
T-CREST: A TIME-PREDICTABLE MULTI-CORE PLATFORM FOR AEROSPACE
APPLICATIONS

Martin Schoeberl1, Cláudio Silva2, and André Rocha2

1Department of Applied Mathematics and Computer Science, Technical University of Denmark
2GMV, Lisbon, Portugal

ABSTRACT

Space systems are hard real-time systems, where the
worst-case execution time (WCET) of tasks needs to be
known to prove absence of deadline misses. For sim-
ple processor and memory architectures it is possible to
statically derive a safe upper bound of the WCET. How-
ever, future requirements in more autonomous missions
require more processing power. This increase in process-
ing power is approached by multi-core processors. How-
ever, current multi-core processors are not WCET ana-
lyzable.

The mission of T-CREST is to develop tools and build a
multi-core system that provides high performance, but be
WCET analyzable. The T-CREST time-predictable sys-
tem will simplify the safety argument with respect to the
maximum execution time and increase the performance
with multi-core technology. Thus the T-CREST system
will result in lower costs for safety-relevant applications,
reducing system complexity, simultaneously providing
faster time-predictable execution. Most of the T-CREST
technology is available in open-source.

Key words: Real-Time Systems; CPU Architecture;
Worst-Case Execution Time.

1. INTRODUCTION

Multi-core technology emerges as a logical next step to
handle the growing requirements for increased perfor-
mance and increased integration in embedded systems,
while at the same time decreasing the power consump-
tion, weight and volume budgets. The space domain
can benefit from this increased integration between sys-
tems as it becomes feasible to merge different func-
tional chains under the same on-board computer (i.e.,
data handling, altitude control and payload). Addition-
ally, performance-demanding applications are increasing
in spacecraft systems. Space missions are becoming
more autonomous, therefore several tasks that used to be
delegated to ground-based systems have now to be tack-
led on-board. Examples of missions requiring higher per-

formance are those which make use of advanced guid-
ance and navigation algorithms. Often, these are based
on real-time image processing or model estimation tech-
niques which are very CPU demanding [1].

Moreover, the technology and architectures used to en-
able fault tolerance and the on-board power availabil-
ity confine spacecraft on-board computers to low perfor-
mances (i.e., low clock frequencies and number of in-
structions per second). Even with state-of-the-art produc-
tion technologies, the SPARC family of space processors
is limited to frequencies in the order of the few hundred
MHz [2]. This fact conflicts with the requirements for
growing performance and integration and hence will start
to constrain the evolution of the space platform. Multi-
core architectures appear as a natural solution for this is-
sue [3].

Space systems can be characterized as safety-critical hard
real-time systems. In this class of systems, the worst-
case execution time (WCET) of the software needs to be
bounded and known so that timely delivery of critical re-
sponses is guaranteed. This requirement of hard real-time
systems becomes problematic when they are deployed on
multi-core architectures, mainly because multi-core tech-
nologies tend to make it difficult or even impossible to
obtain the maximum execution time [4].

This paper presents an innovative multi-processor
system-on-chip (SoC) architecture, the T-CREST plat-
form,1 designed since its inception to be compatible with
the predictability requirements of hard real-time systems.
The T-CREST time-predictable platform intends to sim-
plify the safety argument with respect to the maximum
execution time, and strive to double performance for 4
cores and to be 4 times faster for 16 cores than a standard
processor in the same technology (e.g., FPGA).

This paper is organized as follows: in Section 2, we de-
scribe the challenges faced by the adoption of multi-core
in safety critical systems and in Section 3 the current ef-
forts undertaken to tackle this issue. Section 4 introduces
the T-CREST platform. In Section 5, preliminary results
are discussed. Finally, Section 6 concludes this paper.

