
WCET-Based Comparison of an Instruction
Scratchpad and a Method Cache

Jack Whitham

Department of Computer Science
University of York
jack@cs.york.ac.uk

Martin Schoeberl
Department of Applied Mathematics

and Computer Science
Technical University of Denmark

masca@dtu.dk

Abstract—This paper compares two proposed alternatives to
conventional instruction caches: a scratchpad memory (SPM)
and a method cache. The comparison considers the true worst-
case execution time (WCET) and the estimated WCET bound of
programs using either an SPM or a method cache, using large
numbers of randomly generated programs. For these programs,
we find that a method cache is preferable to an SPM if the true
WCET is used, because it leads to execution times that are no
greater than those for SPM, and are often lower. However, we
also find that analytical pessimism is a significant problem for
a method cache. If WCET bounds are derived by analysis, the
WCET bounds for an instruction SPM are often lower than the
bounds for a method cache. This means that an SPM may be
preferable in practical systems.

I. INTRODUCTION

Recent trends towards time-predictable computer architec-
tures [1], [2], [3] have led to the parallel development of
two new types of local memory for storing instructions: a
scratchpad memory (SPM) and a method cache (M$). Local
instruction memory is nothing new, as instruction caches have
been in use for decades, but caches present problems for worst-
case execution time (WCET) analysis, which is necessary in a
time-predictable architecture to ensure that all tasks will meet
their deadlines.

While direct-mapped and least-recently used (LRU) set-
associative instruction caches are certainly amenable to WCET
analysis [4], [5], [6], some problems remain. For instance,
manufacturers often prefer cache designs that are not so easy
to analyze, such as those using pseudo least-recently used
(PLRU) replacement policies, which are a known source of
timing anomalies [7].

The n-way set-associative design allows an instruction with
a particular physical memory address to be stored in n possible
places within the cache [8]. The average-case execution time
(ACET) of a program is greatly improved by set-associative
LRU caches, as the set-associative design means that conflict
misses between different pieces of code are less likely [9].
Conflict misses occur when useful information is evicted from
the cache because it shares a cache line with other useful
information. Set-associative caches are not entirely free of this
effect, but it is much less likely to occur, and hence they are
widely used [8]. However, the LRU mechanism is expensive
in terms of hardware and energy, and so manufacturers often
prefer a PLRU mechanism. With PLRU the ACET of a
program is similar to true LRU. Unfortunately, WCET analysis

of such PLRU caches is not straightforward and may be highly
pessimistic [10].

This suggests that local instruction memory should be
implemented in a way that is simple in terms of hardware
(like PLRU), but can minimize ACET (like a set-associative
design) and is also amenable to safe and precise WCET
analysis. Two proposed alternatives are the scratchpad memory
(SPM) and the method cache (M$). Both may be used as
local memory, replacing a conventional direct-mapped or set-
associative cache [11], [12]. Both may be used in a preemptive
multitasking system [13], [14]. Both are amenable to WCET
analysis [15], [16].

However, which of the two is truly preferable? There is no
doubt that both can be implemented using simple hardware, as
both SPM-based [17] and M$-based [14] systems have been
implemented in FPGA hardware. We can also observe that
both are free of conflict misses because the memory contents
are not stored in cache lines. The question is therefore about
the WCET: which alternative leads to a lower WCET?

We carry out a comparison of the M$ and the SPM that
relies on synthetic programs expressed as call trees and a
simple, but realistic, hardware model. We determine that lower
true WCETs are achieved using an M$, but that lower WCET
bounds are achieved using an SPM, as a result of the sort of
WCET analysis that is necessary for M$. While an M$ may
have an advantage over an SPM in reality, this advantage is
not necessarily demonstrable by WCET analysis, and therefore
an SPM may be preferable in practical systems.

The comparison of the SPM and the M$ is performed in the
context of the T-CREST1 project. T-CREST aims at building
a time-predictable multicore system. T-CREST provides a
timing-compositional VLIW processor, called Patmos [18],
and a time-predictable memory controller [19]. A network-on-
chip provides message-passing capabilities [20] for the multi-
core system. For shared memory a memory tree network [21],
with precise timing guarantees, is provided. An adapted LLVM
compiler [22] supports all architectural features of Patmos.
This work shall help to decide on which local memory solution
shall be used in the Patmos processor. Both solutions, the SPM
and the M$, are already implemented. A configuration decides
which one (or both) is used.

1Time-predictable Multi-Core Architecture for Embedded Systems, see http:
//www.t-crest.org/

http://www.t-crest.org/
http://www.t-crest.org/

The paper is organized in 9 sections. Section II defines
the SPM and the M$ architecture; Section III describes the
program model to be used for the remainder of the paper, and
Sections IV show how this model applies to the SPM and the
M$ respectively. Section V describes experiments in which
the true WCET of programs using an SPM and using an M$
are compared. Section VI repeats an experiment using WCET
bounds determined by analysis. Section VII presents related
work and Section VIII concludes.

