
State-based Communication on Time-predictable Multicore
Processors

Rasmus Bo Sørensen, Martin Schoeberl, Jens Sparsø
Department of Applied Mathematics and Computer Science

Technical University of Denmark
rboso@dtu.dk

ABSTRACT
Some real-time systems use a form of task-to-task commu-
nication called state-based or sample-based communication,
where the read and write communication primitives do not
impose any coordination among the communicating tasks.
A reader may read the same value multiple times or may
not read a given value at all. The concept is similar to a
shared variable. This paper explores implementations of
state-based communication in such network-on-chip based
multicore platforms. We present two algorithms and outline
their implementation. Assuming a specific time-predictable
multicore processor, we evaluate how the read and write
primitives of the two algorithms, contribute to the worst-case
execution time of the communicating tasks.

Keywords
ACM proceedings; LATEX; text tagging

1. INTRODUCTION
In real-time systems, a variation of channel-based com-

munication that emphasizes modularity and encapsulation
is often denoted by phrases and terms like sending of state
messages [6] or sample based communication [1]. The seman-
tics of these types of state-based communication resembles
a shared variable that is accessed atomically by a single
writer and one or more readers without any coordination. A
value may be read multiple times or not at all before it is
overwritten by the next value.

This paper designs and evaluates state-based communica-
tion algorithms for multicore systems, such that the commu-
nicating tasks executing on separate cores can be scheduled
independently. The analysis of systems, where tasks execut-
ing on multiple cores can be scheduled independently, scales
much better to many cores. We investigate two state-based
communication algorithms on a time-predictable multicore
platform with a network-on-chip (NOC) for inter-core com-
munication. We analyze the worst-case latency of reading
and writing a state message.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RTN’16 July 5th, 2016, Toulouse, France
c© 2017 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

A time-triggered algorithm avoiding buffering and locking
is possible, but requires a global schedule of the task execution
and the inter-task communication. Our algorithms offer
modularity through independent timing and schedulability
analysis of the communicating tasks on individual cores.
As shown in the results section the latency and the jitter
introduced by the coordination among the writer and the
readers is small.

We evaluate our work on the T-CREST platform, a multi-
core platform developed specifically to be time-predictable.
However, the presented designs and analysis can easily be
adapted to other multicore platforms that include a message
passing NOC with guarantees on latency and bandwidth.
An example of such a NOC is the Kalray MPPA processor
series [4], which uses network calculus [11] to find guarantees

The contributions of this paper are: (i) three WCET-
analyzable implementations of state-based communication
that target and exploit NOC-based multicore platforms and
aim at minimizing interference, (ii) an evaluation of the
worst-case delay of communicating a state value between two
tasks, for each implementation.

The paper is organized as follows: Section 2 provides
related work on state-based communication and communi-
cating tasks. Section 3 describes the system model and the
hardware platform we use. Section 4 describes the three com-
munication algorithms. Section 5 presents the analysis of the
worst-case communication delay through a communication
flow. Section 6 evaluates the presented designs. Section 7
concludes the paper.

2. RELATED WORK
The concept of state-based communication is equivalent

to a shared variable that can be written by a single writer
process and read by multiple reader processes. A more
general version of this problem, allowing multiple writer
processes, is called the readers/writers problem. This problem
is defined by Courtois et al. [3] and later discussed in [9, 13],
non of the presented solutions are suitable for true concurrent
real-time systems.

In general-purpose systems, the predominant way of achiev-
ing mutual exclusion is to use a lock. As a solution to the
readers/writers problem, read-write locks have been proposed
by Mellor-Crummey and Scott [12]. Krieger et al. [7] propose
a similar version of the read-write lock that requires fewer
atomic operations. Real-time bound of the blocking time of
these read-write lock are presented in [2].

This work evaluates how communication, previously mapped
to off-chip shared memory, can be mapped to on-chip dis-



tributed memory communicating through a NOC. The eval-
uation is made with respect to hard real-time systems.