1http://www.t-crest.org/

http://www.t-crest.org/

2

2. MULTI-CORE AND SAFETY CRITICAL: A
NECESSARY EVIL

Several domains, including space, have already started
to address the deployment of multi-core architectures in
their systems. The main motivation behind this migra-
tion is the ability to increase system integration and per-
formance while at the same time decreasing the power
consumption, weight, and volume. A single multi-core
processor can handle the software that is currently dis-
tributed through multiple modules, hence decreasing the
necessary mass and power. Moreover, multi-core proces-
sors, due to their raw performance, can unlock several
CPU demanding applications, such as image processing
or dynamic system reconfiguration, that would be oner-
ous to deploy using today’s systems. Even without this
rationale, the adoption of multi-core in those domains
will be unavoidable, in the long term, as embedded pro-
cessors hit the same barriers that motivated the desktop
processor market to migrate to multi-core (i.e., the power
wall and the memory wall). This necessity is exacerbated
in space-like domains where the pressure on mass and
power budgets is more stringent. As market presses for
more functionality and lower costs, multi-core processors
will quickly become a requirement.

However, before multi-core processors can be considered
a solution for growing market demands and natural sys-
tem complexity evolution, several problems must be tack-
led. Safety-critical systems have certain characteristics,
like predictability, that can be affected by the deployment
in multi-core systems. When developing a safety critical
hard real-time application, the developer must be able to
determine with accuracy and confidence the WCET of its
application. This is necessary because not only the re-
sult of a computation matters but also the time at which
the result is obtained. For these applications, the veri-
fication and validation process is required to include an
in-depth characterization of the application timings and
a schedulability analysis. Each task in the system needs
to be attributed with a time budget that is adequate for
its WCET. The WCET is the maximum time a task could
take to complete execution on a given hardware configu-
ration.

Commercial general-purpose single-core processors al-
ready include features like branch prediction and spec-
ulative out-of-order execution that make the process of
obtaining a WCET bound difficult. This effect is wors-
ened by the new interferences in a multi-core processor.
The main source of interference stems from deep within
the architecture of the processor; although each core in
the system can execute instructions separately, there are
shared physical resources to which access is serialized.
The most common shared resources between cores are
parts of the memory hierarchy and I/O devices [5].

The memory hierarchy plays a critical role, as it is the
most important channel of interference and contention.
Even in single-core systems it is the main bottleneck for
performance; it is easy for a single-core processor to

overwhelm main memory with requests [5]. Given that,
in multi-core processors, parts of the memory hierarchy
are shared between cores, memory accesses to the shared
resources need to be arbitrated. Consequently, the ex-
istence or non-existence of memory accesses from the
other cores may influence the latency of a memory ac-
cess of a given task. This influence, or interference, can
possibly emerge in every shared resource, including any
element of the memory hierarchy (e.g., bus, caches, etc.).

In contrast with single-core, the WCET for a given task
in a multi-core system will additionally depend on the
profile of memory accesses that other tasks, concurrently
executing in other cores, have. Since the execution path
of simultaneously executing tasks will vary, so will the
execution time. This causes a significant increase in the
complexity of WCET estimation, as it is unfeasible to
consider every possible interference pattern between the
different cores.

The lack of predictability resulting from this interference
can only be alleviated by penalizing WCET estimations.
To have a safety margin in the WCET bound, the worst
possible interference pattern for that processor and mem-
ory hierarchy must be considered while computing the
WCET for a given task. This typically results in a WCET
estimation that is several orders of magnitude greater in a
multi-core system than it would be in a single-core. This
pessimism in WCET estimation quickly defeats the pur-
pose of multi-core by creating systems with a worse per-
formance than on single-core [6].

3. CURRENT STATUS OF MULTI-CORE IN THE
SPACE DOMAIN

The space domain is currently starting with the first steps
into the adoption of multi-core technologies. Both ESA
and NASA have research and development projects in
this area and have developed multi-core processors ac-
cording to their own requirements [7] [8].

One of these processors is the Next Generation Micro-
processor (NGMP) [7]. The NGMP is a SPARC V8(E)
quad-core architecture centered around the LEON4FT
processor, currently being developed by Aeroflex Gaisler
in conjunction with the European Space Agency. It
aims to provide significant performance increase com-
pared to earlier generations of European space proces-
sors, and aims to be used in the future space missions of
the Agency.

