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Abstract—Real-time systems need time-predictable computing
platforms to allow for static analysis of the worst-case execution
time. Caches are important for good performance, but data
caches are hard to analyze for the worst-case execution time.

Stack allocated data has different properties related to locality,
lifetime, and static analyzability of access addresses compared to
static or heap allocated data. Therefore, caching of stack allocated
data benefits from having its own cache.

In this paper we present a cache architecture optimized for
stack allocated data. This cache is additional to the normal data
cache. As stack allocated data has a high locality, even a small
stack cache gives a high hit rate. A stack cache added to a write-
through data cache considerably improves the performance, while
a stack cache compared to the harder to analyze write-back cache
has about the same average case performance.

I. INTRODUCTION

Data caches are hard to analyze for the worst-case execution
time (WCET). The main issue with data cache analysis is the
static prediction of addresses for load and store instructions.
A strong, and therefore expensive, value analysis is needed
to find some addresses statically. While stack addresses and
addresses of simple data types allocated statically are relatively
easy to compute, data structures with pointers are harder to
analyze, and addresses of data structures that are dynamically
allocated on the heap are impossible to analyze.

One improvement of this situation is splitting the data cache
for different data areas [20]. This splitting into several caches
simplifies WCET analysis, as those caches can be analyzed
independently. A first candidate is a cache for stack allocated
data. In the context of Patmos [21], we have implemented
a stack cache [1] with supporting instructions and compiler
support.

This paper presents a cache for stack allocated data that
simplifies WCET analysis for loads from and stores to the
stack area. The presented stack cache needs no instruction
set changes and no compiler support. It can be added to any
standard microprocessor.

Stack data has a high spatial locality. Therefore, the pro-
posed stack cache serves as cache for a contiguous region in
the memory. Two address pointers mark the part of the main
memory that is in the stack cache. This window into the main
memory is the cached region. As those two pointers clearly
mark the cached region, no tag memory is needed.

The cached region is moved according to function calls
and returns. On a function call the new stack frame moves
this stack cache window. A new stack frame needs no fill
from main memory as the stack allocated data is by definition

undefined. If needed, stack data from outer frames is spilled
to main memory. Traversing up the stack on functions return,
stack frames are becoming inaccessible. This data is simply
dropped and not written back to main memory. On function
returns the stack frame of a function might need to be filled
back into the stack cache with data from main memory.

In the stack cache for Patmos those operations are explicit
and available as instructions. Those three operations are: (1)
reserve words on the stack for the current function stack frame;
data might be spilled to main memory when the stack is full.
(2) free the current stack frame just before a return; only
pointers are manipulated. (3) ensure that the stack frame is
in the cache; executed after the call in the caller.

While these instructions present a clean interface to the
stack cache, they need a change in the instruction set and
in the compiler as well. In our proposal we derive those
functions implicitly from the executed instructions. Therefore,
no instruction set change or compiler change is needed. Our
proposed stack cache can be added to any microprocessor.

The presented design is part of a research line towards time-
predictable computer architecture [19] and extends prior work
on exploring stack caches for average case performance [12]

This paper is organized in 6 sections: The following section
presents related work. Section III presents the design and
implementation of the stack cache. Section IV evaluates the
stack cache. Section V presents three different approaches to
include the stack cache in the WCET analysis. Section VI
concludes.

II. RELATED WORK

Hardware support for stack operations and explicit stack
storage is uncommon in mainstream microprocessors. How-
ever, in the early days of computing, stack architecture was
common.

With the introduction of the Java programming language,
hardware implementations of the Java virtual machine, i.e.,
Java processors, appeared. As the Java virtual machine is
a stack machine, those processors provide hardware support
for stack storage and operations. picoJava [13], the first Java
processor, provides 16 stack registers used as a ring buffer
with automatic spilling to and filling from main memory. The
Java processor jamuth [22] uses on-chip memory for stack
allocated data.

The Java processor JOP [17] implements a stack cache
with two caching levels. The two top elements are cached
in dedicated registers and the elements deeper in the stack



are cached in on-chip memory. This architecture allows for
a simple 3-stage pipeline for the stack operations and needs
only an on-chip memory with one read and one write port. The
result is more efficient, in both area and speed, than approaches
caching only in a small register file [4] and approaches using
only three-port on-chip memory for caching [7].