3. SYSTEM MODEL
This section describes the semantics of state-based com-

munication, the application model, and the platform model
and evaluation platform that we assume in our analysis of
the problem and in the analysis of our proposed solutions.

3.1 State-based Communication
The concept of state-based communication is vaguely de-

fined in the literature. The fundamental mechanism involves
a writer and (possibly) multiple readers that operate without
any coordination. The following sources from the real-time
domain address the semantics of state-based communication.

The “The standard for space and time partitioned safety-
critical avionic real-time operating systems” (ARINC 653) [1]
describes two concepts for inter-partition communication;
queuing ports and sampling ports. Queuing ports are similar
to asynchronous message passing, and sampling ports are
what we are concerned with in this paper.

In [6, sect.4.3.4] Kopetz discusses time-triggered messages
– the alternative to event-based messages – and he writes:
“The semantics of state messages is similar to the semantics
of a program variable that can be read many times without
consuming it. Since there are no queues involved in state
message transmissions, queue overflow is no issue. [. . .] State
messages support the principle of independence [. . .] since
sender and receiver can operate at different (independent)
rates and there is no means for a receiver to influence the
sender.”

In this paper we use the following semantics of state-based
communication: State-based communication involves a single
writer and one or more readers. Writing and reading of the
state must be performed atomically. A read should always
return the newest (completely) written state value, and at the
global level, multiple concurrent readers should observe the
same version of a state value at any given point in time. We
refer to this as temporal consistency between readers. The
writer and the readers will use an application programming
interface and, in a real-time context, it is a requirement that
the read and write primitives always complete execution in
a bounded time; even when reading from an initially empty
buffer.

3.2 Platform Model and Evaluation Platform
This paper considers a time-predictable multicore platform,

where it is possible to derive tight WCET bounds for all
hardware components. Fig. 1 shows a hardware platform
where all processing cores are connected to a globally shared
off-chip memory, and a network-on-chip that supports push
communication between cores. Furthermore, we consider
that each processing core has a local scratchpad memory
(SPM), and that the network-on-chip can transfer data be-
tween the SPMs of the processing cores. The open-source
multiprocessor T-CREST [15], which we use for evaluation,
is such a platform.

To generalize our work and to avoid benchmarking features
specific to the evaluation platform, we implement synchro-
nization in software where needed. Implementing the com-
munication primitives on a platform with hardware support
for synchronization will allow optimization of the synchro-
nization.

NOC

NISPM

Core

NISPM

Core

NISPM

Core

Memory Arbiter/

Off−chip Memory

Figure 1: Block diagram of the assumed multicore
processor. A processing core (Core), a scratch pad
memory (SPM), and a network interface (NI) make
up a tile connected via a network-on-chip (NOC).
Each tile is also connected to the off-chip memory
through a time-predictable memory arbiter.

3.3 Application Model
Our system contains a set T = {τ1, τ2, ..., τn} of n periodic

tasks that communicate via a set F = {f1, f2, ..., fl} of l
state based communication flows.

Each communication flow fj ∈ F is characterized by a
tuple (wj , Rj , mj), where wj is the task that writes to fj ,
Rj is the set of tasks that read from fj , and mj is the size
of a state message. It holds that wj ∈ T , Rj ⊂ T , and
wj /∈ Rj .

Each task τi ∈ T is characterized by a tuple (Ti, Ci, pi),
where Ti is the period of the task, Ci is the WCET of the
task, and pi is the statically assigned processor core on which
the task is executed on using partitioned scheduling. Each
release of a task τi is called a job and may experience some
release jitter Ji, introduced by the scheduling.

We consider multiple task running on each core, but only
communicating tasks that execute on separate cores. Com-
municating tasks that execute on the same core can easily
be added to any of the solutions we propose, because all our
solutions work for true concurrent systems.

We assume that the reads and writes of communication
flows, within a task τi, are executed unconditionally, such
that the reads and writes are executed in the same sequence
for every job. Therefore, each job is split into a sequence of
phases. These phases can have one of three types: a reading
phase, a writing phase or a computation phase. Thus, the
total WCET Ci of a job can be decomposed into a sequence
of phases, where each element of the sequence is the WCET
of that execution phase.