II. DEFINITIONS

In this paper, a scratchpad memory (SPM) is a local
memory where content replacement is under program control.
That is, the information within an SPM is only changed upon
the explicit direction of the program. The program specifies
exactly what information is to be copied into the SPM; the
programmer or compiler adds instructions to the program
to make this happen. Therefore, the exact state of the local
memory is known at all points throughout the program, and
WCET analysis can make use of this information.

In contrast, a cache is local memory where contents are not
precisely determined until execution. WCET analysis, which
is performed before execution, must make use of incomplete
or abstract information about the cache state [4]. Therefore,
it may be necessary to make pessimistic assumptions about
the cache state, for example if it is not certain if a particular
instruction is present.

A method cache (M$) is organized to cache full methods
(or functions) [12]. It was originally developed for a Java
processor [14]. Therefore, it is called method cache, but is
also applicable for functions and procedures.

A method may be loaded into the cache on a call instruction
or when returning from a method. On a call the called method
is checked whether it is in the cache. If it is a miss, the method
is loaded into the cache. On a return from a method the caller
is checked and on a miss loaded. The advantage is that all
other instructions are guaranteed hits and can be ignored by
the cache analysis. Only the call tree needs to be considered
to analyze cache hits and misses.

The basic organization of an M$ is a local memory that is
divided int blocks. A loaded method can span multiple blocks,
but the method needs to be loaded into contiguous blocks. This
organization allows two replacement policies: (1) first-in-first-
out (FIFO), which works like a ring buffer, and (2) a stack
oriented replacement where allocation of blocks follows the
same regime as the allocation of stack frames. However, the
stack oriented replacement leads to conflicts of methods at the
same hight in the call tree. This conflict results in continuous
replacement of methods when called in a loop.

For a block oriented M$, a tag entry is associated for each
block. The entry for the first block of the method contains the
tag entry (address of the method in the memory). The other
blocks are cleared on a method load. With a FIFO replacement,
this mechanism automatically removes the tag entry of a
method when the first block of a method is overwritten by
a newly loaded method.

Another variant of the M$ is to reduce the block size to
single instruction words and have a tag memory with one entry

per method. The dynamic instruction scratchpad (D-ISP) is
organized in this way [23], [24]. With this variant, the tag
memory also contains the length of the cached method. The
number of tag entries limits the number of methods that can
be in the cache at the same time.

The cache memory is better used, as there is only a single
area in the memory that might not be used due to fragmenta-
tion. On the block oriented M$, each loaded method has one
block that might have unused space due to fragmentation.

The implementation of the M$ in Patmos [25] uses the
organization with tag entries for individual methods and allo-
cation granularity of single instruction words. However, this
paper considers the original M$ organization in individual
blocks as the SPM is also organized with block granularity.

III. PROGRAM MODEL

The program model used in this paper is a call tree in
which each node represents a method with an associated size,
and each edge represents a call/return relationship between two
methods. There is a root method representing the entry point.

For instance, in a typical C program, we may have an entry
point named main() which calls printf(). This gives a call
tree with two nodes (main, printf), each labelled with a size,
and linked by an edge. The edge will be labelled with a call
frequency, which may be constant, or related in some way to
the program input. Edges are unordered; the call tree gives no
indication of the order in which a node’s children are called.

Methods are virtually inlined [4] so that the identity of
each method is dependent on its path to the root method. If
two methods foo() and bar() both call baz(), there will be
two copies of baz in the tree: one representing the foo-baz
path, the other representing the bar-baz path. However, the
two copies of baz will share the same space in local memory.

We use a call tree because it is the program representation
used for an M$ [12] and one of the representations that may
be used for an SPM [26].

While this program model might look simplistic and would
not be adequate for comparison with a standard instruction
cache, it fits for our comparison. The SPM and the M$
exchange local memory content with new content from the
main memory at method granularity. Therefore, we consider
modeling a program just as a collection of interconnected
methods as a valid abstraction for our comparison.

IV. EXECUTION MODELS AND WCET ANALYSES

This Section describes the execution models and the result-
ing WCET analyses for the SPM and the M$.

A. Execution Model for the SPM

A program (modeled as a call tree) can be mapped to an
SPM by grouping methods into sub-units named regions [15],
[26]. Each region needs to be small enough to be stored in the
SPM. Formally, regions are elements in a set partition of the
call tree [27]. The regions are disjoint subsets of the nodes in
the call tree. Each region has a size determined as the sum of
the sizes of the methods within it; the maximum size is the
SPM size k.

Partitioning is equivalent to deciding which edges should
represent region transitions. An edge is a region transition if
the call/return operation represented by that edge causes the
contents of the SPM to change. For instance, if main() calls
atoi(), but there is not enough SPM space for both main and
atoi, the main-atoi edge must be a region transition.

There are up to 2n possible partitions for a call tree
containing n edges, though some of these may violate the
maximum size constraint. The program would usually be
mapped to the SPM with the intention of minimizing either
the ACET or the WCET, the latter being more useful for a
time-predictable system.

Call tree partitioning can be performed by exhaustive
search, by hill climbing [15], by a branch-and-bound algo-
rithm [28], or by a polynomial-time optimal algorithm such
as ELA-1 [26]. ELA-1 is a k-partitioning algorithm for call
trees. It determines which call/return edges should be region
boundaries in order to minimize the total cost of copying
information from external memory to the SPM. The upper
bound k on the available SPM space is respected.