Stack caching has been explored using several approaches.
Most of these use novel microarchitectures for stack caching,
and some pair a new microarchitecture with static compiler
optimizations to increase effectiveness.

Lu, Bai, and Shrivastava implemented scratchpad memory
(SPM) stack caching for software managed multicore (SMM)
architectures [11]. SMMs are multicore architectures where
each core has an SPM, but no conventional cache, meaning
all caching must be managed by software. Lu et al. focused
on caching stack data and developed a scheme where stack
frames, the size of the SPM, are swapped in and out of the
SPM so that loads and stores always hit. To avoid thrashing
that can occur when stack accesses are made to addresses
on both sides of an SPM frame boundary, they developed
a compiler heuristic named Smart Stack Data Management,
which carefully chooses the locations of loads and stores to the
SPM in order to minimize thrashing and SPM manager over-
head. They compared SSDM with circular stack management,
which keeps the top few stack frames in SPM, rotating bottom
frames out to main memory when new frames are pushed
and loading them back when the upper frames are popped.
SSDM showed speedups between 15% and 1% compared to
circular stack management. A similar approach, optimized for
recursive functions, has also been explored [3].

Kannan, Shrivastava, Pabalkar, and Lee considered an SPM
stack cache manager swapping stack frames the size of func-
tion frames instead of the entire size of the SPM [9]. This
approach is more fine-grained than the one of Lu et al. but
requires more management overhead since the SPM must be
managed on every function call. Kannan et al. developed a
static compile scheme for reserving space in the SPM based
on the estimated call tree, maximizing the amount of space
reserved at a time. They obtained significant speedup of over
40% using SPM caches of a size larger than the maximum
stack frame created during benchmark execution, compared to
a core with only a 1 KB normal cache. However, the SPM
cache does not work for programs that create stack frames
larger than the SPM.

Park, Park, and Ha explored caching stack data in an SPM
acting as a cache that slides up and down in memory, following
the stack pointer [15]. This is done dynamically without need
for compiler support, using MMU faults to detect when the
SPM must allocate space for new data or retrieve data from
DRAM. Park et al. compared this form of stack caching with
a standard cache architecture, configured to only cache stack
data, and showed that the SPM stack cache was both faster
and more energy efficient.

Lee, Smelyanskiy, Newburn, and Tyson developed the Stack
Value File (SVF) microarchitecture [10]. The SVF is a circular
buffer to which all memory accesses offset from the stack

pointer are diverted. Since the stack is a contiguous data
structure in memory the SVF is more area efficient than
a comparable cache, as it only requires one tag line for
every page it contains. It also reduces the memory traffic
since unnecessary loads and stores of invalid data on stack
allocation and dirty replacements can be avoided. The SVF
microarchitecture requires no compiler support and produces
large speedups compared to a baseline architecture with only
a data cache, mostly because accesses are faster.

Olson, Eckert, Manne, and Hill examined the energy effi-
ciency of using implicit and explicit stack caches [14]. An
implicit stack cache constrains stack data items to be stored
in only part of the available L1 data cache by limiting the
available ways of associativity. While an explicit stack cache
is a separate cache that handles only stack data accesses. Olson
et al. identified that the separate stack cache need not be large
compared to the L1 data cache and showed a reduction in dy-
namic cache energy consumption of 36% using explicit stack
caching without negatively affecting performance. They also
discussed making the explicit stack cache virtually addressed,
removing 40% of address translations, which they found to be
the average amount of memory accesses directed to the stack.

For real-time systems, it has been proposed to split the data
cache [18]. The argument is that cache hits for heap allocated
data is unpredictable, but that cache hits and misses for stack
allocated data is relative easy to predict. Therefore, a split of
the data cache into several caches (e.g., for stack, static, and
heap allocated data) simplifies the worst-case execution time
analysis.

In the real-time domain, Abbaspour, Brandner, and Schoe-
berl [1] implemented a stack cache for the Patmos pro-
cessor [21] that requires compiler support. Their scheme
uses three additional hardware instructions: reserve, free, and
ensure. The compiler emits those instructions to make sure
that the stack frame belonging to a function is in the cache.
Therefore, cache misses can only happen at those stack cache
manipulation instructions. All other loads and stores in the
stack area are guaranteed hits. This allows entire stack frames
to be kept in the stack cache to ensure time-predictable access
times.