We also assume that tasks holding a lock are not preempted
by other tasks. This assumption reduces the inter-core inter-
ference when locks are used, and this simplifies the WCET
analysis.

4. COMMUNICATION ALGORITHMS
This section describes common considerations of the two

algorithms, followed by a description of each algorithm. The



two algorithms can be implemented in off-chip shared memory
or in on-chip distributed memory. We discuss the implica-
tions of the two implementations in the subsections of each
algorithm.

4.1 Common Considerations
To ensure atomicity of the state-based communication, it

is necessary that reads and writes are performed mutually
exclusively, while concurrent reads are allowed. To guarantee
mutual exclusion between the writer and the readers, the
first two algorithms use a lock and the third algorithm uses
a queue.

For the two algorithms that use a lock, the length of the
critical section has a great impact on the synchronization
delay experienced by each task. In this case, a lock needs to
preserve the temporal ordering of the lock requests to ensure
a solution to the readers/writers problem that is starvation
free.

The temporal consistency property is fully satisfied for the
two algorithms using a lock, because the lock enforces the
strict ordering of accesses. Thus, all reads executed after
a write will read the new value. We discuss the temporal
consistency property of the algorithm that uses a queue in
Subsection 4.3.

4.2 Algorithm 1: Single Shared Buffer and a
Lock

A common practice of implementing state-based commu-
nication uses a single buffer. The shared buffer can be
implemented in both the off-chip shared memory or in the
on-chip distributed SPMs. In the off-chip shared memory,
we allocate a buffer and protect it by a lock. In the on-chip
processor-local SPMs, we implement the shared buffer by
allocating it in the processor-local SPM of the reader. The
read and write operations behave the same in both implemen-
tations. The write operation acquires the lock and transfers
the new state value to the allocated buffer and then it re-
leases the lock. The read operation acquires the lock and
reads the newest state value from the allocated buffer, before
it releases the lock.

This is probably the simplest implementation. However, we
expect that the implementations have a long critical section
because of the data copying in the critical section.

4.3 Algorithm 2: Message Passing Queue
A message passing queue can be used as a solution to the

readers/writers problem, if we can find the upper bound on
the number of elements in the queue that are needed to avoid
overflow. With a queue, the writer writes to the next free
buffer and the reader can read the newest value by dequeuing
all available elements, only keeping the most recent one.

To find the upper bound on the number of elements that
are needed to avoid overflow, we need to know the maximum
write rate and the minimum read rate.

For periodic tasks, the rate is the number of writes or reads
of the state value during the task period. Sporadic tasks
are typically tasks triggered by external events. Therefore,
sporadic tasks might produce new state values, but they
are not typical state consumers. The production rate of a
sporadic task is the number of produced state values over
the minimum inter-arrival time. The number of elements
needed in the queue is the ratio of the production rate over
the consumption rate plus one extra buffer to account for

phase alignment.
A drawback of the message passing queue is that the

memory footprint increases with the period ratio of the
writer and reader. When the reader has a shorter period
than the writer, we only need two buffers at the reader side.
Otherwise, more buffers are needed at the reader side. For
large message sizes and a slow reader, this buffering scheme
might not be practical.

In the shared-memory case, we use non-blocking single
reader/single writer queues [10]. One queue to send a copy
of the state and a return queue to return free buffers from
the reader to the write for reuse. In the distributed memory
case, we use the non-blocking single-reader/ single-writer
queues [16]. The queue supports acknowledgments for reuse
of buffers.

5. WORST-CASE COMMUNICATION DE-
LAY

To ensure that communicating tasks executing on sepa-
rate cores can be scheduled independently, we define the
worst-case delay Dj of state-based communication flow fj
as the maximum separation time between the start of the
write primitive and the end of the first instance of the read
primitive that reads the new value. This definition makes
the worst-case communication delay (WCCD) independent
of the actual implementation.