As part of the multicore OS benchmark study funded by
ESA, the NGMP processor was evaluated with respect to
predictability and timing behavior. The study concluded
that for memory intensive tasks, with a lot of store in-
structions, the execution time can be up to 20 times higher
than the execution time on a single-core processor [9].
This slowdown verified in the NGMP processor can be
considered typical for processors that are optimized for
average-case performance. For this kind of processor be-

3

 T-CREST Chip

Patmos

DecM$ +

SPM

S/D$

NI

Patmos

DecM$ +

SPM

S/D$

NI

R

Patmos

DecM$ +

SPM

S/D$

NI

R

Memory
Tree

Memory
Controller

SDRAM
Memory

R

Figure 1. The T-CREST platform consisting of processor nodes that are connected via a network-on-chip for message
passing and a memory tree for shared memory access.

havior, there is currently no tool or method support to
estimate the WCET [10]. To address this issue, ESA has
recently funded a project to research probabilistic WCET
estimation techniques [11].

From several research and development activities trying
to address the issues of safety-critical multi-core systems,
probabilistic WCET (pWCET) appears as a promising
trend which has yielded some interesting results as part
of the FP7 STREP PROARTIS project [12]. PROARTIS
approaches the issue of WCET by removing the depen-
dencies between timing behavior and execution history,
and then applying probabilistic analysis techniques [12].
ESA selected this research thread because it is one of
the few that can be applied to existing multi-core pro-
cessors, like the NGMP, with little or no modifications
on the hardware side. Additionally, pWCET tools pose
few requirements to the user to use them and to the de-
velopment process [11]. However, there are still several
challenges to the technology behind pWCET estimation,
partly because it requires the timing behavior of software
to be independent from the execution history, which can
prove to be a difficult task.

In contrast to the approach of trying to fix the problem of
hardly predictable hardware with a probabilistic WCET
analysis, we design the hardware from ground up to be
time-predictable. T-CREST is a time-predictable multi-
core architecture with static WCET analysis support.

4. THE T-CREST PLATFORM

To address the previously described problems with multi-
core technology in hard real-time space applications, we
propose an innovative approach by designing computer
architectures where predictable timing is a first-order de-

sign factor [13]. For real-time systems we thus propose
to design architectures with a new paradigm [14]:

Make the worst-case fast and the whole system
easy to analyze.

Within T-CREST we propose novel solutions for time-
predictable multi-core and many-core system architec-
tures. The resulting time-predictable resources (proces-
sor, interconnect, memories, etc.) are intended as a good
target for WCET analysis, and the WCET performance
is expected to be outstanding compared to current pro-
cessors. Time-predictable caching and time-predictable
chip-multiprocessing will provide a solution for the need
of increased processing power in the real-time domain.

T-CREST covers technologies from the chip level (pro-
cessor, memory, asynchronous network-on-chip), via
compiler, single-path code generation, and WCET anal-
ysis tools, up to system evaluation with a port of the
RTEMS operating system and two industry use cases, one
from the avionics domain and one from the railway do-
main.

Figure 1 shows the T-CREST platform. Several proces-
sor cores, called Patmos [15], are connected via a mem-
ory tree [16] to a real-time memory controller [17, 18]
to the shared, external SDRAM memory. For efficient
core-to-core communication each processor is connected
to a network-on-chip (NoC). These on-chip communica-
tion channels reduce the pressure on the shared memory
bandwidth.

4

4.1. The Processor

The basis of a time-predictable system is a time-
predictable processor. Within T-CREST we developed
a time-predictable processor, named Patmos [15], as one
approach to attack the complexity issue of WCET anal-
ysis. Patmos is a statically scheduled, dual-issue RISC
processor that is optimized for real-time systems.

A major challenge for the WCET analysis is the mem-
ory hierarchy with multiple levels of caches. We at-
tack this issue by using caches that are especially de-
signed for WCET analysis. For instructions we adopt the
method cache [19], which operates on whole function-
s/methods and thus simplifies the modeling for WCET
analysis [20]. Furthermore, we propose a split-cache
architecture [21, 22] for data, offering dedicated caches
for the stack area [23], constants, static data, heap allo-
cated objects, as well as a compiler and program man-
aged scratchpad memory. WCET analysis of the stack
cache has been presented in [24].

Patmos contains 5 pipeline stages: (1) instruction fetch
(FE), (2) decode and register read (DEC), (3) execute (EX),
(4) memory access (MEM), and (5) register write back (WB).
Figure 2 shows an overview of Patmos’ pipeline. The
pipeline is a dual issue pipeline executing up to two ALU
instructions each clock cycle.

