
A Software Managed Stack Cache for Real-Time Systems

Alexander Jordan
Department of Applied

Mathematics and Computer
Science

Technical University of
Denmark

alejo@dtu.dk

Sahar Abbaspour
Department of Applied

Mathematics and Computer
Science

Technical University of
Denmark

sabb@dtu.dk

Martin Schoeberl
Department of Applied

Mathematics and Computer
Science

Technical University of
Denmark

masca@dtu.dk

ABSTRACT
In a real-time system, the use of a scratchpad memory can
mitigate the difficulties related to analyzing data caches,
whose behavior is inherently hard to predict. We propose
to use a scratchpad memory for stack allocated data. While
statically allocating stack frames for individual functions to
scratchpad memory regions aids predictability, it is limited
to non-recursive programs and static allocation has to take
different calling contexts into account. Using a stack cache
that dynamically spills data to and fills data from external
memory avoids these problems, while its simple design al-
lows for efficiently deriving worst-case bounds through static
analysis.

In this paper we present the design and implementation of
software managed caching of stack allocated data in a scratch-
pad memory. We demonstrate a compiler-aided implementa-
tion of a stack cache using the LLVM compiler framework
and report on its efficiency. Our evaluation encompasses
stack management overhead and impact on worst-case execu-
tion time analysis. The state-of-the-art worst-case execution
time analysis tool aiT is able to correctly classify all stack
cache accesses as accesses to the scratchpad memory.

CCS Concepts
•Computer systems organization → Real-time sys-
tem architecture;

Keywords
Real-time systems, stack caching, WCET analysis, scratch-
pad memory

1. INTRODUCTION
To meet the timing constraints in a system with hard

deadlines, the worst-case execution time (WCET) of each of
its tasks needs to be bounded. Static analysis and longest
path search compute a safe WCET bound, i.e., one that never
underestimates the actual execution time [25]. Standard

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RTNS ’16, October 19-21, 2016, Brest, France
c© 2016 ACM. ISBN 978-1-4503-4787-7/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2997465.2997488

processors contain features that are optimized to improve
the average-case execution time. Some of those features, e.g.,
random replacement in a cache, are hard, or even impossible,
to be statically analyzed for their WCET contribution. Our
research aims at developing computer architectures that are
optimized for their provable WCET instead of their average-
case execution time [17]. One example is time-predictable
organization of caches.

A cache is an example of such a feature that is optimized
to improve average-case execution time. Caches decrease the
latency when data needs to be fetched from slow main mem-
ory. A cache stores recently used items, as the probability
is high that those items are used in the near future. This
is called temporal locality. Furthermore, as main memory
has a high latency for the first word, but can provide several
words in a burst, a cache stores those blocks of memory in
cache lines. A cache line typically caches 16 or 32 bytes.
Chances are high that these prefetched data is used in the
near future, e.g., when accessing instructions in a basic block
or when accessing a vector. This is called spatial locality.
First level caches are most commonly organized as one cache
for instructions and one cache for data.

While caches benefit performance on average, they also
introduce additional state that needs to be considered in
the WCET analysis. When static WCET analysis has to
consider a data cache, statically unknown addresses, e.g., of
heap allocated data, are an issue. Those unknown addresses
prevent predicting whether a cache access is a hit or a miss
and further destroys abstract cache state of the analysis.
Splitting the data cache for different data areas can be used
to improve the WCET estimation [19].

One solution in embedded real-time systems to avoid caches
is to use a scratchpad memory (SPM). An SPM is a small
memory that resides within the processor, similar to a first
level cache. As the SPM is on-chip, the access time is usually
a single clock cycle. This SPM is mapped into some address
space distinct from the address space of the main memory.
To benefit from the SPM, a programmer (or tool) needs to
allocate data structures or instructions manually in the SPM.
The main benefit of an SPM, compared to a cache, is that
the accesses to data (or instructions) that reside in the SPM
are guaranteed single cycle operations.

One candidate of data structures that can be allocated in
an SPM is data allocated on the stack. The stack is a data
area where stack frames of functions are allocated. These
frames may contain the return address, local variables of a
function, saved registers, and program allocated data. With
optimizing compilers local variables are allocated in registers

http://dx.doi.org/10.1145/2997465.2997488

and the stack contains register spill slots.
This paper presents software-managed caching of stack

content in an SPM. The software stack cache is designed to
be time-predictable. On function entry, space is reserved
in the SPM for the stack frame and on function return this
reservation is returned. Stack accesses are redirected to the
SPM and are single cycle operations. Movement of stack
data between the main memory and the SPM is performed
in software. In contrast to hardware solutions, this proposal
can be applied to any standard embedded processor that has
an SPM.

