
Interfacing Hardware Accelerators to a
Time-Division Multiplexing Network-on-Chip

Luca Pezzarossa, Rasmus Bo Sørensen, Martin Schoeberl, and Jens Sparsø
Department of Applied Mathematics and Computer Science

Technical University of Denmark, Kgs. Lyngby
Email: [lpez, rboso, masca, jspa]@dtu.dk

Abstract—This paper addresses the integration of stateless
hardware accelerators into time-predictable multi-core platforms
based on time-division multiplexing networks-on-chip. Stateless
hardware accelerators, like floating-point units, are typically
attached as co-processors to individual processors in the platform.
Our design takes a different approach and connects the hardware
accelerators to the network-on-chip in the same way as processor
cores. Each processor that uses a hardware accelerator is assigned
a virtual channel for sending instructions to the hardware
accelerator and a virtual channel for receiving results. This allows
a stateless and possibly pipelined hardware accelerator to be
shared in an interleaved fashion without any form of reservation,
and this opens for interesting area-performance trade-offs. The
design is developed with a focus on time-predictability, area-
efficiency, and FPGA implementation. The design evaluation is
carried out using the open source T-CREST multi-core platform
implemented on an Altera Cyclone IV FPGA. The size of the
proposed design, including a floating-point accelerator, is about
two-thirds of a processor.

I. INTRODUCTION

Hardware platforms for hard real time systems must exhibit
a time-predictable behavior such that guarantees on worst-
case execution time can be provided. In multi-core platforms
this means that the networks-on-chip (NOCs) must support
guaranteed service connections. One approach to this is time-
division multiplexing (TDM), and examples of TDM-based
NOCs are Æthereal and aelite [1], Nostrum [2], and Argo [3].
Our work specifically targets the latter, but our design can in
principle be used with any TDM-based NOC.

The purpose of including hardware accelerators (HWAs) in
a general purpose design is speed-up. In a real-time system,
this results in a twofold speed-up: firstly the raw speed-up
originating from using a HWA and secondly because it is
possible to give a precise, and therefore tight, bound on
execution time. Something that is generally very difficult
or even impossible if the same function is implemented in
software.

The limited production volume of hard real-time systems
typically cannot amortize the development cost of an ASIC,
and FPGA implementations are often preferred. The usage
of the FPGA technology offers also more flexibility towards
including relevant HWAs in the platform.

While the use of HWAs is a cost-efficient way to increase
the performance, it also brings new challenges: from a software
point of view, related to synchronization, programming models

and scheduling; and from a hardware point of view, related to
how the HWA is integrated into the rest of the system. The
latter is even more challenging if the HWA is shared [4].

In this paper we consider only stateless HWAs. HWAs
of this class implement pure functions, where the result is
computed entirely from the input – a set of operands and
indication of what function to perform. Examples are floating-
point, fast Fourier transform (FFT), discrete cosine transform,
encryption/decryption, coding/encoding, etc. Such HWAs are
typically attached as co-processors to individual processors
cores in the platform, but due to the stateless property they
can easily be shared among several processors.

This paper contributes a novel technique for integrating and
sharing stateless HWAs in multi-core platforms based on a time-
division multiplexing NOC for time-predictable applications.
In our approach the HWAs are connected to the NOC in the
same way as processor cores, as shown in Figure 1(a). Each
processor that uses a HWA is assigned a virtual channel for
sending instructions to the HWA and a virtual channel for
receiving results. This allows a stateless and possibly pipelined
HWA to be shared between cores in an interleaved fashion
without any form of reservation and opens for interesting area-
performance trade-offs.

We evaluate the performance and the hardware cost of our
HWA integration technique using the T-CREST platform on
an Altera Cyclone IV FPGA. The evaluation is carried out
with an application that calculates a double-precision floating-
point complex-to-complex FFT using a floating-point arithmetic
accelerator. We provide speed-up results for a solution using a
HWA compared to a pure software solution.