Accesses to the different types of data areas are explicitly
encoded with the load and store instructions. We call this
typed load and store instructions, which direct the loads
and stores to the relevant cache. This feature helps the
WCET analysis to distinguish between the different data
caches.

Patmos also supports predication of all instructions. This
feature reduces the number of conditional branches and
supports generation of single-path code [25, 26]. The
compiler, LLVM, is extended with an optimization path
that translates normal code into single-path code [27].

4.2. The Interconnect

In order to build a chip-multiprocessor system out of Pat-
mos processor cores we need a suitable interconnect – a
network-on-chip (NoC). The Patmos multi-core proces-
sor uses non-coherent large off-chip memory and addi-
tional processor local, small memory blocks (scratchpad
memories). The NoC supports time-predictable message
passing between those local scratchpad memories. The
shared off-chip memory is supported by a memory NoC,
the memory tree [16].

To enable time-predictable usage of a shared resource
the resource arbitration has to be time-predictable. In
the case of a NoC, statically scheduled TDM is a time-
predictable solution [28, 29]. This static schedule is re-
peated and the length of the schedule is called the pe-
riod. Like tasks in real-time systems, the communication

is also organized in periods. One optimization point of
the design is minimizing the period in order to minimize
the latency of delivering data and the size of the schedule
tables. For regular network architectures and all-to-all
communication paths a heuristic is able to find good (al-
most optimal) solutions for the TDM schedule [30]. The
T-CREST NoC uses TDM from end to end, including the
network interface. That approach also results in an effi-
cient implementation of the network interface [31].

In the field of embedded systems, multi-processor plat-
forms are typically optimized for a given application or
application domain. The NoC communication schedules
can be optimized for an application.

Different types of data are transferred on the NoC,
e.g., message passing data between cores, cache fills
from main memory, synchronization operations such as
compare-and-swap. In most architectures, a single NoC
serves all those different types of data. However, the re-
quirements of these different data types with respect to
e.g., packet size, address ranges, and flow control are
different. Therefore, we will further evaluate if several
NoCs, for the traffic type optimized, result in a more effi-
cient solution than a single shared NoC.

For the memory access T-CREST provides a TDM based
memory NoC [32]. This NoC implements distributed ar-
bitration of the global TDM schedule at the client sides.
This architecture also allows pipelining of the merge tree
and the return path. That pipeline and the resulting la-
tency is incorporated in the local TDM arbitration.

4.3. Memory Hierarchy

The only memory layer that is under direct control of the
compiler is the register file. Other levels of the mem-
ory hierarchy are usually not visible – they are not part
of the ISA abstraction. The placing of data in the differ-
ent layers is automatically performed. While caches are
managed by the hardware, virtual memory is managed by
the operating system. The access time for a word that is
in a memory block paged out by the operating system is
several orders of magnitude higher than a first level cache
hit. Even the difference between a first level cache access
and a main memory access is in the order of two magni-
tudes.

Cache memories for instructions and data are classic ex-
amples of the paradigm Make the common case fast.
Plenty of effort has gone into researching the integra-
tion of the instruction cache into the timing analysis [33]
and the integration of the cache analysis with the pipeline
analysis [34]. The influence of different cache architec-
tures on WCET analysis is described in [35].

Caches in general, and particularly data caches, are usu-
ally hard to statically analyze. Therefore, we introduce
caches that are organized to speed-up execution time and
provide tight WCET bounds. We propose a split cache
architecture consisting of: (1) an instruction cache for

5

 RF M$

IRPC

+

Dec

 S$

SP

 D$

 RF

+

Figure 2. Dual issue pipeline of Patmos with fetch, decode, execute, memory, and write back stages.

full methods, (2) a stack cache, and (3) a cache for static
data, constants, and type information. Furthermore, we
also support a program- or compiler-managed scratch-
pad memory for instruction and data storage and inter-
processor communication to tighten bounds for hard-to-
analyze memory-access patterns.