The contributions of this paper are: (1) we describe a
stack cache implemented in software using a standard SPM,
(2) we evaluate the dynamic utilization of the SPM, and
(3) we examine how static WCET analysis handles the stack-
cache related memory accesses and spill/fill operations using
aiT [7], a state-of-the-art WCET analysis tool.

This paper is organized in six sections: The following sec-
tion presents related work. Section 3 provides details on the
implementation of a software managed stack cache. Section 4
discusses its WCET analysis aspects. Section 5 evaluates
the stack cache with regard to its behavior dynamically and
during static analysis. Section 6 concludes.

2. RELATED WORK
Lee et al. [12] propose to divert all references to the stack

data to a stack value file (SVF) instead of L1 data cache.
Each memory location maps to a register in the SVF based
on the lowest address bits. When the stack pointer value
changes, data from the first level cache moves to the SVF.

For a stack machine, such as the Java virtual machine, the
two top elements of the stack cache can be implemented as
dedicated registers, which can be directly accessed during
the ALU operations [16].

Bai et al. [2] propose a technique that can run any appli-
cation on the limited local memory. In this work, a pointer
is set to a global address rather than a local address. A
function s2p converts the address by finding which function
the pointer belongs to. Then the s2p function computes the
offset of the pointer variable from the start of the frame in
the local memory. Finally s2p returns the global address of
the pointer.

Park et al. [14] use the memory management unit for
a dynamic address mapping to the SPM. Their method
requires no architectural modification or complier assistance
and generates permission faults when access to the stack
region is outside the SPM. Dominguez et al. [4] introduce a
method to allocate stack data of recursive functions in an
SPM. Profiling information helps to place the most commonly
occurring stack depths in the SPM.

Circular stack management [10] is a software technique to
keep the active stack data in the SPM. This work introduces
a software SPM manager to check if there is enough space in
the SPM. Lu et al. optimize the circular stack management
approach in [13]. Their heuristic places stack data using a
(profile-based) weighted call graph and thus aims to reduce
the overhead of SPM management by increasing the granu-
larity of accessing the main memory and eliminating calling
the special functions that move data.

Kim [11] proposes a source code modification technique to
fit the stack data into the SPM. When the stack data does
not fit, the memory is divided into multiple same-sized blocks.
Only the address of one block is dynamically allocated, and

this block is managed as a single line direct mapped cache.
However, the proposed technique cannot handle recursive
function calls.

The allocation of data in the SPM can be optimized for
the WCET [3, 22, 23]. Suhendra et al. use Integer Linear
Programming to find an optimal allocation of data objects
into the SPM. This work is further extended by search-based
approaches to also consider infeasible program paths. The
allocation of data in the SPM is static, i.e., fixed at compile
time, where our software stack cache exchanges data with
main memory in a time-predictable way.

Abbaspour et al. [1] propose a hardware stack cache. The
stack cache is managed using three special instructions ex-
posed in the instruction set: reserve, free, and ensure. Typed
load and store instructions are used to access stack data.
The additional stack cache space reduces the number of
loads from the data cache and decreases the number of slow
main memory accesses. Additionally, the stack cache elimi-
nates the long latency stores to the write-through data cache.
Worst-case spill and fill memory traffic can be statically ana-
lyzed [9]. This hardware stack cache provides the inspiration
for the presented software stack cache with an SPM. While
a hardware managed stack cache requires modifications to
the instruction set to implement the stack cache semantics,
we propose to implement the stack cache in software, with
assistance of the compiler.

Schoeberl and Nielsen [20] explore a hardware managed
stack cache that does not need any compiler support. This
approach is the opposite of our approach, where we use stan-
dard hardware and implement stack caching with compiler
support in software.

In our approach we provide compiler support to dynami-
cally reuse the SPM for stack frames of different functions.
An SPM can also be dynamically reused for different tasks
in a preemptive multitasking system [24].

3. SOFTWARE MANAGED STACK CACHE
Each function in a program typically allocates space on

the stack, i.e., its stack frame. A stack frame associated
with a function contains information on the return address,
saved register values, as well as function-local variables and
data structures. This type of data is frequently accessed
and thus benefits from caching. Moreover, compared to data
allocated on the heap, it is easy to statically determine the
addresses of stack allocated data during WCET analysis.
Therefore, we propose a software managed stack cache using
a processor-local SPM.

Implementing the software managed stack cache requires
that the stack cache specific operations are available in soft-
ware and support from the compiler. The compiler is re-
sponsible for placing calls to those management functions at
certain program points and for performing address transla-
tion for stack loads and stores.