This paper is organized as follows: Section II provides
general background on HWAs and presents related works.
Section III gives an overview of the T-CREST platform in
which we have tested our design. Section IV describes the
overall design of the HWA-adapter and its implementation.
Section V evaluates the design using the T-CREST platform
and discusses the results and some properties of the integration
technique. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A HWA implements an operation in dedicated hardware as an
alternative to a software routine. HWAs can be stateless where
the result is computed from the input only, or stateful where
the result depends from the input and some state information978-1-4673-6576-5/15/$31.00 c©2015 IEEE

HWA

Processor

Node

N
I

R

Processor

Node

N
I

R

Processor

Node

N
I

R

N
I

R

HWA-adapter

(a)

R

Processor

Network Interface

SPM

DI

inst.

mem.

data

mem.

data

I/O

R Wconfiguration

port

TDM

sch.

DMA

table

(b)

Fig. 1. (a) A 2× 2 node fragment of the Argo NOC showing 3 processor
nodes and a node containing a HWA. (b) Details of a network interface and a
processor node.

stored in the HWA. In this paper we consider only the former
class. Orthogonal to this classification is the question of how
the HWAs are integrated. Here is a large variety of solutions
but most fall into one of the three categories described below.

In the first category the HWA is an extra execution unit
that is attached directly to the CPU pipeline and it operates
on variables in CPU’s register file. This method is particularly
advantageous for fine-grain HWAs with low latency. An
example is the SuperH processor [5] where the FPU is part of
the CPU pipeline and shares the CPU register file.

In the second category the HWA is connected to one or more
CPUs using a dedicated bus (or NOC) for the HWA traffic.
Examples are video/audio HWAs in the Philips Viper Nexperia
and the STMicroelectronics Nomadik multi-core processors
[6]–[8]. This approach is suitable for coarse or medium-grain
HWAs with medium to high latency. Although advantageous
from the speed-up point of view, this approach uses a dedicated
bus/network leading to a significant increase of the system
complexity and hardware cost.

In the third category the HWA is attached as a node to
the already existent inter-processor NOC and it is considered
as a peer of the other processor cores in the platform. This
method is suitable for coarse or medium-grain HWAs with
high-medium latency. An example is the Intel IXP2855 multi-
core processor where cryptography HWAs are attaching to the
NOC of the system [6], [9]. The method we consider in this
paper falls in this category.

III. THE T-CREST PLATFORM

Our HWA-adapter has been designed for and evaluated using
the opens-source T-CREST multi-core platform, but our design
can in principle be used with any TDM-based NOC. The
T-CREST platform [10] integrates time-predictable resources;
such as processors, memories, and NOCs, all designed to reduce

R/W

HWA-adapter

configuration port data port
Network

Interface

Hardware Accelerator

write addr.

read addr.

instructionsresults

return

addr.

write addr.

R/W

Input

Buffer

W

R

Output

Buffer

R

W

Read

Contr.
Send

Contr.

Write

Contr.

Return Address

Queue

Fig. 2. The block diagram showing the HWA-adapter design and its interfaces
towards the NOC and the HWA itself.

the complexity of worst case execution time (WCET) analysis.
The T-CREST platform uses two NOCs: a NOC connecting
all cores to a shared memory and a TDM-based NOC called
Argo that supports message passing between cores [3].

Argo provides a set of virtual point-to-point channels to an
application programmer. Through these channels blocks of data
can be transferred from the local scratch pad memory (SMP)
in a processor node into the SPM of a remote node. This data
transfer is driven by DMA controllers, and each virtual channel
has its own logical DMA controller in the sender end of the
channel. A unique feature of Argo is the way in which the
DMA-controllers are integrated with the TDM-scheduling in
the NIs, as illustrated in Figure 1(b). Packets consist of two
32-bit data-words and a header word containing the route and
the target address in the destination SPM. Incoming packets
write directly into the destination SPM.

IV. DESIGN AND IMPLEMENTATION

Our key idea is to attach HWAs to the Argo NOC in the
same way as a processor core, reusing the NI and replacing
the processor and the SPM with a HWA-adapter and the HWA
itself, as illustrated in the shaded tile in Figure 1(a). The
HWA is typically a pre-existing standard stateless accelerator
core. Details of the architecture and implementation of the
HWA-adapter is explained below and illustrated in Figure 2.