The worst-case alignment of the reader and writer tasks
happen when the reader causes the maximum interference
on the writer, which postpones the read of the new value to
the next job of the reader task. An intuition on why this
is the WCCD: If we shift the reader forward in time, the
reader will be blocked by the write primitive and the reader
will read the new value before it finishes. If we shift the
reader backwards in time, the reader will block the writer
for a shorter amount of time and the reader will read the
new value sooner.

We present the WCCD formulas for the presented designs
in the following two subsections. If the WCCD does not
depend on the period of the writer, the writing task may be
sporadic with a known minimum inter-arrival time.

5.1 Algorithm 1: Shared Buffers and a Lock
For the two presented designs that use a lock to protect one

or multiple shared buffers, we model the read and the write
primitives, communicating through flow fj , as five variables:
(1) Bj

S is the WCET of the preamble before the critical

section, (2) IjS is the worst-case synchronization interference,

(3) CSj
S is the WCET of the critical section, (4) Aj

S is the
WCET of the postamble after the critical section, and (5) mj

is the message size of the state-based value. The subscript S
of the variables denotes the index R of the reader task τR
or the index W of the writer task τW . The superscript j
of the variables denotes the flow index. The read and write
primitives inherit their period Ti from the calling task. We
add the release jitter of the read and write primitives to Ji
of τi to shorten the expressions.

These variables decide which of the two scenarios in Fig. 2
occur. We find the WCCD in the two scenarios by adding the
variables on the path from start to end. The path in scenario
one is (Bj

W , −B
j
R, TR, JR, B

j
R, CS

j
R, A

j
R). Observe that if

Bj
R of the first reader job is decreased, the WCCD is increased,

because it moves the starting time of period and the second



Writer
τW

Reader
τR

Bj
W IjW CSj

W Aj
W

Start

Bj
R CSj

R Aj
R Bj

R CSj
R Aj

R

TR + JR
End

(a) Scenario one

Writer
τW

Reader
τR

Bj
W IjW CSj

W Aj
W

Start

Bj
R CSj

R Aj
R Bj

R CSj
R Aj

R

TR + JR
End

(b) Scenario two

Figure 2: The two scenarios that lead to the worst-case communication delay. In both cases the condition
that leads to the worst-case is when reads and writes are aligned exactly so that the critical section of a read
blocks the critical section of a write.

job forward in time. Therefore, the WCCD happens when
the Bj

R of the first job is the best-case execution time (BCET)

of the reader preamble B̂j
R. We show the WCCD for scenario

one:

Dj = Bj
W − B̂

j
R + TR + JR +Bj

R + CSj
R +Aj

R (1)

We assume that B̂j
R � TR, therefore we set B̂j

R = 0. This
is a safe underestimation of the BCET that leads to a safe
overestimation WCCD. We also find the path in scenario two
and by reordering to resemble (1), we get:

Dj = Bj
W + IjW + CSj

W + CSj
R +Aj

R (2)

To unify the (1) and (2) we take the maximum of the two
formulas. We show the formula for the WCCD:

Dj = Bj
W +max(TR+JR+Bj

R, I
j
W +CSj

W )+CSj
R+Aj

R (3)

The write primitive includes the complete transfer of the
state value, the new value is available in the SPM of the
reader task after the critical section of the writer. Therefore,
the message size mj changes the WCET of either the critical
section CSj

S or the preamble Bj
S , depending on which of the

implementations that use a lock we choose. If we choose
the single buffer implementation, increasing the message size
mj will increase the critical section CSj

S . If we choose the
three buffer implementation, increasing the message size mj

increases the preamble Bj
S .

In the single reader/single writer case, the worst-case syn-
chronization interference IjW on τW from τR is equal to the

length of the critical section of the reader CSj
R. The worst-

case synchronization interference IjR on τR from τW is equal

to the length of the critical section of the writer CSj
W

5.2 Algorithms 2: Message Passing Queue
The presented design that implements state-based com-

munication with a message passing queue does not use a
lock and therefore there is no synchronization interference.
We model the read and write primitives for flow fj as the
WCETs Qj

R and Qj
W of the read and write primitive.