3.1 Stack Cache Management
The software managed stack cache is an SPM organized as a

ring buffer, thus following a FIFO strategy. For manipulating
this ring buffer, we define two pointers: stack top (sc_top)
and memory top (m_top). The stack memory between these
pointers is the memory that is currently cached in the SPM.
The sc_top pointer refers to the address of the top of the
stack data, which is cached in the SPM. The m_top pointer
is the address of the first element that is not anymore cached

Main
memory

SPM

sc_top

m_top

Stack area

Cached
stack

Cached
stack

spm_m_top

spm_sc_top

SPM_START

Figure 1: Stack caching in the SPM.

in the SPM, therefore the top element of the part of the
stack that resides in the main memory. Both pointers point
into the stack area in the main memory. To redirect stack
accesses to the SPM, the addresses are translated to point
into the address area where the SPM is mapped. The SPM
can also be seen as a sliding window into the main memory.

Figure 1 shows the mapping of the stack area and the
relation of the different pointers. The upper part of the main
memory is reserved for the stack. From there the stack grows
downward. The area between the largest address and m_top
in the main memory, shown in dark grey, contains stack data
currently stored in main memory. The area between m_top
and sc_top in the main memory, shown in light grey, marks
the address range that is currently cached in the SPM.

The SPM starts at address SPM_START. The area between
the two pointers, shown in dark grey, contains the actually
cached stack data. The pointers for the SPM are derived
from m_top and sc_top as follows:

spm_x_top = (x_top % SPM_SIZE) + SPM_START

The modulo operation computes the SPM relative address
and allows the stack cache area to wrap around the SPM.
Note that the SPM size is usually a power of 2 and therefore
the modulo operation is performed with a simple bit masking
AND operation.

In the following we show the stack manipulation functions
in pseudo code. Note that these functions are called by
compiler-inserted code and not by application code. We as-
sume that the stack grows downwards. The array M[] repre-
sents the memory, both the main memory and the SPM. For
simplicity of the pseudo code we assume that the memory
is organized in 32-bit words. The SPM is SPM_SIZE words
large and starts at address SPM_START; it is represented as
M[SPM_START...SPM_START+SPM_SIZE-1].

Two processor registers are used for the stack cache: (1) the
stack pointer sc_top pointing to the top of the stack, as
index into the main memory and (2) the memory pointer
m_top pointing to the last spilled word in main memory. At
program start both pointers point to the same address, the
word above the memory area reserved for the stack. The
difference between these two pointers is the number of words
from the stack that is cached in the SPM. In the following

def reserve(n):
sc_top -= n
n_spill = (m_top - sc_top - SPM_SIZE)
for i in range(n_spill):
m_top -= 1
M[m_top] = M[SPM_START + (m_top %

↪→ SPM_SIZE)]

Figure 2: The reserve function reserves n free words
in the stack cache. It may spill data into main mem-
ory.

def free(n):
sc_top += n

Figure 3: The free function drops n elements from
the stack cache.

we describe the three stack manipulation functions: reserve,
free, and ensure.

The reserve function is shown in Figure 2. This function
is called on function entry to reserve the stack frame for
the function. It reserves n words in the SPM for the called
function by decrementing the stack pointer sc_top by n. If
the new stack frame overlaps with older stack content in the
SPM, that older stack data is spilled to the main memory.

The free function, as shown in Figure 3, frees the stack
frame of a function. It is called before function return. No
data is exchanged between the SPM and main memory. Only
the stack pointer sc_top is incremented.

The ensure function, as shown in Figure 4, ensures that
the actual stack frame is resident in the SPM. The caller calls
ensure after function return from the callee. The caller’s
stack frame is n words large. If the content of the stack in
the SPM is less than n words, the missing words are filled
from main memory.

Load and store instructions access the stack area with
a displacement disp relative to the stack pointer sc_top.
As the stack data is always in the SPM, those loads and
stores are single cycle latency, similar to a hit in a data
cache. The implementation of stack load and store functions
is shown in Figure 5. The load and store addresses need a
translation from the stack area in the main memory to the
address area where the SPM is mapped. In practice the size
of the SPM (or the part that is used for stack caching in the
SPM) is a power of 2. In that case the modulo operation is
reduced to a simple bit masking AND instruction.

3.2 Compiler Support
An efficient implementation of the software stack cache

def ensure(n):
n_fill = n - (m_top - sc_top)
for i in range(n_fill):
M[SPM_START + (m_top % SPM_SIZE)] =

↪→ M[m_top]
m_top += 1

Figure 4: The ensure function ensures that at least
n elements are valid in the stack cache. It may fill
data from main memory.

def load(disp):
return M[SPM_START + ((sc_top + disp) %

↪→ SPM_SIZE)]

def store(disp, val):
M[SPM_START + ((sc_top + disp) %

↪→ SPM_SIZE)] = val

Figure 5: Pseudo code for the stack accessing load
and store instructions.

requires assistance of the compiler. By augmenting the
calling conventions, we can reserve two registers for the
sc_top and m_top pointers. Address translation from the
stack address space of external memory to that of the SPM
needs to be performed for every load from a source address
and every store to a destination address. The compiler emits
the arithmetic instructions for this purpose with the code
that interacts with values on the stack.