B. WCET Analysis for the SPM

WCET analysis can be performed on a call tree as soon as
the region transitions are known. The WCET of the program
may be accurately represented as an integer linear program
(ILP) based on the call tree [29]. In this ILP the execution
frequency of each edge is represented as a variable. The WCET
is the sum of the WCET of each method multiplied by the
execution frequency of its input edge, plus the costs of taking
that edge: zero for edges that are not region transitions, and
the loading cost otherwise. This is an accurate form of WCET
analysis, because there is no pessimism about the loading costs.
If the partitioned call tree requires a region transition, then the
loading cost is precisely accounted by the ILP. Therefore, the
WCET bound matches the true WCET.

As we are interested in the comparison of the cost for
the SPM versus the M$, we simplify the WCET analysis by
ignoring the WCET of the individual methods, i.e., they are
set to 0. The resulting WCET contains only method load cost
and will overemphasize the difference between an SPM and
an M$.

C. Execution Model for the M$

A program (modeled as a call tree) is mapped to the M$
dynamically during execution. The cache state is only updated
when the program calls a method, or when a method returns.
Each call (and return) triggers a search of the cache, usually
carried out in hardware, which determines if the target method
is present. If it is not, then a cache miss occurs, and the method
is loaded from external memory.

The allocation units of M$ are entire methods. Because
the size of method vary, these cannot be allocated to fixed-
size cache blocks, and are instead stored within a ring buffer,
so newly added methods overwrite older methods. There is
a separate index buffer that allows the cache to be searched
quickly for the location of a particular method. These memo-
ries are managed by a first-in first-out (FIFO) policy, in which
the order of eviction from cache is the same as the order of

addition to the cache. This is necessary in order to prevent
memory fragmentation. The M$ has been implemented as part
of the JOP CPU [14], as part of the SHAP CPU [30], as part
of Patmos [25], and independently by Metzlaff et al. [31]. The
M$ hardware is more complex than the SPM hardware, as
the search functionality is usually implemented in hardware.
However, for a resource constraint system this search could
also be implemented in software.

D. WCET Analysis for the M$

The WCET analysis included with JOP operates by gen-
erating an ILP model of the control flow graph (CFG) [16].
Cache load times (miss costs) are added as additional blocks
to invoke and return instructions.

The static M$ analysis is performed on the call tree. It
is static and scope based. Scopes are built bottom-up in the
call tree, i.e., from leaves towards the root. If the memory
consumption of the methods contained in a scope is less than
the M$ size than those methods are marked as single miss
methods. All other methods (further up in the call tree) are
marked as always miss. The scopes are increased to their
maximum size while still containing methods that fit into the
M$.

This single miss information is then used with loop infor-
mation to incorporate the M$ load cost into the overall WCET.
As an example assume a method m1 that contains a loop, which
invokes m2 and m3. All three methods need to fit into the cache
to mark them single miss. The single miss cost is accounted for
all three methods, even when methods m2 and m3 are invoked
multiple times. We know that they can miss at most once.

Due to the FIFO replacement a miss does not need to
happen on the first invocation, it can already be in the cache,
but later replaced and on a further iteration loaded for the
first time. The same can happen for the outer method m1: it
is already in the cache when m2 or m3 are invoked, but m1
could be evicted by an invocation of m2 or m3. In that case
m1 is loaded into the cache again on a return from m2 or m3.
Therefore, the only knowledge we have is that each method
is loaded at most once within this loop scope, but we don’t
know in which iteration.

This analysis may be pessimistic, particularly if all the
methods in the subtree are actually executed together. For in-
stance, some methods may be mutually exclusive, or executed
only once. However, comparison with exhaustive search, based
on model checking, has shown that this introduced pessimism
is in the range of 2% to 7% for small, but real-world, embedded
programs [16].

V. EXPERIMENTS

Our experiments make use of synthetic programs that are
generated at random. They consist of methods and call/return
edges. Each method has a size and may call one or more other
methods. Each call/return edge has a frequency, which may be
constant or an input-dependent variable.

On purpose we decided to not use common WCET bench-
marks, such as the well-established MRTC benchmark suit.2

2see http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

m0 (1)

m1 (61)

6

m4 (67)

3

m2 (36)

9

m3 (26)

9

Fig. 1. An example of a generated program containing five methods (m0..m4).
Each method has a size (e.g. m1 has size 61). Each call/return edge has a
frequency: m0-m4 has frequency 3, so m4 is called 3 times in the worst case
by the root method m0.

First, these benchmarks are small (the active instruction mem-
ory footprint is the range of 1–3 KB for most benchmarks).
Second, the call tree is mostly small and shallow (many
benchmarks just call leave functions from main). Third, and
most important, with synthetic benchmarks we can generate
a very large amount of test cases – in this paper 100000 test
samples.

Figure 1 gives an example of a generated program. The
experiment software generates call trees containing between 5
and 20 methods; each number of methods is equally likely, and
the choice is made using a pseudorandom number generator.
A root method is generated, and then for each subsequent
method, a parent is chosen from amongst the existing methods.
The size of each method is chosen from 1 to 100 blocks with
the local memory size fixed at 100 blocks. The call count for
each method is generated from 1 to 10.