Stateless HWAs are typically pipelined and have simple
interfaces: an input port where they receive instructions
(operands and indication of what operation to perform) and an
output port where they deliver results. As the NOC serialize
the arrival of packets, a stateless HWA can be shared by several
processors without interference or need for reservation. For
every processor that uses the HWA, the NOC is configured to
provide a pair of (virtual) channels; one used for transmitting
instructions from the processor to the HWA and one for
transmitting results from the HWA back to the processor.

Our design piggybacks on the DMA-driven data transfer
functionality of the NOC. This means that buffer space for
instructions and result must be provided in the SPMs of the
processors that use the HWA and in some memory-space in
the HWA-adapter. It also means that the HWA-adaptor must
be provided with a return-address for the result.

A block of data corresponding to an instruction or a result is
typically larger than the payload of a NOC-packet, and a block
of data is transmitted using multiple packets. As the TDM
schedule interleaves timeslots for different virtual channels,
it follows that the HWA-adapter receives packets sent from
multiple processors in an interleaved fashion. Therefore, the
HWA-adapter must be able to assemble and buffer instructions
before they can be passed on to the HWA.

Below we briefly elaborate on the design of the different
components in the HWA-adapter, shown in Figure 2:

The input buffer is a dual-port memory with write port size
of 64 bits that corresponds to the payload size in a NOC-packet.
The width of the read port corresponds to an entire instruction.

The read control block monitors the writing of data to the
input buffer. When it detects that the last word of an instruction
is received it reads the instruction and the return-address, and
issues them respectively to HWA and to the return-address
queue.

The return-address queue receives and holds the return-
addresses from the input buffer and issues DMA set-up requests
to the send controller. It is a FIFO-queue implemented using
a dual-port memory and a read and a write pointer.

The output buffer receives results produced by the HWA and
holds these until the word-by-word transmission through the
NOC is complete. Like the input buffer, the output buffer is
also a simple dual-port memory with different port sizes. The
write port has the size of a result and the read port has the
size of 64 bits.

The write controller is based on a simple incrementing
counter and it manages the writing of result and return-address
tuples into the output buffer. At the same time the send
controller, implemented as a small Mealy state machine, is
triggered to set up the relevant DMA in the NI. The DMA
controller then sends the result back to the processor that
requested the HWA operation.

V. EVALUATION AND RESULTS

The presented technique is tested and evaluated in the
T-CREST multi-core platform implemented on the Altera
Cyclone IV FPGA (EP4CE115) on the Terasic DE2-115
development board. The configuration used in the test consists
of a 2-by-2 bi-torus platform with four nodes. Three of them
host Patmos processors, the last hosts the HWA. The HWA
used in the test is a 15 stages pipelined double-precision FPU
generated with FloPoCo [11] that executes addition, subtraction,
and multiplication operations, selected with a dedicated input
operand. The instruction size is four 64-bit words: one for
the return-address, one for the operation selector (including
some not utilized fields for future extensions) and two for the
operands. Therefore, the memory-space in the HWA-adaper

TABLE I
HARDWARE RESOURCE UTILIZATION FOR THE ALTERA CYCLONE IV

FPGA IMPLEMENTATION OF THE TEST CASE PLATFORM CONFIGURATION.

Logic cells DSP RAM (bits)

2 x 2 Platform 48 331 96 1 894 693

2 x 2 Argo NOC 7 161 0 0
4 SPMs 148 0 1 122 340

1 Patmos core 8 770 12 211 456
1 Network interface 899 0 0
1 HWA-adapter 2 206 0 180
1 FPU 3 354 48 881

(input buffer) is divided in three segments of four 64-bit words;
each segment belongs to a processor served by the HWA.

Table I shows the FPGA hardware resource utilization in
terms of logic cells, digital signal processing elements (DSP),
and bits of memory (RAM) of the entire platform and of some
relevant entities of the design. The results in Table I show
that the hardware cost of a HWA-adapter is roughly a quarter
of a Patmos processor (considering only logic cells), and that
a node comprising a FPU-unit and a HWA-adapter is about
two-thirds of a Patmos processor.