Abbaspour et al. showed that this scheme provides a large
execution speedup of many benchmarks, even for small cache
sizes (256 bytes). They also identified that the cached stack
frames do not need to be held consistent with external memory,
since data below the stack pointer is by definition invalid and
therefore has no need of being written back to main memory.
Tracking the stack allocated data within worst-case execution
time analysis is simplified when the data cache is split [8]. An
improvement of the stack cache with a lazy spilling pointer
has been presented in [2]. There, an additional pointer tracks
whether some stack allocated data is still coherent with the
main memory and does not need to be spilled when space is
needed in the stack cache.

Our proposed stack cache is similar to the stack cache in
Patmos, as it also uses two pointers to indicate the cache con-
tent. In contrast, our proposed stack cache does not need any



special instructions and no compiler support. As optimization
we use a dirty bit per cache line instead of a single lazy spilling
pointer and it is therefore more fine-grained in detecting non-
dirty cache entries that need no spilling to main memory.

III. THE STACK CACHE

Common programming languages use a stack-oriented
structure to support function calls. This area is used for:
(1) function arguments, (2) storing the return address, (3)
providing storage for function local variables,1 (4) locations
for register saving, and (5) space for statically and dynam-
ically allocated data structures. Some processors, e.g., x86,
have explicit stack pointers and push and pop instructions to
manipulate data on the stack. RISC style processors dedicate
one general-purpose register by convention as the stack pointer
and a second register as the frame pointer to allow dynamic
data allocation on the stack. Stack allocated data can then be
accessed with displacement addressing relative to the stack
pointer or the frame pointer.

For historical reasons, the stack grows downwards and the
top of the stack has the lowest address within the stack area.
We keep this notion for the discussion in the paper.

A. Design

Stack allocated data is different from non-stack allocated
data in two important ways. Firstly, it is always accessed in
a relatively small region; the current stack frame. The size of
the stack frame is determined as the memory region between
the stack and frame pointers. If a frame pointer is not used, the
size must be determined at compile time. Secondly, any data
below the stack pointer in memory is by definition invalid, as it
is not connected to any function in the call tree. Furthermore,
data on the stack is initially undefined. This implies that we
do not need to fill a cache line from memory when pushing
data onto the stack. The individual words in the stack cache
become valid when the program stores values, such as the
return address and register spill slots, into the stack. Likewise,
we do not need to write back a cache line when the data
it contains has been popped from the stack. This data is by
definition invalid.

The cache system of the processor is configured with the
address range that is defined for the stack. All loads and stores
to this address range are routed to the stack cache instead of
the data cache.

As access to the stack allocated data is performed in a small,
contiguous space in the memory at intervals in time, we can
optimize the stack cache by using two pointers instead of tag
memories to indicate the stack content. We use two pointers:
(1) the stack cache top (scTop) pointer and the stack cache
bottom (scBot) pointer. The two pointers define a window
into the main memory that is currently cached in the stack
cache. This window is a sliding window that changes when
the program goes down and up in the call tree.

1With optimizing compilers, often used variables (and arguments) are
allocated in registers and stack slots are used for register spills.

def access(addr)
if (addr >= scTop && addr <= scBot)
// a hit, nothing to do

else if (addr < scTop)
// Miss on a new cache frame
// Maybe needs some spilling
nspill = addr - scBot - SIZE + 1
for i in range nspill
M[scBot] = S[scBot % SIZE]
scBot -= 1

// Now fill the stack cache
nfill = scTop - addr
for i in range nfill
scTop -= 1
S[scTop % SIZE] = M[scTop]

else if (addr > scBot)
// Fill back a stack frame after a
// return after spilling the words
// that will be overwritten.
nfill = addr - scBot
for i in range nfill
M[scTop] = S[scTop % SIZE]
scBot += 1
scTop += 1
S[scBot % SIZE] = M[scBot]

end if

Fig. 1. Stack cache handling when accessing data at address addr.

Access to a data item not yet in the cache leads to a cache
miss, a change in one or both of the two pointers, a possible
cache spill, and a cache fill. When a function is called and
access to function local data leads to a miss, the scTop pointer
is moved downwards till the address of the missed data item
and all cache lines up to that one are loaded into the stack
cache. When this loading of a cache line exceeds the size of
the stack cache, the scBot pointer is moved as well and cache
lines are spilled to the memory accordingly.