A. True WCET versus WCET Bound

A program has a true WCET: this is the actual worst-
case execution time that can ever occur for that program. In
some simple cases, such as single-path programs [32], this
true WCET is easily determined. In others, it is only feasible
to find an estimated bound on the true WCET, typically an
overestimation [33]. Overestimates may occur because of the
complexity of the hardware, which leads to pessimism in
the hardware model [7], and because of the complexity of
software, where behavior may not be perfectly represented by
loop bounds and other relationships within the WCET model.

It is important to distinguish between the true WCET and
the WCET bound, so we introduce the term TC to represent a
true WCET, and WB to represent a WCET bound. The WCET
bound of a program i executed with an SPM is WBspm

i , while
the true WCET is TCspm

i . We assume that WCET bounds are
safe, so TCspm

i ≤WBspm
i . The TC is of theoretical interest

when comparing SPM and M$, but the WB is of greater
practical value, because the TC cannot always be determined.
Note that WB is determined by the hardware and the WCET

tool capabilities. A smarter WCET tool can deliver a tighter
WB than a simpler (and maybe faster) WCET tool.

In the following sections we compare TCspm and TCmc

by ensuring that programs are sufficiently simple that the true
WCET can be determined.

B. Program Model Assumptions

We assume that there is no time or space overhead to
initiate a call or return, other than that introduced by copying
instructions from external memory. With realistic hardware
implementations, the copying process proceeds a block at
a time [17]. Each block copy moves a fixed amount of
information (usually a small power of two, e.g. 16 bytes) and
takes a constant length of time (e.g. 400 ns).

We assume that methods have zero WCET and the whole
cost of running the program is therefore the cost of loading
it from external memory. This assumption over emphasis the
cost difference between an SPM and an M$. A WCET value
that would include instruction cost as well would diminish the
difference. However, for a comparison of the SPM and the M$
we are interested in this isolated cost.

Furthermore, this isolation simplifies our experimental
setup. This setup allows us to treat the WCET as a copy count,
independent of any time unit, and method sizes as a number
of blocks, independent of any size unit.

Let TCspm
i be the WCET of a program i when executed

with an SPM, and let TCmc
i be the WCET of the same program

when executed with an M$. Figure 2 shows the difference
between TCspm and TCmc for 100000 synthesized programs.
For each program we computed the ratio

TCspm

TCmc (1)

C. Single-Path Programs

Single-path programs are a special case in which TC
and WB are easily determined, as the execution time of the
program is constant [32]. We synthesize single-path programs
by ensuring that all call/return edges have constant frequencies
(like Figure 1).

Having generated a program, we produce an SPM alloca-
tion that minimizes the cost of inter-region transitions. Because
the programs are small, this may be done using exhaustive
search, however, in order to save time, we use the optimal
ELA-1 algorithm described in [26]. In Figure 1, shading is
used to indicate region membership. In this example m0, m1,
and m3 are in one region, and m2 and m4 are placed in different
regions. Therefore, the edges m0-m4 and m1-m2 are region
transition edges. The path m1-m2 incurs a loading cost of 36
blocks on call, and a loading cost of 1+61+26 = 88 blocks
on return (the combined size of m0, m1, and m3).

We “execute” each program using a simulator. The sim-
ulator begins at the root method and “executes” its children
recursively. The children are “executed” in an arbitrary order,
with each being “executed” the number of times given by its
edge label.

The first simulation run uses a model of the SPM. The
number of copies from external memory is TCspm. The second

1
.0
0

1
.0
5

1
.1
0

1
.1
5

1
.2
0

1
.2
5

1
.3
0

1
.3
5

1
.4
0

1
.4
5

1
.5
0

1
.5
5

1
.6
0

1
.6
5

1
.7
0

1
.7
5

1
.8
0

1
.8
5

1
.9
0

1
.9
5

o
th
e
rs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Ratio

F
re
q
u
e
n
cy

1
.0
0

1
.0
5

1
.1
0

1
.1
5

1
.2
0

1
.2
5

1
.3
0

1
.3
5

1
.4
0

1
.4
5

1
.5
0

1
.5
5

1
.6
0

1
.6
5

1
.7
0

1
.7
5

1
.8
0

1
.8
5

1
.9
0

1
.9
5

o
th
e
rs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Ratio

F
re
q
u
e
n
cy

0
.1
5

0
.2

0
.2
5

0
.3

0
.3
5

0
.4

0
.4
5

0
.5

0
.5
5

0
.6

0
.6
5

0
.7

0
.7
5

0
.8

0
.8
5

0
.9

0
.9
5 1

0

10000

20000

30000

40000

50000

60000

70000

Ratio

F
re
q
u
e
n
cy

Fig. 2. Histogram of the WCET ratio between SPM and M$ (Equation 2: TCspm/TCmc) for 100000 synthesized single-path programs. The leftmost column
represents all values from 1.00 to 1.05, the second 1.05 to 1.10, and so on. The “others” column represents all values greater than 2.0.

simulation run uses a model of the M$. The number of copies
from external memory is TCmc. For each program execution
we computed the ratio

TCspm

TCmc (2)

and plotted its value on the histogram shown in Figure 2.
Larger WCETs are of course undesirable, so our results here
show us that M$ is either preferable to (or the same as) SPM.
Though it is common for TCspm to be within a few percent of
TCmc, a significant number of programs have a substantially
larger TCspm.