To evaluate the design in terms of average-case execution
times speed-up, we have carried out a comparison between
the execution time of two C applications that calculate an
N points double-precision floating-point complex fast Fourier
transform using the Cooley-Tukey algorithm [12]. The first
application executes the algorithm in software utilizing the
software floating-point functions (from the LLVM project [13]
and Newlib [14]) for the floating-point addition, subtraction
and multiplication needed by the algorithm, while the second
application uses the FPU. An identical application runs in
parallel on each core of the platform.

Table II shows the average-case execution times needed by
the two applications to calculate the FFT of N points and the
speed-up calculated as ratio between the execution times of
the FFT function executed in software and using the FPU. The
average on the execution times is calculated on 100 FFTs on
randomly generated arrays of values. All the execution times
are measured by the processor on the FPGA implementation
of the platform.

According to the results reported in Table II, the design
shows a speed-up from 7.8 for a 256 points FFT to 10.1 for
4096 points. As a general rule, to benefit from the use of a
HWA, the speed-up has to be in the order of tens or hundreds
depending on the application [15]. In our case, the usage of
the FPU can be considered advantageous not only for the
obtained speed-up, but also for the fact that the presented
integration technique lead to WCET analysis simplifications,
since some operations are executed in hardware with a static
and pre-calculated WCET, as explained below.

Regarding the time-predictability of the design, the HWAs
integrated with the presented technique inherit an important

TABLE II
AVERAGE-CASE EXECUTION TIMES, EXPRESSED IN 106 CLOCK CYCLES,

OF AN N POINTS FFT EXECUTED IN SOFTWARE OR USING THE FPU.

N Software FPU Speed-up

256 48.1 6.2 7.8
512 106.1 12.6 8.4

1 024 233.4 25.8 9.0
2 048 510.8 53.1 9.6
4 096 1 103.4 109.2 10.1

property from the TDM-based NOC: the total latency Ltot of
an operation and the throughput of the HWA, as seen by a
processor using it, are static and independent of other processors
using the HWA. In other words, each processor sees the same
performance, in terms of latency and throughput as it was
alone. This property is particularly relevant for hard real-time
systems, since it allows a simplification of the WCET analysis
of applications running on different cores of the platform and
sharing the HWA. The total latency can be calculated as a sum
of three main latency contributes, as shown in 1.

Ltot = TNOCf + THWAadapter + LHWA + TNOCb (1)

TNOCf and TNOCb are the latencies needed by an instruction
and a result, respectively, to traverse the NOC. These depend
by the NOC size and by the TDM schedule [3]. THWAadapter

is the latency introduced by the HWA-adapter [16], and LHWA

is the latency of the HWA. Since the data path from the
processor to the HWA-adapter and back to the processor is
heavily pipelined, the latency of a single operation can be
hidden by sending operations to the HWA in an interleaved
fashion in a way similar to the loop unrolling procedure used
in software to speed up loops execution. This means that a
user of the HWA can have multiple outstanding computations
leading to an increase of the effective throughput. Further
explanations regarding the throughput and a formula for its
calculation can be found in [16]. Using 1 for the presented
hardware configuration, the calculated latency Ltot is 224 clock
cycles. This value is static and pre-calculated and it can be
directly used in the WCET analysis tools leading to a relevant
analysis simplification.

Finally, we observe that having a payload size of a single
NOC-packet smaller than the instruction size introduces the
need for buffers and control logic to gather and assemble full
instructions; and this affects the design complexity. Looking
forward it may be relevant to consider increasing the number
of words in a NOC-packet. If the payload of a single NOC-
packet matches the size of an instruction, the input buffer
and the associated control logic in the HWA-adapter can be
reduced, also leading to a reduction of the total latency and to
an increase of the effective HWA throughput.

