION
Not all advantages and disadvantages of TDM NoCs and a net-

work calculus approach can be captured by the latency and band-
width numbers presented in the previous section. This section dis-
cusses the respective benefits and drawbacks to provide a more
complete picture.

5.1 Hardware Costs
A thorough comparison of hardware costs between different NoCs

would have to take into account that all components of the NoC (i.e.,
network interfaces, routers, and links) consume hardware resources.
Unfortunately, published results are rarely sufficiently detailed to
deduce the costs of all these components. Furthermore, different
target technologies and optimization goals lead to results that are
not comparable. However, we can estimate the hardware costs for
the routers in a TDM NoC and a rate-controlled NoC.

The core functionality of routers in the two NoC approaches inves-
tigated in this paper is quite similar. Packets arrive at input ports and
are multiplexed to output ports according to a route that is encoded
in the packet. Therefore, we can expect this core functionality to
require a similar amount of hardware resources.

However, routers in a rate-controlled NoC require buffers, while
routers in a TDM NoC do not. While the available data in the
literature is insufficient to do a precise comparison, we can still
estimate the relative overhead inferred by the buffers. As buffers

are typically implemented with SRAM, we can relate the size of a
TDM router design to the size of an SRAM bit.

Routers in the Argo NoC occupy a cell area of around 8000 µm2

in 65 nm technology [14]. An SRAM bit in 65 nm technology
uses around 0.5 µm [1, 30]. Consequently, we can estimate that
around 16 kbit of buffers are equivalent to the area occupied by a
router without buffers. In other words, we can expect a router that
includes buffers for 500 32-bit words to occupy about twice the
area of a router without any buffers. For comparison, a router in the
NoC of the MPPA-256 contains 20 queues with 401 32-bit entries.
In 65 nm technology, the SRAM cells to implement these queues
would occupy about 16 times the area of a router in the Argo NoC.

This observation could be utilized in two ways. On the one hand,
one could reduce hardware costs by replacing a rate-controlled
NoC with a TDM NoC. On the other hand, one could increase the
bandwidth of a TDM NoC by making it wider or replicating the
NoC without exceeding the hardware costs of a rate-controlled NoC.
However, future work is necessary to gain a better understanding of
the trade-off between hardware costs and bandwidth when taking
into account the costs for all components of the NoC.

Furthermore, we observe that the constraints presented by Dupont
de Dinechin et al. [8, 7] relate the buffer sizes with the rate control
time window. The larger the time window, the bigger the buffers
have to be. Fine-grained rate control however requires a large time
window. Consequently, the required rate control granularity impacts
the required buffer sizes and the size of the hardware implementa-
tion.

5.2 Best-Effort and Mixed-Criticality Traffic
In a TDM NoC, all traffic is statically scheduled and flows through

the network without buffering or flow control. It is therefore not
straightforward to integrate best-effort traffic without substantial
changes to the network hardware.

The Æthereal [9] NoC, which combines TDM scheduling with
best effort traffic, has in fact separate TDM and best-effort routers
placed in parallel. Support for best-effort traffic is implemented
through buffers on the input ports of the routers together with link-
level flow control. When a best-effort packet arrives at a router, it is
stored in the input buffer. The best-effort packet is forwarded to the
next router when no TDM packet contends for the same output port
and there is room in the receiving buffer.

In a rate-controlled NoC without flow control, all flows need to
be rate-constrained to guarantee the absence of buffer overflows.
Therefore, best-effort flows cannot benefit from unused bandwidth
in such a NoC. In addition to buffers, best-effort traffic requires
flow control. However, we expect the hardware overhead for flow
control to be relatively low compared to the buffers. Consequently,
extending a rate-controlled NoC with flow control introduces little
hardware overhead.

Mixing best-effort traffic with traffic that requires hard latency and
bandwidth guarantees bears some similarity with mixed-criticality
models that distinguish high-criticality traffic and low-criticality
traffic. In such a model, high-criticality traffic takes priority over
low-criticality traffic. As priorities can be modeled in network
calculus [31], such a model of mixed criticality could be integrated
into network calculus.

Network calculus can also be applicable to mixed-criticality mod-
els where the criticality of a flow depends on the tightness of its
timing requirements. A variant of network calculus for such a model
of mixed criticality is presented by Boyer et al. [3]. While this
network calculus variant was developed for an off-chip network,
similar ideas could be applied to on-chip networks.

5.3 Possible Optimizations
Similar to the approach by Dupont de Dinechin et al. [8, 7] we

assume a single, global time window of length Tw for all flows.
However, in contrast to a TDM NoC where the TDM period is a
global property, there is no fundamental reason to have a single,
global window for traffic shaping.