On a miss after a return, the scBot pointer is moved up to
the address of the missing cache line and the cache is filled
up to that line. If this filling would exceed the cache size, the
scTop pointer is moved accordingly. For the non-optimized
version the cache lines are spilled to main memory.

Figure 1 shows the stack cache function in pseudo code. S
is the stack memory, M the main memory, and SIZE the size of
the stack cache. Any access (load or store) to the stack address
range with address addr is checked for cache hit or miss in
the stack cache.

The pseudo code shows the stack cache with byte address-
ing. However, in our implementation the granularity of pointer
movement and spilling and filling is in full cache lines. The
length of the cache line depends on the property of the main
memory and is usually in the range of 16 to 32 bytes.

Furthermore, the pseudo code omits the two optimizations
we explored: (1) avoiding filling in stack data from main
memory when accessing a new stack frame after a call and
(2) avoiding spilling unchanged data to main memory.

B. Implementation

We have implemented the stack cache with small state
machines, representing the stack cache controller. As proces-



sor for the implementation we use Patmos [21], which also
supports the stack cache with compiler support. Therefore, we
can compare these different stack cache architectures.

When a stack access with an address smaller than the
scTop pointer is detected, the stack cache controller will begin
moving the scTop pointer, line by line, until it reaches the
accessed address. No cache lines are filled during this process,
but cache lines may be spilled to memory if the cache is full.
The scBot pointer always points to the cache line that must
be spilled when the cache is full, because this represents the
bottom of the area of the stack currently cached.

When popping items off the stack, the pointers will not
move until an access is made to an address that is larger
than the scBot pointer. At this point the scBot pointer will
move one cache line at a time, filling in stack data that
has previously been spilled to memory. During this phase, it
will not write back any cache lines to memory, as whatever
data is overwritten in the cache is invalid. When moving
either scBot or scTop would cause the difference between the
pointers to become larger than the cache size, both pointers
are incremented or decremented depending on what action is
being performed.

Any access between the two pointers is a hit because the
scBot and scTop pointers guarantee that a contiguous region
in memory is held in the stack cache. A side effect of this
is that no tag memory is needed, as the tag addresses can be
inferred from the two pointers.

As an optimization we added dirty bits to the cache lines
to avoid spilling clean cache lines to main memory. This is
similar to the optimization presented in [2], but works at a
finer granularity.

A further optimization we explored is to not write back data
when accessing items below the currently cached part on the
stack. With this optimization, stack frames larger than the size
of the stack cache must not exist. If an access was made to the
top of the stack frame, followed by an access to the bottom,
and then an access to the top again, the stack cache would not
deliver the correct result as it has been thrown away.

C. Software Interface

The stack cache is intended to work completely transparent
to the program in execution and needs no change in the
compiler, compared to the Patmos stack cache. However, the
detection of stack accesses depends on the address of the load
or store instruction. Therefore, the stack cache needs to be
configured at program load time with the address range of the
stack area. However, this is only a minor modification of the
program loader and no change in the application program is
needed. No other assumptions on the application code or how
the compiler generates code are made for this design.

IV. EVALUATION

We have implemented the stack cache in the Patmos pro-
cessor. Patmos is a RISC style processor intended as research
platform for time-predictable computer architecture. Patmos
already contains the original stack cache with instruction set

and compiler support, making it the ideal platform to compare
the different designs. The initial stack cache and the compiler
support can be disabled. Stack allocated data can then be
cached either in the data cache or in our proposed stack cache.

The original version of Patmos contains a write-through data
cache, as the status of dirty flags is not tracked by current state-
of-the-art WCET analysis tools. However, to enable another
comparison we added a write-back data cache to Patmos.

Our main design goal is a time-predictable solution op-
timized for WCET analysis. However, this shall not result
in a slow design in general. Therefore, in the following
section we compare average-case performance measurements
against a data cache, a variation of the stack cache, and
against the Patmos stack cache. We sketch possible ways for
WCET analysis in the following section and consider a WCET
analysis based comparison as future work.

A. Evaluation Setup

We perform all the evaluation in the hardware implementa-
tion of Patmos. This is in contrast to former stack cache papers,
where all the evaluation has been performed in a software
simulation. Evaluation in a software simulation is a valid first
step, but the definite evaluation is best done in real hardware.