VI. CONCLUSION

This paper presented a technique that provides a flexible
and scalable interface for integrating stateless HWAs in time-

predictable multi-core platforms using a message passing NOC
based on time-division multiplexing. The combination of a
TDM based NOC and stateless HWAs allows the accelerators
to be shared among several processors in an interleaved fashion
without any form of reservation. This gives the designer
maximum flexibility when deciding on the number of HWAs
needed to achieve a certain performance requirement. The
design is developed with special focus on time predictability,
area-efficiency, and FPGA implementation and it was evaluated
in the T-CREST multi-core platform and implemented on an
Altera Cyclone IV FPGA.

ACKNOWLEDGMENTS

This work was partially funded by the Danish Council for
Independent Research | Technology and Production Sciences,
Project no. 12-127600: Hard Real-Time Embedded Multipro-
cessor Platform (RTEMP).

REFERENCES

[1] K. Goossens and A. Hansson, “The Æthereal network on chip after ten
years: goals, evolution, lessons, and future,” in Proc. of the 47th ACM/
IEEE Design Automation Conference (DAC2010), 2010, pp. 306 –311.

[2] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “The Nostrum backbone
- a communication protocol stack for networks-on-chip,” in Proc. of the
VLSI Design Conference, Mumbai, India, Jan. 2004, pp. 693–696.

[3] E. Kasapaki, M. Schoeberl, R. B. Sørensen, C. T. Müller, K. Goossens,
and J. Sparsø, “Argo: A real-time network-on-chip architecture with an
efficient GALS implementation,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. accepted for publication, 2015.

[4] R. Wilson, “Attaching accelerators in multicore systems,” 2014. [Online].
Available: https://www.altera.com/solutions/technology/system-design/
articles/ 2014/article-accelerators.html (visited on Apr. 9, 2015).

[5] F. Arakawa, T. Okada, T. Hayashi, O. Nishii, and T. Hattori, “An
embedded processor core for consumer appliances with 5.6 GFLOPS
and 73M polygons/s FPU,” Microprocessors and microsystems, vol. 33,
no. 4, pp. 254–259, 2009.

[6] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor system-on-chip
(MPSoC) technology,” IEEE transactions on computer-aided design of
integrated circuits and systems, vol. 27, no. 10, pp. 1701–1713, 2008.

[7] S. Dutta, A. Rieckmann, and R. Jensen, “Viper: A multiprocessor SOC
for advanced set-top box and digital TV systems,” IEEE Design and
Test of Computers, vol. 18, no. 5, pp. 21–31, 2001.

[8] STMicroelectronics, “Nomadik: mobile multimedia application processor,”
Tech. Rep., 2003. [Online]. Available: http://pdf.datasheetarchive.com/
datasheetsmain/Datasheets-46/DSA-22050.pdf (visited on Apr. 9, 2015).

[9] Intel Corporation, “Intel IXP2855 network processor,” Tech. Rep.,
2005. [Online]. Available: http://pdf.datasheetarchive.com/indexerfiles/
Datasheet-081/DASF0021075.pdf (visited on Apr. 9, 2015).

[10] M. Schoeberl et al., “T-CREST: Time-predictable multi-core architecture
for embedded systems,” Journal of Systems Architecture, 2015, accepted
for publication.

[11] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE DESIGN and TEST OF COMPUTERS, vol. 28,
no. 4, pp. 18–27, 2011.

[12] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Mathematics of Computation, vol. 19, pp.
297–301, 1965.

[13] C. Lattner and V. Adve, “The LLVM instruction set and compilation
strategy,” CS Dept., Univ. of Illinois at Urbana-Champaign, Tech. Rep.
UIUCDCS-R-2002-2292, Aug 2002.

[14] “Newlib: a C library intended for use on embedded systems.” [Online].
Available: http://www.sourceware.org/newlib/ (visited on Apr. 9, 2015).

[15] Y. Watanabe and B. Moyer, Chapter 13: Hardware Accelerators - Real
World Multicore Embedded Systems, 1st ed. Newton, MA, USA: Newnes,
2013, pp. 481–515.

[16] L. Pezzarossa, “Hardware Accelerators in Network-on-Chip Based Multi-
Core Platforms,” Master’s thesis, Technical University of Denmark, Dept.
of Applied Mathematics and Computer Science, 2014.