We found that TCspm ≥ TCmc, i.e., there is no situation
in which SPM is preferable to M$, at least for the program
model considered in this paper. Consider Figure 1 once more:
m1, m2, and m3 cannot coexist in a single region, because it
would be too large. But because m1 repeatedly calls m2, and
then repeatedly calls m3, it is best if a region is first formed
containing m1 and m2, and then a second region is formed
containing m1 and m3. This is not possible with the SPM
program model, but it is possible with the M$.

D. Discussion

The single-path programs do not include any situation
where the M$ loads more information than the SPM. There-
fore, the M$ is preferable in this case. With the M$, region
boundaries change dynamically as the program is executed,
and this results in the same number of region transitions or
fewer in relation to the SPM. It is better to allow the region
assignment to adapt to the behavior of the program.

However, in general we see that for very many cases (45 %)
the M$ and the SPM behave almost identical. And for 99.5 %
of the test cases the difference is below a factor of 2. This
factor is the method load time only. When the WCET of the
individual methods is included, this factor will be reduced.

E. Multi-Path Programs

A multi-path program is one in which the execution path
depends on the input. Most programs are multi-path. Our
synthesized programs become multi-path if one or more edge
weights are variable rather than constant.

The value of a variable edge weight may have an impact
on TC, but if the number of possible combinations of values
is small, we can test all possible combinations in order to
determine TC.

Suppose that exactly one edge is picked from each syn-
thetic program, and its value n is taken as an upper bound
rather than a constant. The program is then “executed” with
SPM and with M$ whilst the value of that edge is assigned
each value x ∈ [0,n] inclusive. One value of x will maximize
the execution time in each case. This gives TCspm (for SPM)
and TCmc (for M$).

We executed the benchmarks with the variations on one
edge for all 100000 test programs. The histogram for multi-
path programs turns out to be indistinguishable from Figure
2, and therefore omitted from the paper. However, this is an
indication that the previous comparison generalizes for multi-
path programs.

1
.0
0

1
.0
5

1
.1
0

1
.1
5

1
.2
0

1
.2
5

1
.3
0

1
.3
5

1
.4
0

1
.4
5

1
.5
0

1
.5
5

1
.6
0

1
.6
5

1
.7
0

1
.7
5

1
.8
0

1
.8
5

1
.9
0

1
.9
5

o
th
e
rs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Ratio

F
re
q
u
e
n
cy

1
.0
0

1
.0
5

1
.1
0

1
.1
5

1
.2
0

1
.2
5

1
.3
0

1
.3
5

1
.4
0

1
.4
5

1
.5
0

1
.5
5

1
.6
0

1
.6
5

1
.7
0

1
.7
5

1
.8
0

1
.8
5

1
.9
0

1
.9
5

o
th
e
rs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Ratio

F
re
q
u
e
n
cy

0
.1
5

0
.2

0
.2
5

0
.3

0
.3
5

0
.4

0
.4
5

0
.5

0
.5
5

0
.6

0
.6
5

0
.7

0
.7
5

0
.8

0
.8
5

0
.9

0
.9
5 1

0

10000

20000

30000

40000

50000

60000

70000

Ratio

F
re
q
u
e
n
cy

Fig. 3. Histogram of the value Histogram of the WCET bound ratio between SPM and M$ (Equation 4: WBspm/WBmc) for 100000 multi-path programs.
The first column contains all values from 0.10 to 0.15, the second 0.15 to 0.20, and so on up to 0.95 to 1.00.

F. Summary

Our experiments tell us that the true WCET TCspm of a
program executed with an SPM is greater than or equal to the
true WCET TCmc of the program executed with an M$, i.e.:

∀i.TCspm
i ≥ TCmc

i (3)

As an M$ is barely more complicated than an SPM, and as
it requires no special algorithm to partition the call tree at
compile time, it would seem that an M$ is preferable to an
SPM.

VI. THE PROBLEM OF WCET BOUNDS

Having determined that the true WCET of a program is
often improved by using an M$ instead of an SPM, we may
ask why it is worth considering an SPM at all. The problem is
that the true WCET, the TC, is only useful if it is known, and
in general, it is not. For most programs, we will only have
WB, the WCET bound. Unfortunately, Equation 3 does not
also apply to WB.

State-of-the-art WCET analysis for the M$ assigns a single
miss classification to edges that are within a subtree where all
methods fit in the cache (see Section IV-D). Other edges are
considered to be misses, because it is not possible to prove that
they are anything else. This is an unfortunate consequence of
the FIFO policy, which evicts elements from cache in the order
they were added, rather than the order that they were used. In
turn, the FIFO policy is necessary in order to avoid memory
fragmentation within the cache space.