Compared to the two scenarios for the shared buffer and
a lock, the message passing implementation only has one
scenario. We show this scenario in Fig. 3. The WCCD for
this scenario is:

Dj = Qj
W + TR + JR +Qj

R (4)

Writer
τW

Reader
τR

Qj
W

Start

Qj
R Qj

R

TR + JR
End

Figure 3: The scenario that leads to the WCCD for
read and write functions that do not use a lock.

The value of Qj
R depends on the number of elements that

are needed in the queue to avoid overflow.

6. WORST-CASE EVALUATION
This section describes the evaluation setup and the eval-

uation of the three algorithms. As we consider real-time
systems, we use static WCET analysis for the performance
comparison instead of average-case measurements.

We evaluate all three algorithms on the distributed on-chip
memory with the NOC. For the shared memory we evaluate
only the the single buffer solution. As we see that this is an
order of magnitude slower than distributed memory, we omit
figures for shared memory for the other two solutions.

6.1 Evaluation setup
For this evaluation, we assume a 9 core platform, where the

code for the primitives is stored in the instruction scratchpad
memory. In the 9 core platform, the bandwidth towards
main memory is divided equally between the 9 cores and
the guaranteed-service of the NOC is setup such that all
cores can send to all other cores with equal bandwidth. We
refer to this NOC schedule as an all-to-all schedule. We find
the WCET of the communication primitives with the aiT
tool from AbsInt [5], which supports the Patmos processor.
In the source code of the communication primitives, there
are a number of while loops that wait until certain events
that are time-bounded happen, such as the completion of
a DMA transfer. The worst-case waiting time of a DMA
transfer can be calculated based on the size of the transfer
and the bandwidth of the communication flow towards the
receiver. The worst-case wait time divided by the WCET of



 100

 1000

 10000

 8  16  32  64  128  256  512

W
o
rs

t-
ca

se
 e

xe
cu

ti
o
n
 t

im
e 

(c
yc

le
s)

Message size (bytes)

read
read_cs

write
write_cs

(a) Algorithm 1

 100

 1000

 10000

 8  16  32  64  128  256  512

W
o
rs

t-
ca

se
 e

xe
cu

ti
o
n
 t

im
e 

(c
yc

le
s)

Message size (bytes)

read(3 buf)
read(6 buf)

write

(b) Algorithm 2

Figure 4:

one iteration of the while loop is equal to the maximum loop
bound of that while loop. For each configuration shown in
the following plots, we find the WCET of one iteration of all
the while loops. Based on the maximum waiting time and
the WCET of each loop iteration, we can calculate the loop
bounds of each while loop and pass them to the tool.

The WCET numbers that we show in the following subsec-
tions include the code for the locking functions acquire_lock()
and release_lock(). To avoid benchmarking the locking, all
implementations use the same lock to protect the shared
data, regardless of whether they place data in shared off-chip
memory or distributed on-chip memory. The lock that we use
for the results is Lamport’s Bakery [8] algorithm using the
on-chip distributed memory. The Bakery algorithm is well-
suited for implementation in distributed memory, because
the variables can be laid out such that it uses local-only spin-
ning and remote writes. If another locking method is used,
the data points for the implementations using a lock will
change by the same value in all the following plots. Therefore,
choosing a different locking implementation will not change
the results considerably.

The WCET of the lock is 240 cycles for the acquire_lock()
and 82 cycles for the release_lock(). These numbers do not
account for the interference from other cores that try to
take the lock. A task is in a critical section from right after
the acquire_lock() function returns until the release_lock()
function returns, therefore we include the release_lock() in
the critical section of the communication primitives. The
application designer needs to add the interference of the
other threads holding the lock to the length of the critical
sections during the schedulability analysis.

6.2 Algorithm 1: Single Shared Buffer and a
Lock

Fig. 4a shows the WCET of the read and write functions
implemented using shared off-chip memory and Fig. 4b shows
the WCET of the read and write functions implemented using
distributed on-chip memory.