Furthermore, to manage the stack cache, the compiler
emits calls to the reserve and free functions within the
function prologue and epilogue, respectively. A call to the
ensure function is inserted after each call to another function
in order to ensure that the stack frame of the caller is in the
stack cache. However, it is not necessary to a call ensure
after a call to a (leaf) function, which does not set up a stack
frame of its own. This is a common technique employed by
compilers and known as leaf optimization.

A stack cache cannot directly support certain objects that
C-like languages allocate on the program stack. These are
objects that are: (1) dynamically sized, (2) too large, or
(3) escape the scope of the current function. The stack reser-
vation (and freeing) is performed with a constant. Therefore,
dynamically sized objects, created with alloca(), cannot be
allocated on the stack cache. Objects that exceed the SPM
size cannot be allocated in the SPM. If pointers to an object
escape, to a callee, it cannot be guaranteed that the object
is still cached in the SPM when the pointer is dereferenced
in the callee. The stack area where this object is allocated
might already be spilled to main memory. For all three cases,
the compiler allocates these objects on a second stack outside
the SPM cache.

At the compiler level, several optimizations can be applied
to reduce the overhead of the stack cache: inlining of stack
management functions reduces the overhead caused by calls.
Given results from static analysis, further ensure operations
can be avoided, when they are guaranteed to never reload
data. Furthermore, for statically known pointer values, ad-
dress translation for loads and stores can be simplified.

4. WORST-CASE EXECUTION TIME
Our motivation behind proposing a software stack cache

is to develop computer architectures that are optimized for
their provable WCET instead of their average-case execution
time [17]. Therefore, we are interested how the software
stack cache impacts static WCET analysis. Essentially, two
classes of operations need to be considered by static analysis:
(1) loads and stores that access the SPM allocated stack data
and (2) the spill and fill operations.

4.1 Stack Access
An access to SPM allocated data uses a register as a stack

pointer and performs address translation. The result of the
address translation always points to data within the address
range of the SPM. A WCET analysis tool can be configured
with memory access latencies depending on address ranges.
Therefore, as long as static analysis can determine that
the effective address of a stack load or store points into
the SPM, these instructions will have single cycle latency.
Since translated addresses cannot escape (note the modulo
operations in Figure 5), a local address (value) analysis is
sufficient here.

As an alternative, the compiler, which necessarily knows
about accesses to the stack cache, can share this information
with the analysis tool. This could be achieved by providing
per-instruction annotations.

4.2 Stack Spill and Fill
The second question with regard to static analysis is,

whether the maximum number of fills and spills can be effi-
ciently bounded through static analysis. Without any anal-
ysis, the conservative bound for each reserve and ensure
operation would be based on its argument n and drastically
overestimate the actual (worst-case) behavior. Tracking the
worst-case state of the stack cache has previously been shown
to be an inter-procedural analysis problem [9].

With the stack cache implemented in software and its
internal state exposed by the sc_top and m_top registers,
an alternative to a custom-built analysis is to rely on an
existing value/loop-bound analysis to analyze worst-case
spilling and filling. For the results to be precise enough to
make this approach viable, the value analysis must be inter-
procedural, context-sensitive, and has to support intervals.
In Section 5.3, we show that AbsInt’s aiT analysis based on
abstract interpretation fulfills these requirements.

5. EVALUATION
To evaluate the efficiency of a software managed stack

cache and its impact on WCET analysis, we consider our
implementation for the Patmos processor [21], which is a
RISC processor. Patmos and the compiler are available in
open source. Furthermore, the aiT WCET analyzer supports
the instruction set of Patmos. We changed the compiler as
follows:

• Two (out of 32) general-purpose registers are reserved
for the sc_top and m_top pointers.

• The stack cache management operations (reserve, free,
and ensure) are implemented as functions. The small
functions may be inlined by the compiler.

• The compiler calls the stack cache management func-
tions at the relevant program points and emits instruc-
tions to perform address translation for stack loads and
stores.

5.1 Setup
We measure the dynamic usage of different data areas

with the MiBench benchmark suite [6]. All programs are
compiled with the Patmos LLVM compiler (version 3.4) [15]
with full optimizations (-O3). Global, link-time inlining
is disabled. Measurements are performed using the cycle
accurate platform simulator pasim. Our simulations assume
a standard data cache alongside the software managed stack

cache. The data cache is 4-way set-associative with a write-
through strategy, 32-byte cache lines, and least-recently-
used (LRU) replacement. The data cache size is 2 KB.
We explore the effect of different stack cache sizes on average-
case performance of loads and stores. Since the result of this
measurement is the number of loads and stores to different
memory types, the instruction cache configuration has no
influence on the results.