As pointed out in Section 5.1, the window size impacts the re-
quired buffer sizes. Smaller windows lead to smaller buffer require-
ments in the routers, but imply a coarser rate control granularity.
One optimization point could be to have a different time window for
each tile and to adapt that window according to the flows that orig-
inate in the tile. The hardware of the Kalray MPPA-256 platform
would already support such an optimization.

A further possible optimization would be the use of different time
windows for different flows from the same node. However, this
would require several traffic shapers and a buffer to merge the indi-
vidual flows after traffic shaping. Therefore, such an optimization
would increase hardware costs.

The TDM scheduler we used in this paper tries to minimize the
TDM period for given bandwidth requirements. The bandwidths
are not actively changed during scheduling. If bandwidth is more
important than latency, we can envision a TDM scheduler that trades
longer TDM periods (and hence higher latencies) for higher band-
widths of some or all flows.

6. CONCLUSION
TDM and network calculus are two competing approaches to

provide latency and bandwidth guarantees for real-time systems in
NoCs. This paper compared these two approaches to gain a better
understanding of their respective advantages and disadvantages.

We evaluated latencies and bandwidths for a generic all-to-all
communication graph and several application-specific communi-
cation graphs. To compute concrete values, we assumed a TDM
NoC and a rate-controlled NoC that are both modeled after actual
NoC implementations. The results show that TDM provides better
latency guarantees, while network calculus results in higher band-
widths. We identified optimization potential in the TDM scheduling
approach we used and are looking forward to future research that
may reduce pessimism in the network calculus approach.

This paper also discussed properties of a TDM approach and a
network calculus approach that are not reflected in mere latency
and bandwidth numbers. On the one hand, TDM NoCs can be
implemented very efficiently in hardware. On the other hand, best-
effort traffic can be accommodated more easily in a rate-controlled
NoC. Future work will have to show whether the size advantage of a
TDM NoC can make up for the greater flexibility of a rate-controlled
NoC.

Acknowledgments. The work presented in this paper was fund-
ed by the Danish Council for Independent Research | Technology
and Production Sciences under the project RTEMP,1 contract no.
12-127600.

7. REFERENCES
[1] F. Arnaud, F. Boeuf, F. Salvetti, D. Lenoble, F. Wacquant,

C. Regnier, P. Morin, N. Emonet, E. Denis, J. Oberlin, et al. A
functional 0.69 µm2 embedded 6T-SRAM bit cell for 65 nm
CMOS platform. In 2003 Symposium on VLSI Technology.
Digest of Technical Papers., pages 65–66. IEEE, 2003.

1http://rtemp.compute.dtu.dk

[2] M. Bakhouya, S. Suboh, J. Gaber, and T. El-Ghazawi.
Analytical modeling and evaluation of on-chip interconnects
using network calculus. In 3rd ACM/IEEE International
Symposium on Networks-on-Chip (NoCS), pages 74–79, May
2009.

[3] M. Boyer, N. Navet, M. Fumey, J. Migge, L. Havet, and
T. Avionics. Combining static priority and weighted
round-robin like packet scheduling in afdx for incremental
certification and mixed-criticality support. In 5th European
Conference for Aeronautics and Space Sciences (EUCASS),
Munich, Germany, 2013.

[4] F. Brandner and M. Schoeberl. Static routing in symmetric
real-time network-on-chips. In 20th International Conference
on Real-Time and Network Systems (RTNS 2012), pages
61–70, Pont a Mousson, France, November 2012.

[5] R. L. Cruz. A calculus for network delay. I. Network elements
in isolation. IEEE Transactions on Information Theory,
37(1):114–131, Jan 1991.

[6] R. L. Cruz. A calculus for network delay. II. Network analysis.
IEEE Transactions on Information Theory, 37(1):132–141,
Jan 1991.

[7] B. Dupont de Dinechin, Y. Durand, D. van Amstel, and
A. Ghiti. Guaranteed services of the NoC of a manycore
processor. In International Workshop on Network on Chip
Architectures (NoCArc), pages 11–16, New York, NY, USA,
Dec. 2014. ACM.

[8] B. Dupont de Dinechin, D. van Amstel, M. Poulhiès, and
G. Lager. Time-critical computing on a single-chip massively
parallel processor. In Conference on Design, Automation and
Test in Europe, DATE ’14, pages 97:1–97:6, 3001 Leuven,
Belgium, Belgium, 2014. European Design and Automation
Association.

[9] K. Goossens, J. Dielissen, and A. Rădulescu. The Æthereal
network on chip: Concepts, architectures, and
implementations. IEEE Design and Test of Computers,
22(5):414–421, Sept-Oct 2005.

[10] A. Hansson, M. Subburaman, and K. Goossens. Aelite: a
flit-synchronous network on chip with composable and
predictable services. In Conference on Design, Automation
and Test in Europe, DATE ’09, pages 250–255, 2009.