Figure 3 shows the results of a comparison using WCET
bounds determined by analysis for the synthesized programs.

For each program we computed the ratio

WBspm

WBmc (4)

and as Figure 3 shows, the advantage of M$ that exists
in reality is now invisible, having been lost to analytical
pessimism. Pessimism is the difference WBmc − TCmc: the
degree of overestimation involved in WB. SPM WCET analysis
has no pessimism at all, i.e., WBspm = TCspm. But the M$
WCET analysis may involve pessimism for any program that
is larger than the local memory size.

Our further experiment tells us that while the true WCET
TCspm

i may be greater than TCmc
i for a program i, the WCET

bound WBspm
i is less than or equal to WBmc

i for the same
program, i.e.:

∀i.WBspm
i ≤WBmc

i (5)

Though an M$ does have an advantage as far as the true WCET
is concerned, this advantage is lost because of pessimism of
real WCET analysis.

The current comparison uses optimization for the SPM
allocation, but leaves the methods as they are for the M$. As
a compiler might inline methods those methods can become
too large for the M$ (and SPM). Therefore, the Patmos com-
piler [22] contains a so-called function splitter. In future work
we might adapt the function splitter to perform optimization
of the method inlining and splitting to optimize for the M$
structure. Furthermore, there is space for improvement of the
WCET analysis for the M$. A scope-based persistence analysis
for the method cache has been developed.3

3The paper “Scope-based Instruction Cache Analysis” is under submission.

VII. RELATED WORK

This paper builds on existing work on M$ and SPM
for use in time-predictable architectures [11], [12]. M$ and
SPM are both intended to solve the same problem, namely
finding an implementation of local memory that is simple
in terms of hardware, but is also effective in minimizing
average-case execution time (ACET) and worst-case execution
time (WCET). Both M$ and SPM are amenable to WCET
analysis [15], [16].

However, the two have not previously been brought to-
gether and compared against each other, though earlier com-
parisons between cache and SPM have been carried out [15],
[34], indicating that the average-case execution time with cache
and SPM are similar, assuming an effective allocation of SPM
space.

The comparison is particularly important because of the
growing interest in time-predictable memory architectures.
There are now several implementations of M$ [30], [31], [25],
[14], WCET analysis of caches is an important topic [33], and
research into SPM allocation algorithms and implementations
continues [13], [26].

Metzlaff and Ungerer compared the WCET bounds for
different instruction cache architectures [35]. They compare
the I-SPM (the method cache) with a static SPM and a
standard instruction cache. In contrast to our findings their
M$ outperforms the static SPM. Their M$ also outperforms a
standard instruction cache.

An average case comparison of the M$ against a standard,
direct mapped instruction cache has been performed in the
original M$ paper [12]. In that comparison the M$ can even
outperform an instruction cache in the average case when the
memory bandwidth is high and there is considerable latency
before a memory burst, as it is in current SDRAM memory
organizations.

Organizing the SPM content under program control implies
a more complicated programming model, which reminds us to
overlay techniques from the 80’s. However, the SPM can be
automatically partitioned [36], [37], [38]. A similar approach
for time-predictable caching is to lock cache blocks. The
control of the cache locking [39] and the allocation of data
in the scratchpad memory [40], [41], [42] can be optimized
for the WCET. A comparison between locked cache blocks
and a scratchpad memory with respect to the WCET can be
found in [15]. While former approaches rely on the compiler
to allocate the data or instructions in the scratchpad memory
an algorithm for runtime allocation is proposed in [43].

VIII. CONCLUSION

We compared two approaches to time-predictable local
memories for instructions: a scratchpad memory (SPM) and
a method cache (M$). Tests using large numbers of synthetic
programs have been used to study the differences in the true
WCET (TC) and the WCET bound (WB).

The tests indicate that lower WCETs may be achieved
using an M$. It is able to make good use of the local memory
because the usage of local memory is adjusted dynamically
as the program runs. Because an SPM is not able to take

advantage of this, and uses the local memory according to a
predetermined plan, it does not use the local memory as well.
The result is (often) a greater true WCET, i.e. TCspm

i ≥ TCmc
i

for a program i.

However, further tests indicate that an SPM appears to lead
to a lower WCET if WCET analysis is used. Because of the
nature of the FIFO replacement policy used by the M$, safe
WCET estimates are often pessimistic, and the result of this
pessimism is that the WCET bound is better (or no worse) for
an SPM than for an M$, i.e. WBspm

i ≤WBmc
i for a program

i.

We therefore conclude that an SPM may be preferable in
practical systems unless and until WCET analysis for the M$
can be improved. This could also involve some change to the
FIFO mechanism used by the M$. A hybrid architecture of an
SPM and a M$ may be worth considering as a way to achieve
the advantages of the M$ without losing the precise WCET
analysis that is also needed.

ACKNOWLEDGMENT

This work was partially funded under the European Union’s
7th Framework Programme under grant agreement no. 288008:
Time-predictable Multi-Core Architecture for Embedded Sys-
tems (T-CREST).

REFERENCES

[1] M. Schoeberl, “Time-predictable computer architecture,” EURASIP
Journal on Embedded Systems, vol. vol. 2009, Article ID 758480, p.
17 pages, 2009.