The small sizes for the caches (data cache and stack
cache) have been chosen, as the embedded benchmarks from
MiBench have a rather small memory footprint. Further-
more, as shown in Figure 6, already a small stack cache of
256 bytes caches most stack accesses.

The MiBench benchmark suite includes medium sized
programs that give a good workload for the stack cache uti-
lization measurement. However, as loops are often unbound
in those benchmarks and system functions called, they are
not a good fit for WCET analysis.

Therefore, for the WCET analysis we use the WCET
benchmark program Debie1 [8]. Debie1 is based on the on-
board software of a satellite instrument. We use the definition
of the analysis problem from the 2011 edition of the WCET
tool challenge.1 Another option for WCET analysis would
be the Malardalen benchmark collection [5]. However, those
benchmarks are so small that most of the time local variables
are allocated in registers and there is no activity on the stack.
Compared to those benchmarks, Debie1 is a real application.

For WCET analysis, we use aiT version 14.04i [7], the state-
of-the-art static analysis tool from AbsInt, which is part of
a3. aiT has been adapted to support Patmos within the
T-CREST research project [18]. The programs are compiled
with full optimization (-O3). Global, link-time inlining is
disabled. aiT is used with the default setting, the context
sensitivity settings are: interproc flexible, max-length
= inf, max-unroll = inf, default-unroll = 2;.

The data cache is configured as follows: 2 KB, 32-byte
cache lines, 4-way set-associative, LRU replacement, and
write-through. We configure aiT with a memory latency of
42 clock cycles for a burst of 32 bytes for a cache miss. This
corresponds to the system’s behavior on the DE2-115 Altera
FPGA board. The SPM for the stack cache is 2 KB. Accesses
to data in the address range of the SPM are configured as
single cycle accesses. We perform WCET analysis with an
ideal instruction cache and with an instruction cache of
4 KB, 32 byte cache lines, 4-way set-associative, and with
LRU replacement.

5.2 Dynamic Stack Cache Utilization
To evaluate the effect of the software stack cache, we

explore different scenarios with different stack cache sizes
and a fixed data cache size of 2 KB. The results presented
here are data derived from measurements with the cycle
accurate Patmos simulator. We used the simulator to get
detailed statistics of dynamic instruction counts, which is not
possible in the current hardware implementation of Patmos.

Figure 6 shows loads and stores to different memory areas
per 100 instructions executed. We present the numbers for
three configurations: with no stack cache, with a stack cache
of 256 bytes, and one with a stack cache of 2 KB.

The green areas represent accesses to the SPM (software
stack cache), accesses that are guaranteed single cycle latency.
These accesses are only present in the two bars that include a

1http://www.mrtc.mdh.se/projects/WCC/2011/

stack cache. These accesses can be quantified as single cycle
accesses by a static WCET analysis tool. A large portion of
those accesses improves the (predictable) performance.

The orange areas represent data cache accesses. In the
bars that include a stack cache these accesses are to: (1)
statically allocated objects, (2) heap allocated objects, and
(3) objects allocated on the shadow stack. These accesses are
hard to predict in static WCET analysis and are the target
to be minimized.

Patmos supports data cache bypassing loads and stores.
We use those instructions for the spill and fill operations
between the stack cache and main memory. These uncached
accesses are shown in blue at the top of the stacked bar chart.
These accesses are practically not present in the configuration
with a data cache only and when the stack cache is large
enough.

Figure 6 shows that most of the benchmarks can benefit
even from a small stack cache (256 B). With the small cache
configuration we see some uncached loads and stores indicat-
ing some spilling and filling. With the 2 KB configuration
of the stack cache we observe no spilling or filling in all
benchmarks. In that case the stack cache works perfectly.

There are also benchmarks that do not benefit from stack
caching. E.g., rawcaudio and rawdaudio are using mostly
static data and the only function called uses few local vari-
ables that can be allocated in registers. Similarly, the bench-
mark sha uses only very few local variables. crc32 is a single
loop in the main function without any function call.

It should however be noted that using the software stack
cache increases the number of instructions in total. Therefore,
the cumulative accesses to the stack and data caches are
different in the three configurations.

5.3 WCET Analysis
We explore the WCET analyzability of our stack cache with

the state-of-the-art WCET analysis tool aiT from AbsInt [7].
We evaluate aiT’s capability with regard to static analysis of
stack cache accesses and spill/fill operations using a selection
of small, medium, and large analysis problems for the Debie1
benchmark program. To focus on the effects of the data
cache and the stack cache we assume an ideal instruction
cache in the first experiment. As the additional instructions
have an influence on the instruction cache we further provide
results with an instruction cache.