[11] IBM ILOG. CPLEX Optimization Studio, 2014.
[12] L. S. Indrusiak. End-to-end schedulability tests for

multiprocessor embedded systems based on networks-on-chip
with priority-preemptive arbitration. Journal of systems
architecture, 60(7):553–561, 2014.

[13] M. Joseph and P. K. Pandya. Finding response times in a
real-time system. Comput. J, 29(5):390–395, 1986.

[14] E. Kasapaki. An Asynchronous Time-Division-Multiplexed
Network-on-Chip for Real-Time Systems. PhD thesis,
Technical University of Denmark (DTU), 2015.

[15] E. Kasapaki, M. Schoeberl, R. B. Sørensen, C. T. Müller,
K. Goossens, and J. Sparsø. Argo: A real-time
network-on-chip architecture with an efficient GALS
implementation. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, PP, 2015.

[16] F. P. Kelly, A. K. Maulloo, and D. K. Tan. Rate control for
communication networks: shadow prices, proportional
fairness and stability. Journal of the Operational Research
society, pages 237–252, 1998.

[17] H. Kopetz and G. Bauer. The time-triggered architecture.
Proceedings of the IEEE, 91(1):112–126, 2003.

[18] H. Kopetz and G. Grünsteidl. TTP — a protocol for
fault-tolerant real-time systems. Computer, 27(1):14–23,
1994.

[19] J.-Y. Le Boudec. Network calculus made easy. Technical
Report EPFL-DI 96/218, EPFL, 1996.

[20] J.-Y. Le Boudec. Application of network calculus to
guaranteed service networks. IEEE Transactions on
Information Theory, 44(3):1087–1096, May 1998.

[21] W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang, M. Nikdast,
and Z. Wang. A NoC traffic suite based on real applications.
In IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pages 66–71, July 2011.

[22] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guaranteed
bandwidth using looped containers in temporally disjoint
networks within the Nostrum network on chip. In Conference
on Design, Automation and Test in Europe, DATE ’04, pages
20890–, Washington, DC, USA, 2004. IEEE Computer
Society.

[23] Y. Qian, Z. Lu, and W. Dou. Analysis of worst-case delay
bounds for best-effort communication in wormhole networks
on chip. In 3rd ACM/IEEE International Symposium on
Networks-on-Chip (NoCS), pages 44–53. IEEE, 2009.

[24] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley,
R. Capasso, J. Garside, K. Goossens, S. Goossens, S. Hansen,
R. Heckmann, S. Hepp, B. Huber, A. Jordan, E. Kasapaki,
J. Knoop, Y. Li, D. Prokesch, W. Puffitsch, P. Puschner,
A. Rocha, C. Silva, J. Sparsø, and A. Tocchi. T-CREST:
Time-predictable multi-core architecture for embedded
systems. Journal of Systems Architecture, 0(0):–, 2015.
published online, to appear in print.

[25] M. Schoeberl, F. Brandner, J. Sparsø, and E. Kasapaki. A
statically scheduled time-division-multiplexed
network-on-chip for real-time systems. In 6th International
Symposium on Networks-on-Chip (NoCS), pages 152–160,
Lyngby, Denmark, May 2012. IEEE.

[26] Z. Shi and A. Burns. Real-time communication analysis for
on-chip networks with wormhole switching. In 2nd
ACM/IEEE International Symposium on Networks-on-Chip
(NoCS), pages 161–170, April 2008.

[27] Z. Shi and A. Burns. Schedulability analysis and task
mapping for real-time on-chip communication. Real-Time
Systems, 46(3):360–385, 2010.

[28] R. B. Sørensen, J. Sparsø, M. R. Pedersen, and J. Højgaard. A
metaheuristic scheduler for time division multiplexed
network-on-chip. In Software Technologies for Future
Embedded and Ubiquitous Systems (SEUS), 2014. IEEE,
2014.

[29] S. Suboh, M. Bakhouya, J. Gaber, and T. El-Ghazawi.
Analytical modeling and evaluation of network-on-chip
architectures. In International Conference on High
Performance Computing and Simulation (HPCS), pages
615–622, June 2010.

[30] K. Utsumi, E. Morifuji, M. Kanda, S. Aota, T. Yoshida,
K. Honda, Y. Matsubara, S. Yamada, and F. Matsuoka. A
65nm low power CMOS platform with 0.495 µm2 SRAM for
digital processing and mobile applications. In 2005
Symposium on VLSI Technology. Digest of Technical Papers.,
pages 216–217, June 2005.

[31] H. Zhang. Service disciplines for guaranteed performance
service in packet-switching networks. Proceedings of the
IEEE, 83(10):1374–1396, Oct 1995.