Even for embedded systems the on-chip available mem-
ory is usually too small to hold all code and data. There-
fore, off-chip SDRAM serves as shared main memory
for the multicore processor. Access time to an SDRAM
usually depends on the history of former accesses (e.g.,
open rows). This optimization improves the average case
execution time, but not the WCET. Therefore, within T-
CREST memory controllers have been developed that are
a better fit for real-time systems [17, 18, 36]

The combination of the TDM based NoC, the memory
arbitration tree, and the time-predictable memory con-
troller allows, even on a multi-core system, to provide
upper bounds on memory transactions. This upper bound
enables WCET analysis of individual tasks executing on
a multi-core system.

4.4. Compiler, WCET Analysis, Software Support

The performance of the dual-issue processor depends on
statically scheduled instructions. We argue that all archi-
tectural features of a processor shall be exposed to the
compiler to generate time-predictable code. Within T-
CREST the LLVM compiler framework has been adapted
to target Patmos. Furthermore, we explore compiler opti-
mizations for the WCET instead of the average case exe-
cution time.

The processor is intended as a platform to explore vari-
ous time-predictable design trade-offs and their interac-
tion with WCET analysis techniques as well as WCET-
aware compilation. We propose the co-design of time-
predictable processor features with the WCET analysis
tool, similar to the work by Huber et al. [37] on caching
of heap allocated objects in a Java processor. Only fea-
tures where we can provide a static program analysis shall
be added to the processor.

The WCET analysis tool aiT from AbsInt has been
adapted to support the dual-issue processor Patmos. It is
also the platform for exploration of time-predictable pro-
cessor features. The WCET oriented optimizations in the
compiler are tightly integrated with the WCET analysis
tool [38, 39]. The WCET tool provides information on
the worst-case path and basic block timings to guide the
optimization process.

Regarding software support, the libraries adapted as part
of the compiler port (i.e., newlib) allow for a ‘bare-metal’
C executive to run on top of Patmos. These libraries were
also extended to add support to T-CREST specific fea-
tures like scratchpad access.

For more complex applications, the RTEMS operating
system was ported to the T-CREST platform. RTEMS is
a free and open source real-time operating system, used
as a baseline for dozens of space missions, that is compat-
ible with open standards such as POSIX or iTRON [40].
The deployment of RTEMS instances in an asymmet-
ric fashion over the T-CREST platform will be experi-
mented as a means to explore multi-core as a hardware
partitioning platform inline with the transitioning of the
space software reference architecture to Integrated Mod-
ular Avionics [40].

5. EVALUATION

Demonstrating the platform’s capability to host real ap-
plications with delicate predictability requirements pro-
vides good evidence for the appropriateness of the plat-
form for its intended purpose in the domain of critical
real-time systems. To evaluate the T-CREST platform
prototype we make use of industrial use cases derived of
real-world applications. These use cases are built upon
domain-specific use case applications from the avionics
and railways domains.

The avionics use cases consist of a set of avionics appli-
cations that are hosted on one computing platform as it
is common practice in on-board systems integrated ac-
cording to the principles of Integrated Modular Avionics

6

(IMA). The avionics applications considered in the eval-
uation are the following:

• Airlines Operational Centre (AOC) - The AOC is the
on-board part of an Air Traffic Management (ATM)
system that enables digital text communication be-
tween aircrew and ground ATM units.

• Crew Alerting System (CAS) - The CAS system re-
ceives signals from on-board subsystems, such as
doors, engines or the environment control system,
and displays relevant aircraft information such as
engine parameters (e.g., temperature values, fuel
flow and quantity).

• I/O Partition (IOP) - The I/O Partition is a dedicated
partition in an IMA for Space system that allows all
other partitions to access I/O devices.

These applications were originally designed and imple-
mented for specific run-time platforms (e.g. ARINC 653
APEX or RTEMS). To successfully evaluate the platform,
these demonstrators must make use of the T-CREST plat-
form specific features such as the inter-core NoC, local
memory and WCET-aware compilation. As such, their
adaptation to the T-CREST platform requires significant
effort, being a rather complex task that involves several
(re)design decisions. Our preferred option to address this
issue was to envision evolving use cases that are incre-
mentally more complex and optimized for the platform.