To benefit from the stack cache for WCET analysis, we ex-
plore if a static WCET analysis tool can correctly determine
that the accesses to the stack cache are single cycle opera-
tions and are not considered as accesses to main memory
that are cached by the normal data cache.

The simple pointer arithmetic involved during the transla-
tion of addresses to the SPM space proves to be no problem
for aiT’s value analysis. With the correct access time for
the SPM in the configuration, aiT assumes single cycle load
and store latencies for all stack cache accesses during WCET
calculation. This satisfies our requirement from Section 4.1.

In order to also properly bound the spill and fill activity
(see Section 4.2), we must take care that (1) the use of the two
reserved registers does not contradict any assumptions that
the analysis tool has about the platform’s calling conventions;
and (2) that during analysis no assumed side-effects invalidate
the machine state so that the stack cache state (i.e., the values
of its pointer registers) is also affected.

With our implementation, we did encounter the latter

http://www.mrtc.mdh.se/projects/WCC/2011/

ba
sic

m
at

h

bi
tc

nt
s

cj
pe

g

cr
c3

2

cs
us

an db
f

di
jk

st
ra

dj
pe

g

dr
ijn

da
el eb

f

er
ijn

da
el

es
us

an fft iff
t

pa
tr
ic
ia

qs
or

t

ra
wca

ud
io

ra
w
da

ud
io sa

y

se
ar

ch
-la

rg
e

se
ar

ch
-s
m

al
l

sh
a

ss
us

an
0

5

10

15

20

25

M
em

o
ry

A
cc

es
se

s
(p

er
10

0
in

st
ru

ct
io

n
s)

load scratchpad store scratchpad load data cache
store data cache uncached load uncached store

Figure 6: Memory accesses by memory type per 100 instructions (within each group: no stack cache, stack
cache of 256 bytes, and stack cache of 2 KB).

Table 1: Statistics from static WCET analysis of the Debie1 benchmark (2 KB stack cache)
Problem Operations Worst-case WCET no I$ WCET w. I$

Res/Free Ensures Spills Fills Original SWSC Original SWSC

Debie1-1 1 0 0 0 778 746 2,373 2,559
Debie1-4a 10 20 0 0 5,204 5,208 6,660 6,826
Debie1-4b 7 20 0 0 619 565 1,443 1,869
Debie1-4c 3 4 0 0 483 459 1,050 1,188
Debie1-4d 4 4 0 0 535 523 1,213 1,554
Debie1-6a 16 63 0 0 13,187 13,254 22,770 25,538
Debie1-6c 16 63 0 0 27,121 24,433 43,186 42,249
Debie1-6d 16 63 0 0 15,066 14,937 27,726 29,653

problem. The registers that hold sc_top and m_top are being
set to their initial value during C runtime initialization, which
cannot be fully analyzed, before execution enters the main
function. Knowing the semantics of the reserved registers,
we can solve this problem by providing an annotation to the
WCET analysis that initializes the stack cache pointers right
before entering main. In our concrete case, using the aiT
analyzer, the annotation for this purpose is:

ais2 {
routine "main" {
enter with:
reg("r19") = 0x5000000, # sc_top
reg("r20") = 0x5000000; # m_top

}
}

No further annotations are required for aiT to derive tight
bounds on the loops for all reserve and ensure invocations.
aiT even proves that no stack cache spills or fills occur in
any of the benchmarks for a stack cache size of 2 KB, as
shown in Table 1. This is expected since Debie1 does not
exhibit a deep call stack. Table 1 shows the static number of

reserve-free pairs (‘Res/Free’), as well as ‘Ensure’ operations
in the code under analysis.

Compared to the ‘Original’ WCET bound, where the stack
is backed by a data cache, the software stack cache (‘SWSC’)
can yield a lower WCET bound due to fewer cache misses
or improved analysis precision. This is represented by the
columns under ‘WCET’, which assume a perfect instruction
cache (i.e., every fetch is a cache hit). The impact of reserving
two registers for the software stack cache is included in the
WCET results. In general, we see in Table 1 that WCET
bounds tend to improve and that problem Debie-6c benefits
most.

When the worst-case latencies from an instruction cache
are included (see ‘WCET w. I$’ columns), the stack cache
improvement in our benchmarks is mostly outweighed by the
impact of the increased code size on the instruction cache.
For benchmark problem Debie-6c though, the result is a net
benefit.

5.4 Discussion
From the WCET analysis we can see that the number of

executed instructions increases. For the WCET this increase
in executed instructions offsets the improvement we gain with
the stack cache in most cases. The reason for this increase is
mainly caused by the address translation, which we perform
for each stack load or store access. We consider optimizing
this address translation code as future work.