In Fig. 4a, we can see that, when the message size increases,
the WCET of the shared-memory version becomes very high
compared to the distributed-memory version. For the shared-
memory version, we can see that the critical sections of the
read and the write primitives are long and quickly become

the dominating factor in the WCET.
For the distributed-memory version in Fig. 4b, we can see

that the critical section of the write primitive is longer than
the critical section of the read primitive. This is due to the
fact that the network bandwidth of the all-to-all schedule is
lower than the bandwidth between the local SPM and the
processor.

For the read and the write primitives it is the locking
overhead that causes the difference between the WCET of the
critical sections and the overall WCET of the communication
primitives. The difference between the lines for the critical
sections and the line for the total WCET is constant across
the message sizes.

6.3 Algorithm 2: Message Passing Queue
Fig. ?? shows the WCET of the write primitive and the

WCET of the read primitive with 3 and 6 elements in the
queue. The queuing implementation does not have any
locking and therefore no critical sections. With 3 buffers, the
implementation supports that the writer writes twice as fast
as the reader reads. With 6 buffers the ratio is 5-times faster
writes.

The number of buffers in the queue changes the WCET
of the read primitive. In the worst-case, the reader needs to
dequeue all the elements of the buffer and then return the
last successfully dequeued message.

The WCET of the read primitive, increases with the num-
ber of buffers, but as the message sizes grow, the reading of
the message becomes the dominating factor in the WCET.

6.4 Comparison
Fig. 5 shows the WCET of the write and read primitives

in a system with one writer and one reader. The numbers for
the write primitives include the worst-case synchronization
interference from the read primitive and vice versa.

The queuing implementation does not suffer any synchro-
nization interference, but the number of buffer elements in
the queue depends on the ratio between the period of the
reader and writer. These buffers are placed in the reader,
and for each read the reader needs to dequeue all elements in
the buffer. Therefore, we show plots for three and six buffers
for the reader primitive.

For any message size, the implementation of the queuing



 1000

 8  16  32  64  128  256  512

W
o
rs

t-
ca

se
 e

xe
cu

ti
o
n
 t

im
e 

(c
yc

le
s)

Message size (bytes)

single_buf
multi_buf

queuing

(a) Write primitives

 1000

 8  16  32  64  128  256  512

W
o
rs

t-
ca

se
 e

xe
cu

ti
o
n
 t

im
e 

(c
yc

le
s)

Message size (bytes)

single_buf
multi_buf

queuing(3 buf)
queuing(6 buf)

(b) Read primitives

 1000

 8  16  32  64  128  256  512W
ri
te

-t
o
-r

ea
d
 l
at

en
cy

 (
cy

cl
es

)

Message size (bytes)

single_buf
multi_buf

queuing(3 buf)
queuing(6 buf)

(c) WCCD

Figure 5: The WCET of the read and write functions for all the presented implementations, as a function
of the size of a sample, excluding the implementation using off-chip shared memory. WCCD excluding the
period and jitter of the reader.

algorithm has a lower WCET than the implementations that
use locks, even with six buffers in the reader queue.

Fig. 5c shows the WCCDs Dj minus the period TR and
the jitter JR of our two solutions as a function of the message
size, as shown in (3) and (4). We show the numbers without
TR and JR because these variables are the same for the three
solutions and they are determined by an application. For
the WCCD of the two solutions using a lock, we assume that
TR + JR + Bj

R > IjW + CSj
W , which is scenario one from

Fig. 2a.

7. CONCLUSION
This paper addressed the implementation of time-predictable

state-based communication in multicore platforms for hard
real-time systems. The concept of state-based communica-
tion is similar to a shared variable that can be written and
read atomically.

Aiming for a solution that (a) scales better with a growing
number of processors, and (b) has low latency and low jit-
ter, this paper proposed and evaluated two algorithms that
exploit the scalable message passing NOC and the processor-
local memories found in many recent multicore platforms.
The evaluation is based on actual hardware and the WCET
and the worst-case communication delay in clock cycles, are
obtained using the aiT tool from AbsInt.

The single-buffer algorithm has the lowest worst-case com-
munication delay and it has a minimal memory footprint.
For the single-buffer algorithm, the distributed memory and
NOC implementation is around one order of magnitude faster
than the shared memory implementation.