All demonstrators were originally IMA applications that
communicated with other applications and external sys-
tems through queuing and sampling ports. These commu-
nication interfaces are usually based on buffers in main
memory and, hence, are subject to heavy contention in
a multi-core processor. As part of the optimization to
the T-CREST platform, the port interfaces used by the
demonstrators will be mapped to inter-core communica-
tion using the configurable NoC. This optimization re-
moves some burden from the main memory and should
reduce the WCET of the demonstrators. The original port
specifications in terms of size and number of messages
can be used as an input to configure the TDM schedule in
the NoC.

Additionally, the demonstrators are all based on real-time
operating systems. A possible optimization is to remove
the operating system and turn the demonstrators into bare
cyclic applications. With this modification, it will be
probably possible to fit the applications without OS into
the local memory of each core. The applications with OS
are forced to remain in main memory which is subject
to heavy contention from concurrent accesses. This op-
timization, if feasible, will result in lower WCET since
local memory is not subject to contention. This optimiza-
tion will be clearer in use cases making use of several
cores. Nonetheless, it shall be possible to determine a
WCET bound even if the applications are running from
main memory.

One of the final objectives of the evaluation will be to
demonstrate that, given a configuration of the T-CREST
platform, it is possible to independently obtain the WCET
of any application. This independence between applica-
tions is a cornerstone in the Integrated Modular Avionics
concept and it is extremely difficult to obtain in multi-
core systems. In order to validate application indepen-
dence, and given the high numbers of cores available,
each core will host a different application that would, in a
typical IMA system, be a standalone partition. This dis-
tribution of applications through cores in an asymmetric
fashion will validate that the timing of each application
does not depend on the software executed on other cores.

6. CONCLUSION

Future space applications need more processing power
for more autonomous mission control. Multi-core sys-
tems can deliver this processing power. However, space
applications are also real-time systems where the worst-
case execution time of tasks needs to be known. Current
multi-processor systems are hardly analyzable.

In this paper we presented T-CREST, a multi-core plat-
form that was designed for real-time systems from
ground up. It is worst-case execution time analyzable
and therefore a good candidate for answering the require-
ments of future space missions.

ACKNOWLEDGEMENTS

This work was partially funded under the European
Union’s 7th Framework Programme under grant agree-
ment no. 288008: Time-predictable Multi-Core Archi-
tecture for Embedded Systems (T-CREST).

Source Access

The sources of the implementation are available in open
source: https://github.com/t-crest. Further in-
formation can be found at the project web site: http:
//www.t-crest.org and the web site for the processor
and the compiler: http://patmos.compute.dtu.dk/

REFERENCES

1. Ortega, G. Gnc application cases needing multi-core
processors. In Proceedings of the Workshop in Avion-
ics Data, Control and Software Systems (ADCSS).
European Space Agency, 2011.

2. Magistrati, G. Multi-core processors for space appli-
cations. In Proceedings of the Workshop in Avionics
Data, Control and Software Systems (ADCSS). Euro-
pean Space Agency, 2011.

https://github.com/t-crest
http://www.t-crest.org
http://www.t-crest.org
http://patmos.compute.dtu.dk/

7

3. Terraillon, J.-L. Multicore in space. Keynote - 17th
International Conference on Reliable Software Tech-
nologies (Ada-Europe 2012), June 2012.

4. Kinnan, L. M. Use of multicore processors in avion-
ics systems and its potential impact on implementa-
tion and certification. In Proceedings of 28th Digi-
tal Avionics Systems Conference (DASC), pages 4.1 –
4.6, 2009.

5. Fuchsen, R. How to address certification for multi-
core based ima platforms: Current status and poten-
tial solutions. In Proceedings of the Digital Avionics
Systems Conference (DASC). IEEE, 2010.

6. Nowotsch, J. and Paulitsch, M. Leveraging multi-
core computing architectures in avionics. In Proceed-
ings of the European Workshop on Dependable Com-
puting, 2012.

7. Andersson, J., Hjorth, M., Habinc, S., and Gaisler,
J. Development of a functional prototype of the quad
core NGMP space processor. In Proceedings of Data
Systems In Aerospace Conference, 2012.

8. Cho, S. and Demetriades, S. Maestro: Orchestrating
predictive resource management in future multicore
system. In NASA/ESA Conference on Adaptive Hard-
ware Systems, 2001.