[2] J. Whitham and N. Audsley, “Time-Predictable Out-of-Order Execu-
tion for Hard Real-Time Systems,” IEEE Transactions on Computers,
vol. 59, no. 9, pp. 1210–1223, 2010.

[3] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. A. Lee,
“A PRET microarchitecture implementation with repeatable timing
and competitive performance,” in Proceedings of IEEE International
Conference on Computer Design (ICCD 2012), October 2012.

[4] F. Mueller, “Timing analysis for instruction caches,” Real-Time Syst.,
vol. 18, no. 2-3, pp. 217–247, 2000.

[5] C. Ferdinand and R. Wilhelm, “Efficient and precise cache behavior
prediction for real-time systems,” Real-Time Systems, vol. 17, no. 2-3,
pp. 131–181, 1999.

[6] J. Reineke, D. Grund, C. Berg, and R. Wilhelm, “Timing predictability
of cache replacement policies,” Journal of Real-Time Systems, vol. 37,
no. 2, pp. 99–122, Nov. 2007.

[7] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm, “The
influence of processor architecture on the design and results of WCET
tools,” Proceedings of the IEEE, vol. 91, no. 7, pp. 1038–1054, Jul.
2003.

[8] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, 4th ed. Morgan Kaufmann Publishers, 2006.

[9] M. D. Hill and A. J. Smith, “Evaluating associativity in cpu caches,”
IEEE Trans. Comput., vol. 38, no. 12, pp. 1612–1630, Dec. 1989.

[10] J. Reineke, D. Grund, C. Berg, and R. Wilhelm, “Timing predictability
of cache replacement policies,” Real-Time Syst., vol. 37, no. 2, pp. 99–
122, 2007.

[11] J. Whitham and N. Audsley, “Implementing Time-Predictable Load and
Store Operations,” in Proc. EMSOFT, 2009, pp. 265–274.

[12] M. Schoeberl, “A time predictable instruction cache for a Java
processor,” in On the Move to Meaningful Internet Systems 2004:
Workshop on Java Technologies for Real-Time and Embedded Systems
(JTRES 2004), ser. LNCS, vol. 3292. Agia Napa, Cyprus: Springer,
October 2004, pp. 371–382.

[13] J. Whitham and N. Audsley, “Explicit Reservation of Local Memory
in a Predictable, Preemptive Multitasking Real-time System,” in Proc.
RTAS, 2012.

[14] M. Schoeberl, “A Java processor architecture for embedded real-time
systems,” Journal of Systems Architecture, vol. 54/1–2, pp. 265–286,
2008.

[15] I. Puaut and C. Pais, “Scratchpad memories vs locked caches in hard
real-time systems: a quantitative comparison,” in Proceedings of the
conference on Design, Automation and Test in Europe (DATE 2007).
San Jose, CA, USA: EDA Consortium, 2007, pp. 1484–1489.

[16] M. Schoeberl, W. Puffitsch, R. U. Pedersen, and B. Huber, “Worst-case
execution time analysis for a Java processor,” Software: Practice and
Experience, vol. 40/6, pp. 507–542, 2010.

[17] J. Whitham and N. Audsley, “The Scratchpad Memory Management
Unit for Microblaze: Implementation, Testing, and Case Study,” Uni-
versity of York, Tech. Rep. YCS-2009-439, 2009.

[18] M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, C. W. Probst,
S. Karlsson, and T. Thorn, “Towards a time-predictable dual-issue
microprocessor: The Patmos approach,” in First Workshop on Bringing
Theory to Practice: Predictability and Performance in Embedded
Systems (PPES 2011), Grenoble, France, March 2011, pp. 11–20.

[19] M. D. Gomony, B. Akesson, and K. Goossens, “Architecture and
optimal configuration of a real-time multi-channel memory controller,”
in Design, Automation Test in Europe Conference Exhibition (DATE),
2013, 2013, pp. 1307–1312.

[20] M. Schoeberl, F. Brandner, J. Sparsø, and E. Kasapaki, “A statically
scheduled time-division-multiplexed network-on-chip for real-time
systems,” in Proceedings of the 6th International Symposium on
Networks-on-Chip (NOCS). Lyngby, Denmark: IEEE, May 2012, pp.
152–160.

[21] J. Garside and N. C. Audsley, “Investigating shared memory tree
prefetching within multimedia noc architectures,” in Memory Architec-
ture and Organisation Workshop, 2013.

[22] P. Puschner, D. Prokesch, B. Huber, J. Knoop, S. Hepp, and G. Gebhard,
“The T-CREST approach of compiler and WCET-analysis integration,”
in 9th Workshop on Software Technologies for Future Embedded and
Ubiquitious Systems (SEUS 2013), 2013, pp. 33–40.

[23] S. Metzlaff, S. Uhrig, J. Mische, and T. Ungerer, “Predictable dynamic
instruction scratchpad for simultaneous multithreaded processors,” in
Proceedings of the 9th workshop on Memory performance (MEDEA
2008). New York, NY, USA: ACM, 2008, pp. 38–45.