The implementation of the queuing algorithm has the
lowest WCET across all message sizes, and if the ratio of
the writer and reader periods is close to one, the memory
footprint can be acceptable. The queuing algorithm has very
low jitter because it suffers no synchronization interference.

Acknowledgment
The work presented in this paper was funded by the Dan-
ish Council for Independent Research | Technology and
Production Sciences under the project RTEMP [14], con-
tract no. 12-127600. The work is open source and the
full T-CREST tool chain can be downloaded from GitHub
(https://github.com/t-crest/) and built under Ubuntu.

8. REFERENCES
[1] ARINC 653. Avionics application software standard

snterface – Part 1: Required services, 2010.

[2] B. Brandenburg and J. Anderson. Spin-based
reader-writer synchronization for multiprocessor
real-time systems. Real-Time Systems, 46(1):25–87,
2010.

[3] P. J. Courtois, F. Heymans, and D. L. Parnas.
Concurrent control with ”readers” and ”writers”.
Commun. ACM, 14(10):667–668, Oct. 1971.

[4] B. Dupont de Dinechin, D. van Amstel, M. Poulhiès,
and G. Lager. Time-critical computing on a single-chip
massively parallel processor. In Proc. Design,
Automation and Test in Europe (DATE), pages
97:1–97:6, 2014.

[5] C. Ferdinand, R. Heckmann, M. Langenbach,
F. Martin, M. Schmidt, H. Theiling, S. Thesing, and
R. Wilhelm. Reliable and precise WCET determination
for a real-life processor. In T. A. Henzinger and C. M.
Kirsch, editors, EMSOFT, volume 2211 of Lecture
Notes in Computer Science, pages 469–485. Springer,
2001.

[6] H. Kopetz. Real-Time Systems. Kluwer Academic,
Boston, MA, USA, 1997.

[7] O. Krieger, M. Stumm, R. Unrau, and J. Hanna. A fair
fast scalable reader-writer lock. In Proc. Int.
Conference on Parallel Processing (ICPP), volume 2,
pages 201–204, 1993.

[8] L. Lamport. A new solution of dijkstra’s concurrent
programming problem. Commun. ACM, 17(8):453–455,
Aug. 1974.

[9] L. Lamport. Concurrent reading and writing. Commun.
ACM, 20(11):806–811, Nov. 1977.

[10] L. Lamport. Specifying concurrent program modules.
ACM Trans. Program. Lang. Syst., 5(2):190–222, 1983.

[11] J.-Y. Le Boudec. Application of network calculus to
guaranteed service networks. Information Theory,
IEEE Transactions on, 44(3):1087–1096, May 1998.

[12] J. M. Mellor-Crummey and M. L. Scott. Scalable
reader-writer synchronization for shared-memory
multiprocessors. In Proc. ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPOPP), pages 106–113. ACM, 1991.

[13] G. L. Peterson. Concurrent reading while writing. ACM



Trans. Program. Lang. Syst., 5(1):46–55, Jan. 1983.

[14] RTEMP project page, 2013. Available online at
http://rtemp.compute.dtu.dk/.

[15] M. Schoeberl, S. Abbaspourseyedi, A. Jordan,
E. Kasapaki, W. Puffitsch, J. Sparsø, B. Akesson,
N. Audsley, J. Garside, R. Capasso, A. Tocchi,
K. Goossens, S. Goossens, Y. Li, S. Hansen,
R. Heckmann, S. Hepp, B. Huber, J. Knoop,
D. Prokesch, P. Puschner, A. Rocha, and C. Silva.
T-CREST: Time-predictable multi-core architecture for
embedded systems. Journal of Systems Architecture,
61(9):449–471, 2015.

[16] R. Sørensen, W. Puffitsch, M. Schoeberl, and J. Sparsø.
Message passing on a time-predictable multicore
processor. In Proc. IEEE Int. Symposium on Real-Time
Distributed Computing (ISORC), pages 51–59, April
2015.