We evaluate the performance of the stack caches with
benchmarks from the TACLeBench benchmark collection.2 In
this paper we use the version 1.0 of the TACLeBench, which
consists of a collection of 101 programs. All TACLeBench
programs are completely self-contained without the need for
external library or file IO. This feature makes this bench-
mark collection especially interesting for bare-bone embedded
systems like our Patmos system. However, some benchmarks
provide no results and no side effects. Therefore, our compiler
at optimization level O2 will optimize most of the code away.
The TACLeBench group is aware of this issue and will adapt
the benchmarks for version 2.0.

As the benchmark suite contains currently 101 programs
we need to perform a selection. We selected benchmarks that
have a runtime higher than 10000 and less than 1000000
clock cycles. The first restriction is to avoid toy examples and
programs optimized to merely a return statement. The second
restriction is to make the benchmarking practical.

The data cache for non-stack allocated data is in most setups
a 2 KB write-through cache. It is write-through as this is the
proposed architecture for time-predictable processors [23]. As
the benchmarks have a very small memory footprint, we select
relatively small cache sizes. With larger caches all data will
fit into the cache and we would not observe any cache misses.
For measurements with larger caches we would need larger,
more realistic, application benchmarks.

We use a Patmos configuration for the Altera DE2-70
FPGA board with 2 MB of main memory. This memory is a
relative fast, 32-bit wide synchronous SRAM that is accessed
in pipeline mode. A transfer of 4 32-bit words takes 7 cycles
to complete. To this configuration we add a combination of

2https://github.com/tacle/tacle-bench

https://github.com/tacle/tacle-bench
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Fig. 2. Speedup obtained by replacing a 4 KB write-through data cache with a 2 KB write-through data cache and a 2 KB stack cache.
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Fig. 3. Comparing the optimized version of the stack cache (dirty flags and no fill on allocation) with the non-optimized version.

data and/or stack caches. The size of the stack cache is 2 KB
in all experiments.

A hit in all caches takes 1 cycle to complete, while a miss
in the write-through data cache takes 8 cycles to complete. A
miss in the write-back data cache takes double cycles when the
cache line is dirty. Misses in our stack cache take a variable
amount of time to complete, determined by whether the access
was below the scTop pointer or above the scBot pointer, and
the distance to the relevant pointer. In the original Patmos
stack cache, misses may occur only at the reserve or ensure
instructions.

B. Average Case Performance

First we compare the combination of our stack cache, that
does not fill or spill invalid data to memory and uses dirty bits,
combined with a 2 KB write-through data cache against a 4 KB
write-through data cache. The results can be seen in Figure 2
and they show speedups for all but the fir and matmult
benchmarks. Those two benchmarks access static arrays and
benefit from a larger data cache. The speedup observed is
probably the result of the stack cache being a write-back cache
instead of using a write-through data cache for stack allocated
data. A similar speedup has been observed in [1]. We assume

that this speedup is as well due to the write-back characteristics
of the original Patmos stack cache beating the write-through
data cache.

The effectiveness of not filling cache lines from memory
when writing new items to the stack and not writing undefined
data back to memory, will depend on the memory access
pattern of the benchmarks. Benchmarks that do not use more
stack memory than the size of the stack cache will not be
greatly affected by the optimization. Figure 3 compares a
stack cache with filling optimization and using dirty bits to
avoid spilling of clean data with a stack cache where those
optimizations are turned off. Except in three cases, the speedup
obtained by those two optimizations is negligible. Therefore
we assume that: (1) active stack data is small and usually
fits completely into the stack cache and (2) lines fetched into
the stack cache are usually modified and therefore need to be
spilled to memory when there is need for more space in the
cache.

From this result we derive that the unsafe optimization of
avoiding filling the stack cache on allocation can be turned off.
The dirty bits for avoiding spilling clean cache lines to main
memory are relative cheap and can be used anyway. The usage
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Fig. 4. Comparison of our stack cache with the original Patmos stack cache.

of dirty bits is similar, but with a higher accuracy, to the lazy
spilling pointer presented in [2]. The authors of [2] observe a
higher speedup with their lazy pointer than we observed with
dirty bits. This might be due to the very small stack cache
sizes of 128 and 256 bytes used in their evaluation.