The main issue in the address translation is that for each
access the modulo operation has to be performed. If a
stack frame is guaranteed not to cross the boundary of the
SPM, a local stack pointer can be computed just once at
function entry and used for all stack accesses. To enable
this optimization, one option is to reuse the static analysis
results about stack addresses during program compilation
and insert the more efficient code when the stack frame is
known to not cross the SPM address boundary.

Another option is to allocate stack frames in multiples of
fixed block sizes, e.g., multiple of 8 words. In that case it is
guaranteed that the first block address is within the SPM
address range and the slots allocated in this first block need
no modulo operation. The most accessed stack slots shall
then be paced in the first block.

6. CONCLUSION
In this paper we present a mechanism to dynamically allo-

cate stack frames in an on-chip scratchpad memory (SPM).
This software stack cache is updated on function entry and
exit to ensure that the stack frame of the active function
is in the SPM. Using the SPM for stack data guarantees
single cycle execution of loads and stores, equivalent to cache
hits. This property can simplify worst-case execution time
(WCET) analysis and can also reduce the WCET bound.
To find an upper bound of the number of SPM memory ex-
changes on function entry and return, a WCET analysis tool
needs to track the stack pointer values. We explored WCET
analysis with the industry-standard tool aiT. Its integrated
value analysis was able to: (1) detect that the stack accesses
are in the SPM address range and are therefore counted
as single cycle accesses and (2) track the two stack-related
pointers and provide a tight bound on the loops for the stack
spill and fill traffic.

Acknowledgment
The authors would like to thank Wolfgang Puffitsch for his
helpful advice regarding the Patmos implementation. This
work was partially funded under the European Union’s 7th
Framework Programme under grant agreement no. 288008:
Time-predictable Multi-Core Architecture for Embedded
Systems (T-CREST) and partially funded by the Danish
Council for Independent Research | Technology and Pro-
duction Sciences under the project RTEMP, contract no.
12-127600. Alexander Jordan was supported by the COST
Action IC1202: Timing Analysis On Code-Level (TACLe).

Source Access
The implementation of the software stack cache is open-
source and available from

https://github.com/t-crest/patmos-llvm
and
https://github.com/t-crest/patmos-newlib
in the branch swscache.

7. REFERENCES
[1] Sahar Abbaspour, Florian Brandner, and Martin

Schoeberl. A time-predictable stack cache. In
Proceedings of the 9th Workshop on Software
Technologies for Embedded and Ubiquitous Systems,
2013.

[2] Ke Bai, A. Shrivastava, and S. Kudchadker. Stack data
management for limited local memory (LLM)
multi-core processors. In Proc. of the International
Conference on Application-Specific Systems,
Architectures and Processors, ASAP ’11, pages 231–234.
IEEE, 2011.

[3] Jean-Francois Deverge and Isabelle Puaut.
Wcet-directed dynamic scratchpad memory allocation
of data. In ECRTS ’07: Proceedings of the 19th
Euromicro Conference on Real-Time Systems, pages
179–190, Washington, DC, USA, 2007. IEEE Computer
Society.

[4] Angel Dominguez, Nghi Nguyen, and Rajeev K. Barua.
Recursive function data allocation to scratch-pad
memory. In Proceedings of the 2007 International
Conference on Compilers, Architecture, and Synthesis
for Embedded Systems, CASES ’07, pages 65–74, New
York, NY, USA, 2007. ACM.

[5] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and
Björn Lisper. The mälardalen wcet benchmarks - past,
present and future. In Proceedings of the 10th
International Workshop on Worst-Case Execution
Time Analysis, July 2010.

[6] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan
Ernst, Todd M. Austin, Trevor Mudge, and Richard B.
Brown. MiBench: A free, commercially representative
embedded benchmark suite. In Proc. of the Workshop
on Workload Characterization, WWC ’01, 2001.

[7] Reinhold Heckmann and Christian Ferdinand.
Worst-case execution time prediction by static program
analysis. Technical report, AbsInt Angewandte
Informatik GmbH. [Online, last accessed November
2013].

[8] Niklas Holsti, Thomas L̊angbacka, and Sami Saarinen.
Using a worst-case execution-time tool for real-time
verification of the DEBIE software. In Proc. of the Data
Systems in Aerospace Conference, page 307. ESA, 2000.

[9] Alexander Jordan, Florian Brandner, and Martin
Schoeberl. Static analysis of worst-case stack cache
behavior. In Proceedings of the 21st International
Conference on Real-Time Networks and Systems (RTNS
2013), pages 55–64, New York, NY, USA, 2013. ACM.