[24] S. Metzlaff, I. Guliashvili, S. Uhrig, and T. Ungerer, “A dynamic
instruction scratchpad memory for embedded processors managed by
hardware,” in Architecture of Computing Systems - ARCS 2011, ser.
Lecture Notes in Computer Science, M. Berekovic, W. Fornaciari,
U. Brinkschulte, and C. Silvano, Eds., vol. 6566. Springer Berlin /
Heidelberg, 2011, pp. 122–134.

[25] P. Degasperi, S. Hepp, W. Puffitsch, and M. Schoeberl, “A method
cache for Patmos,” in Proceedings of the 17th IEEE Symposium on
Object/Component/Service-oriented Real-time Distributed Computing
(ISORC 2014). Reno, Nevada, USA: IEEE, June 2014.

[26] J. Whitham and N. Audsley, “Optimal Program Partitioning for Pre-
dictable Performance,” in Proc. ECRTS, 2012.

[27] E. W. Weisstein, “Set Partition,” http://mathworld.wolfram.com/
SetPartition.html, 2012.

[28] R. Leupers and P. Marwedel, “Function inlining under code size
constraints for embedded processors,” in Proc. ICCAD, 1999, pp. 253–
256.

[29] P. Puschner and A. Schedl, “Computing maximum task execution times
- a graph-based approach,” Real-Time Syst., vol. 13, no. 1, pp. 67–91,
1997.

[30] T. B. Preusser, M. Zabel, and R. G. Spallek, “Bump-pointer method
caching for embedded java processors,” in Proceedings of the 5th in-
ternational workshop on Java technologies for real-time and embedded
systems (JTRES 2007). New York, NY, USA: ACM, 2007, pp. 206–
210.

[31] S. Metzlaff, I. Guliashvili, S. Uhrig, and T. Ungerer, “A dynamic
instruction scratchpad memory for embedded processors managed by
hardware,” in Proc. ARCS, 2011, pp. 122–134.

[32] P. Puschner, “Experiments with WCET-oriented programming and the
single-path architecture,” in Workshop on Object-Oriented Real-Time
Dependable Systems, Feb. 2005.

[33] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution time problem – overview of methods and survey of tools,”
Trans. on Embedded Computing Sys., vol. 7, no. 3, pp. 1–53, 2008.

[34] J. Whitham and N. Audsley, “Investigating average versus worst-case
timing behavior of data caches and data scratchpads,” in Proc. ECRTS,
ser. ECRTS ’10, 2010, pp. 165–174.

[35] S. Metzlaff and T. Ungerer, “A comparison of instruction memories
from the WCET perspective,” Journal of Systems Architecture, no. 0,
pp. –, 2013.

[36] O. Avissar, R. Barua, and D. Stewart, “An optimal memory allocation
scheme for scratch-pad-based embedded systems,” Trans. on Embedded
Computing Sys., vol. 1, no. 1, pp. 6–26, 2002.

[37] F. Angiolini, L. Benini, and A. Caprara, “Polynomial-time algorithm
for on-chip scratchpad memory partitioning,” in Proceedings of the
International Conference on Compilers, Architectures and Synthesis
for Embedded Systems (CASES-03). New York: ACM Press, Oct. 30
Nov. 01 2003, pp. 318–326.

[38] M. Verma and P. Marwedel, “Overlay techniques for scratchpad
memories in low power embedded processors,” IEEE Trans. VLSI Syst,
vol. 14, no. 8, pp. 802–815, 2006.

[39] I. Puaut, “WCET-centric software-controlled instruction caches for hard
real-time systems,” in ECRTS ’06: Proceedings of the 18th Euromicro
Conference on Real-Time Systems. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 217–226.

[40] L. Wehmeyer and P. Marwedel, “Influence of memory hierarchies on
predictability for time constrained embedded software,” in Proceedings
of Design, Automation and Test in Europe (DATE2005)., March 2005,
pp. 600–605 Vol. 1.

[41] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen, “WCET centric
data allocation to scratchpad memory,” in Proceedings of the 26th
IEEE International Real-Time Systems Symposium (RTSS). IEEE
Computer Society, 2005, pp. 223–232.

[42] J.-F. Deverge and I. Puaut, “Wcet-directed dynamic scratchpad memory
allocation of data,” in ECRTS ’07: Proceedings of the 19th Euromicro
Conference on Real-Time Systems. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 179–190.

[43] R. McIlroy, P. Dickman, and J. Sventek, “Efficient dynamic heap
allocation of scratch-pad memory,” in ISMM ’08: Proceedings of the
7th international symposium on Memory management. New York, NY,
USA: ACM, 2008, pp. 31–40.

http://mathworld.wolfram.com/SetPartition.html
http://mathworld.wolfram.com/SetPartition.html

	Introduction
	Definitions
	Program Model
	Execution Models and WCET Analyses
	Execution Model for the SPM
	WCET Analysis for the SPM
	Execution Model for the M$
	WCET Analysis for the M$

	Experiments
	True WCET versus WCET Bound
	Program Model Assumptions
	Single-Path Programs
	Discussion
	Multi-Path Programs
	Summary

	The Problem of WCET Bounds
	Related Work
	Conclusion
	References