9. Cazorla, F. J., Gioiosa, R., Fernandez, M., and nones,
E. Q. Multicore os benchmark - final report.

10. Patte, M. and Lefftz, V. System impact of distributed
multi core systems. Final Report. ESTEC Contract
4200023100.

11. Agency, E. S. Schedulability analysis techniques and
tools for cached and multicore processors. Statement
of Work, ESA ITT 1-7646/13/NL/JK, July 2013.

12. Cazorla, F. J., nones, E. Q., Vardanega, T., Cucu, L.,
Triquet, B., Bernat, G., Berger, E., Abella, J., Wartel,
F., Houston, M., Santinelli, L., Kosmidis1, L., Lo, C.,
and Maxim, D. Proartis: Probabilistically analysable
real-time systems. In ACM Transactions on Embed-
ded Computing Systems, 2012.

13. Schoeberl, M. Is time predictability quantifiable?
In International Conference on Embedded Computer
Systems (SAMOS 2012), Samos, Greece, July 2012.
IEEE.

14. Schoeberl, M. Time-predictable computer architec-
ture. EURASIP Journal on Embedded Systems, vol.
2009, Article ID 758480:17 pages, 2009.

15. Schoeberl, M., Schleuniger, P., Puffitsch, W., Brand-
ner, F., Probst, C. W., Karlsson, S., and Thorn, T.
Towards a time-predictable dual-issue microproces-
sor: The Patmos approach. In First Workshop on
Bringing Theory to Practice: Predictability and Per-
formance in Embedded Systems (PPES 2011), pages
11–20, Grenoble, France, March 2011.

16. Garside, J. and Audsley, N. C. Investigating shared
memory tree prefetching within multimedia noc ar-
chitectures. In Memory Architecture and Organisa-
tion Workshop, 2013.

17. Akesson, B., Goossens, K., and Ringhofer, M.
Predator: a predictable sdram memory controller.
In CODES+ISSS ’07: Proceedings of the 5th
IEEE/ACM international conference on Hardware/-
software codesign and system synthesis, pages 251–
256, New York, NY, USA, 2007. ACM.

18. Lakis, E. and Schoeberl, M. An SDRAM controller
for real-time systems. In Proceedings of the 9th Work-
shop on Software Technologies for Embedded and
Ubiquitous Systems, 2013.

19. Schoeberl, M. A time predictable instruction cache
for a Java processor. In On the Move to Meaningful
Internet Systems 2004: Workshop on Java Technolo-
gies for Real-Time and Embedded Systems (JTRES
2004), volume 3292 of LNCS, pages 371–382, Agia
Napa, Cyprus, October 2004. Springer.

20. Degasperi, P., Hepp, S., Puffitsch, W., and Schoe-
berl, M. A method cache for Patmos. In
Proceedings of the 17th IEEE Symposium on
Object/Component/Service-oriented Real-time Dis-
tributed Computing (ISORC 2014), Reno, Nevada,
USA, June 2014. IEEE.

21. Schoeberl, M. Time-predictable cache organiza-
tion. In Proceedings of the First International Work-
shop on Software Technologies for Future Depend-
able Distributed Systems (STFSSD 2009), pages 11–
16, Tokyo, Japan, March 2009. IEEE Computer Soci-
ety.

22. Schoeberl, M., Huber, B., and Puffitsch, W. Data
cache organization for accurate timing analysis. Real-
Time Systems, 49(1):1–28, 2013.

23. Abbaspour, S., Brandner, F., and Schoeberl, M. A
time-predictable stack cache. In Proceedings of the
9th Workshop on Software Technologies for Embed-
ded and Ubiquitous Systems, 2013.

24. Jordan, A., Brandner, F., and Schoeberl, M. Static
analysis of worst-case stack cache behavior. In Pro-
ceedings of the 21st International Conference on
Real-Time Networks and Systems (RTNS 2013), pages
55–64, New York, NY, USA, 2013. ACM.

25. Puschner, P. and Burns, A. Writing tempo-
rally predictable code. In Proceedings of the The
Seventh IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS
2002), pages 85–94, Washington, DC, USA, 2002.
IEEE Computer Society.