Our stack cache is different from the original Patmos stack
cache in that it does not need compiler-generated instructions
to reserve and free stack data in the stack cache. It also
does not need to ensure that the entire stack frame of the
currently executing function is in the stack cache; instead it
only contains the area of the stack that the function has tried
to access. However, since we have implemented our stack
cache within Patmos, we can easily compare those two caches
within the same processor with the same instruction set. We
compile the benchmarks for our stack without the stack cache
instructions and for the original Patmos stack cache with the
stack cache instructions.

Figure 4 shows the difference in execution time between a
no fill/no spill stack cache with dirty bits and the original
Patmos stack cache. Our stack cache performs similar to
the original Patmos stack cache, but does not need compiler
support. On most benchmarks it even performs a little bit faster
(in the range of 1–2 %) than the original Patmos stack cache.
The reason is that our stack cache handles all stack accesses,
whereas the original Patmos stack cache excludes some stack
allocated data from the stack cache. The following data types
are not allocated on the Patmos stack: too large data, dynamic
allocated data (with alloca()), and data that might escape (a
pointer to stack allocated data is passed to a called function).
These objects are directed to a so-called shadow stack. This
shadow stack is cached in the (write-through) data cache.

One would expect that the new stack cache should always be
better than the original stack cache as it can handle more data
in the stack cache and the processor does not need to execute
the stack manipulation instructions. However, our stack cache
is not as fast as the original stack cache when initializing
new stack frames. With the original stack cache this reserve
operation can be executed in a single cycle when there is no
need to spill cache content to the main memory. With our new

stack cache, this operation is performed sequentially for each
cache line.

This effect of of the higher cost for the reserve operation
can be observed in benchmarks fir and minver. The fir
benchmark is a single function with a loop including a division
function. Division in Patmos is implemented in software and
results in a function call. The division function reserves data
on the stack cache, but as this benchmark needs not much stack
allocated data, the stack cache never spills to main memory.
Therefore, the reserve without spilling results in the overhead
for the new stack cache. The minver benchmark is of similar
structure. It is a program where all stack data fits into the stack
cache and library calls are executed for software floating point
operations.

We also compared the combination of a 2 KB write-through
data cache and 2 KB stack cache with a 4 KB write-back
data cache. In the average case the combined 4 KB write-
back cache performs always better. However, a write-back
data cache is not analyzable by current WCET analysis tools.
Furthermore, we have then again the mix of different data
types in the same cache. This is why a write-through cache is
used as the standard data cache in the Patmos processor. The
stack cache on the other hand, is simple to analyze with respect
to WCET, and can therefore accompany a write-through data
cache.

C. Resource Usage

The post-fitting resource consumption on an Altera
EP4CE115 FPGA can be seen in Table I. The table shows
consumption of logic cells (LC), which are the basic building
blocks in an FPGA, and memory bits, which are mapped to on-
chip memory blocks. The resource consumption is shown for
the stack cache only; it does not include the resources for the
data cache. To put this in perspective, a standard MIPS style
5-stage processor pipeline can be built in 3000–4000 LCs.
The Patmos processor configured with a dual issue pipeline
and implementing the register file in logic cells consumes
about 12000 LCs and as a single-issue processor 6000 LCs.



TABLE I
RESOURCE USAGE.

Stack cache Logic cells Memory bits

2 KB non-optimized w/ dirty 1250 16384
2 KB spill/fill optimized w/ dirty 1440 16384

Therefore, we consider the resource consumption of the stack
cache moderate.

V. WCET ANALYSIS

The main purpose of time-predictable architectures is to
simplify, or sometimes even enable, WCET analysis of ad-
vanced features in a processor.

The stack cache has the purpose to simplify static WCET
analysis of programs. The main topic of this paper is the
design and hardware implementation of the proposed stack
cache in a RISC style processor and provide a measurement
based evaluation and comparison with the original Patmos
stack cache. In this section, we discuss possibilities of WCET
analyses for the proposed stack cache. We consider the con-
crete implementation of a WCET analysis tool out of scope
for this paper and consider it as future work. We outline three
routes to analyze the WCET behavior of the presented stack
cache: (1) a simple all fit analysis, (2) data-flow based fill level
analysis, and (3) scope based analysis.