[10] A. Kannan, A. Shrivastava, A. Pabalkar, and Jong eun
Lee. A software solution for dynamic stack
management on scratch pad memory. In Proc. of the
Asia and South Pacific Design Automation Conference,
ASP-DAC ’09, pages 612–617. IEEE, 2009.

[11] Sungjun Kim. Using scratchpad memory for stack data
in hard real-time embedded systems, 2011.

[12] Hsien-Hsin S. Lee, Mikhail Smelyanskiy, Gary S. Tyson,
and Chris J. Newburn. Stack value file: Custom
microarchitecture for the stack. In Proc. of the
International Symposium on High-Performance
Computer Architecture, HPCA ’01, pages 5–14. IEEE,
2001.

[13] Jing Lu, Ke Bai, and A. Shrivastava. SSDM: Smart

https://github.com/t-crest/patmos-llvm
https://github.com/t-crest/patmos-newlib

stack data management for software managed
multicores (smms). In Proc. of the Design Automation
Conference, DAC ’13, pages 1–8. IEEE, 2013.

[14] Soyoung Park, Hae-woo Park, and Soonhoi Ha. A novel
technique to use scratch-pad memory for stack
management. In Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’07,
pages 1478–1483, San Jose, CA, USA, 2007. EDA
Consortium.

[15] Peter Puschner, Daniel Prokesch, Benedikt Huber, Jens
Knoop, Stefan Hepp, and Gernot Gebhard. The
T-CREST approach of compiler and WCET-analysis
integration. In 9th Workshop on Software Technologies
for Future Embedded and Ubiquitious Systems (SEUS
2013), pages 33–40, 2013.

[16] Martin Schoeberl. Design and implementation of an
efficient stack machine. In Proceedings of the 12th IEEE
Reconfigurable Architecture Workshop (RAW2005),
Denver, Colorado, USA, April 2005. IEEE.

[17] Martin Schoeberl. Time-predictable computer
architecture. EURASIP Journal on Embedded Systems,
vol. 2009, Article ID 758480:17 pages, 2009.

[18] Martin Schoeberl, Sahar Abbaspour, Benny Akesson,
Neil Audsley, Raffaele Capasso, Jamie Garside, Kees
Goossens, Sven Goossens, Scott Hansen, Reinhold
Heckmann, Stefan Hepp, Benedikt Huber, Alexander
Jordan, Evangelia Kasapaki, Jens Knoop, Yonghui Li,
Daniel Prokesch, Wolfgang Puffitsch, Peter Puschner,
André Rocha, Cláudio Silva, Jens Sparsø, and
Alessandro Tocchi. T-CREST: Time-predictable
multi-core architecture for embedded systems. Journal
of Systems Architecture, 61(9):449–471, 2015.

[19] Martin Schoeberl, Benedikt Huber, and Wolfgang
Puffitsch. Data cache organization for accurate timing
analysis. Real-Time Systems, 49(1):1–28, 2013.

[20] Martin Schoeberl and Carsten Nielsen. A stack cache
for real-time systems. In Proceedings of the 18th IEEE
Symposium on Real-time Distributed Computing
(ISORC 2016), York, United Kingdom, May 2016.
IEEE.

[21] Martin Schoeberl, Pascal Schleuniger, Wolfgang
Puffitsch, Florian Brandner, Christian W. Probst, Sven
Karlsson, and Tommy Thorn. Towards a
time-predictable dual-issue microprocessor: The
Patmos approach. In First Workshop on Bringing
Theory to Practice: Predictability and Performance in
Embedded Systems (PPES 2011), pages 11–20,
Grenoble, France, March 2011.

[22] Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury,
and Ting Chen. WCET centric data allocation to
scratchpad memory. In Proceedings of the 26th IEEE
International Real-Time Systems Symposium (RTSS),
pages 223–232. IEEE Computer Society, 2005.

[23] Lars Wehmeyer and Peter Marwedel. Influence of
memory hierarchies on predictability for time
constrained embedded software. In Proceedings of
Design, Automation and Test in Europe (DATE2005).,
pages 600–605 Vol. 1, March 2005.

[24] J. Whitham, R.I. Davis, N.C. Audsley, S. Altmeyer,
and C. Maiza. Investigation of scratchpad memory for
preemptive multitasking. In Real-Time Systems
Symposium (RTSS), 2012 IEEE 33rd, pages 3–13, Dec

2012.

[25] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl,
Niklas Holsti, Stephan Thesing, David Whalley,
Guillem Bernat, Christian Ferdinand, Reinhold
Heckmann, Tulika Mitra, Frank Mueller, Isabelle
Puaut, Peter Puschner, Jan Staschulat, and Per
Stenström. The worst-case execution time problem –
overview of methods and survey of tools. Trans. on
Embedded Computing Sys., 7(3):1–53, 2008.