26. Puschner, P. Transforming execution-time bound-
able code into temporally predictable code. In Klein-
johann, B., Kim, K. K., Kleinjohann, L., and Ret-
tberg, A., editors, Design and Analysis of Distributed

8

Embedded Systems, pages 163–172. Kluwer Aca-
demic Publishers, 2002. IFIP 17th World Computer
Congress - TC10 Stream on Distributed and Parallel
Embedded Systems (DIPES 2002).

27. Puschner, P., Kirner, R., Huber, B., and Prokesch,
D. Compiling for time predictability. In Ortmeier,
F. and Daniel, P., editors, Computer Safety, Reliabil-
ity, and Security, volume 7613 of Lecture Notes in
Computer Science, pages 382–391. Springer Berlin /
Heidelberg, 2012.

28. Schoeberl, M., Brandner, F., Sparsø, J., and Kas-
apaki, E. A statically scheduled time-division-
multiplexed network-on-chip for real-time systems.
In Proceedings of the 6th International Symposium
on Networks-on-Chip (NOCS), pages 152–160, Lyn-
gby, Denmark, May 2012. IEEE.

29. Sørensen, R. B., Schoeberl, M., and Sparsø, J. A
light-weight statically scheduled network-on-chip. In
Proceedings of the 29th Norchip Conference, Copen-
hagen, November 2012. IEEE.

30. Brandner, F. and Schoeberl, M. Static routing in
symmetric real-time network-on-chips. In Proceed-
ings of the 20th International Conference on Real-
Time and Network Systems (RTNS 2012), pages 61–
70, Pont a Mousson, France, November 2012.

31. Sparsø, J., Kasapaki, E., and Schoeberl, M. An area-
efficient network interface for a TDM-based network-
on-chip. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’13, pages
1044–1047, San Jose, CA, USA, 2013. EDA Consor-
tium.

32. Schoeberl, M., Chong, D. V., Puffitsch, W., and
Sparsø, J. A time-predictable memory network-on-
chip. In Proceedings of the 14th International Work-
shop on Worst-Case Execution Time Analysis (WCET
2014), 2014.

33. Arnold, R., Mueller, F., Whalley, D., and Harmon,
M. Bounding worst-case instruction cache perfor-
mance. In IEEE Real-Time Systems Symposium,
pages 172–181, 1994.

34. Healy, C. A., Arnold, R. D., Mueller, F., Whalley,
D. B., and Harmon, M. G. Bounding pipeline and
instruction cache performance. IEEE Trans. Comput-
ers, 48(1):53–70, 1999.

35. Heckmann, R., Langenbach, M., Thesing, S., and
Wilhelm, R. The influence of processor architecture
on the design and results of WCET tools. Proceed-
ings of the IEEE, 91(7):1038–1054, Jul. 2003.

36. Gomony, M. D., Akesson, B., and Goossens, K.
Architecture and optimal configuration of a real-
time multi-channel memory controller. In Design,
Automation Test in Europe Conference Exhibition
(DATE), 2013, pages 1307–1312, 2013.

37. Huber, B., Puffitsch, W., and Schoeberl, M. WCET
driven design space exploration of an object cache.
In Proceedings of the 8th International Workshop on
Java Technologies for Real-time and Embedded Sys-
tems (JTRES 2010), pages 26–35, New York, NY,
USA, 2010. ACM.

38. Puschner, P., Prokesch, D., Huber, B., Knoop, J.,
Hepp, S., and Gebhard, G. The T-CREST approach
of compiler and WCET-analysis integration. In 9th
Workshop on Software Technologies for Future Em-
bedded and Ubiquitious Systems (SEUS 2013), pages
33–40, 2013.

39. Huber, B., Prokesch, D., and Puschner, P. Com-
bined WCET analysis of bitcode and machine code
using control-flow relation graphs. In Proceedings
of the 14th ACM SIGPLAN/SIGBED conference on
Languages, compilers and tools for embedded sys-
tems, pages 163–172. The Association for Computing
Machinery, 2013. talk: Conference on Languages,
Compilers and Tools for Embedded Systems (LCTES
2013), Seattle, WA, USA; 2013-06-20 – 2013-06-21.

40. Silva, C. Integrated modular avionics for space appli-
cations: Input/output module. Master’s thesis, Insti-
tuto Superior Técnico, Universidade Técnica de Lis-
boa, 2012.