A. Simple All Fit Analysis

The call depths of many embedded applications are very
shallow. Even so shallow that all stack allocated data fits into
the stack cache. Various Java processors, such as JOP [17] and
jamuth [22], use this approach. Both Java processors contain a
configurable, but fixed on-chip stack memory. And both have
been used in real-world embedded applications, showing that
a fixed stack size is not so restricted.

For embedded systems without virtual memory maximum
stack depths (and maximum dynamic memory consumption)
needs to be analyzed to know whether the program can be
executed in the available physical memory.

Industrial WCET analysis tool providers, such as AbsInt
and Tdorum Ltd., also provide tools for statically analyzing
maximum stack size. AbsInt’s StackAnalyzer is integrated
with their aiT WCET analysis in a single tool called a3.
Calculation of stack usage bounds is integrated in Bound-T [5].

B. Dataflow Analysis

For the original Patmos stack cache [1] we have presented
an intra-procedural data-flow analysis and path searches on
the call-graph to find worst-case bounds on stack cache
spilling and filling [8]. The original stack cache has dedicated
instructions that reserve, free, or ensure that stack frames are
cached. The analysis uses those individual instructions for the
analysis.

However, the automatic stack cache, as presented in this
paper, behaves only in the worst case as “bad” as the original
stack cache. When the original stack cache executes a reserve

instructions to reserve 10 words on the stack cache it will do so
independently of the actual usage. Our stack cache might use
up to 10 words in the same function, but may require less,
depending on the actual execution path within the function.
The same is true on ensuring a stack frame after the return:
the original stack cache ensures that the full stack frame is in
the cache, while our stack cache will only load in used parts
of the stack frame.

We can conclude that the original Patmos stack cache is
a model for an upper bound of spills and fills for our stack
cache. Therefore, we can reuse that WCET analysis, but we
do not need the compiler adaptions for the stack manipulation
instructions. Therefore, our presented stack cache can be
added to a standard RISC processor without changing of the
instruction set and compiler.

Furthermore, with a composable architecture [16] it is not
important that we know the exact instruction where the stack
cache might spill or fill. Therefore, we can use the analysis
of the original stack cache as a first upper bound analysis for
our stack cache.

C. Scope-Based Analysis

Another option for WCET analysis for caches is the scope-
based analysis [6]. We have applied this scope-based analysis
for an object cache for a Java processor [20]. We can envision
using this technique for the stack cache as well.

Scope-based cache analysis may also be called local persis-
tence analysis. Scope-based analysis tries to find (potentially
large) scopes within the control-flow graph of a program where
all cache elements fit into the cache; they stay persistent
after being loaded into the cache. For the method cache or
object cache, ILP constraints are added to those scopes that
all methods or objects may miss maximal once per execution
of the scope.

We can envision adapting this scope-based analysis for the
stack cache. We search for scopes, bottom up in the call tree,
where all live stack frames fit into the stack cache. For such
a scope we have in the worst case the spill cost of the entire
stack size. If the depth towards the scope is less than the stack
size, we can reduce the spill cost accordingly.

Similar to the spill cost analysis we can search for scopes
top down to bound the fill cost of stack frames after function
returns.

We plan in future work to implement a scope-based WCET
analysis for the presented stack cache and compare it with the
Patmos stack cache analysis [8].

VI. CONCLUSION

Caches are important for good performance, but data caches
are hard to analyze for the worst-case execution time. Access
to statically unknown addresses destroys analysis information
about the data cache content. To alleviate this problem we
present a split cache where access to stack allocated data is
redirected to its own cache. This allows for independent anal-
ysis of the data cache and the stack cache for the worst-case
behavior. Furthermore, the highly spatially close access pattern



to the stack allocated data allows for a hardware optimization
that avoids tag memories. Instead of tag memories two pointers
define the valid blocks in the cache.

The evaluation performed in a hardware implementation
of the stack cache in a RISC style processor shows average
case performance gains compared to a write-through data
cache. Compared to write-back data caches the average case
performance is on par, but being a WCET friendly cache
solution.
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SOURCE ACCESS

The Patmos processor and the compiler are available in
open source as part of the T-CREST project and is hosted
on GitHub:

https://github.com/t-crest
The described stack cache is available in a fork of the

Patmos project at:
https://github.com/clauniel/patmos/tree/clauniel scache/

hardware/src/datacache
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