
A Single-Path Chip-Multiprocessor System

Martin Schoeberl, Peter Puschner, and Raimund Kirner

Institute of Computer Engineering
Vienna University of Technology, Austria

mschoebe@mail.tuwien.ac.at, {peter,raimund}@vmars.tuwien.ac.at

Abstract. In this paper we explore the combination of a time-predictable chip-
multiprocessor system with the single-path programming paradigm. Time-sliced
arbitration of the main memory access provides time-predictable memory load
and store instructions. Single-path programming avoids control flow dependent
timing variations. To keep the execution time of tasks constant, even in the case
of shared memory access of several processor cores, the tasks on the cores are
synchronized with the time-sliced memory arbitration unit.

1 Introduction

As more and more speedup features are added to modern processors and we are mov-
ing from single-core to multi-core processor systems, the analysis of the timing of the
applications running on these systems is getting increasingly complex. The timing of
single tasks per se is difficult to understand and to analyze. Besides that, task timing
can no longer be considered as an isolated issue in such systems as the competition for
shared resources and interferences via the state of the shared hardware lead to mutual
dependencies of the progress and timing of different tasks.

We are convinced that the only way of making these highly complex processing
systems time predictable is to impose some restrictions on their architecture and on the
way in which the mechanisms of the architecture are used. So far we have worked along
two main lines of research aiming at real-time processing systems with predictable
timing:

On the software side we have conceived the single-path execution strategy [1]. The
single-path approach allows us to translate task code in a way that the resulting code
has exactly one execution trace that all executions of the task have to follow. To this
end, the single-path conversion eliminates all input-dependent control flow decisions
– by applying a set of code transformations [2] and if-conversion [3] it translates all
input-dependent alternatives (i.e., code with if-then-else semantics) into straight-line
predicated code. Loops with input-dependent termination are converted into loops that
are semantically equivalent but whose iteration count is fully determined at system
construction time.

Architecture-wise we have been working on time-predictable processors and chip-
multiprocessor (CMP) systems. We have developed the JOP prototype of a time-
predictable processor [4] and built a CMP system with a number of JOP cores [5]. In
this multiprocessor system a static time-division multiple access (TDMA) arbitration
scheme controls the accesses of the cores to the common memory. The pre-planning of



memory access schedules eliminates the need for dynamic conflict resolution and guar-
antees the temporal isolation that is necessary to allow for an independent progression
of the computations on the CMP cores.

So far, we have dealt with each of the two topics in separation. This paper is the first
that describes our work on combining the concepts of the single-path approach and
our time-predictable CMP architecture. We thus present an execution environment that
provides both temporal predictability to the highest degree and the performance benefits
of parallel code execution on multiple cores. By generating deterministic single-path
code, running this code on predictable processor cores, and using a rigid, pre-planned
scheme to access the global memory we manage to achieve completely stable, and
therefore predictable execution times for each single task in isolation as well as for
entire applications consisting of multiple cooperating tasks running on different cores.
To the best of our knowledge this has not been achieved for any other state-of-the-art
CMP system so far.

2 The Single-Path Chip-Multiprocessor System

The main goal of our approach is to build an architecture that provides a combination of
good performance and high temporal predictability. We rely on chip-multiprocessing to
achieve the performance goal and on an offline-planning approach to make our system
predictable. The idea of the latter is to take as many control decisions as possible before
the system is actually run. This reduces the number of branching decisions that need
to be taken during system operation, which, in turn, causes a reduction of the number
of possible action sequences with possibly different timings that need to be considered
when planning respectively evaluating the system’s timely operation.

2.1 System Overview

We consider a CMP architecture that hosts n processor cores, as shown in Figure 1. On
each core the execution of simple tasks is scheduled statically as cyclic executive. All
core’s schedulers have the same major cycle that is synchronized to the shared memory
arbiter. Each of the processors has a small local method cache (M$) for storing recently
used methods, a local stack cache (S$), and a small local scratchpad memory (SPM) for
storing temporary data. The scratchpad memory can be mapped to thread local scopes
[6] for integration into the Java programming language.

All caches contain only thread local data and therefore no cache coherence proto-
col is needed. To avoid cache conflicts between the different cores our CMP system
does not provide a shared cache. Instead, the cores of the time-predictable CMP system
access the shared main memory via a TDMA based memory arbiter with fine-grained
statically-scheduled access.

2.2 TDMA Memory Arbiter

The TDMA based memory arbiter provides a static schedule for the memory access.
Therefore, access time to the memory is independent of tasks running on other cores. In
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Fig. 1. A JOP based CMP system with core local caches (M$, S$) and scratchpad memories
(SPM), a TDMA based shared memory arbiter, and the memory controller.

the default configuration each processor cores has an equally sized slot for the memory
access. The TDMA schedule can also be optimized for different utilizations of process-
ing cores. In [7] we have optimized the TDMA schedule to distribute slack time of tasks
to other tasks with a tighter deadline.

The worst-case execution time (WCET) of a memory loads or stores can be calcu-
lated by considering the worst-case phasing of the memory access pattern relative to the
TDMA schedule [8]. With single-path programming, and the resulting static memory
access pattern, the execution time of tasks on a TDMA based CMP system is almost
constant. The only jitter results from different phases of the task start time to the TDMA
schedule.

The maximal execution time jitter, due to different phases between the task start
time and the TDMA schedule, is the length of the TDMA round minus one. Thus, the
TDMA arbiter very well supports time-predictable program execution. The maximal
jitter due to TDMA delays is bounded and relatively small. And if one is interested to
even completely avoid this short bounded execution time jitter, this can be achieved by
synchronizing the task start with the TDMA schedule, using the deadline instruction
described in Section 3.2.



2.3 Tasks

All tasks in our system are periodic. Tasks are considered to be simple tasks according to
the Simple-Task Model introduced in [9]:1 Task inputs are assumed to be available when
a task instance starts, and outputs become ready for further processing upon completion
of a task execution. Within its body a task is purely functional, i.e., it does neither access
common resources nor does it include delays or synchronization operations.

To realize the simple-task abstraction, a task implementation actually consists of a
sequence of three parts: read inputs – execute – write outputs. While the application
programmer must provide the code for the execute part (i.e., the functional part), the
first and the third part can be automatically generated from the description of the task
interface. These read and write parts of the task implementations copy data between
the shared state and task-local copies of that state. The local copies can reside in the
common main memory or in the processor-local scratchpad memory. The placement
depends on the access frequency and size of the local state. Care must be taken to
schedule the data transfers between the local state copy and the global, shared state
such that all precedence and mutual exclusion constraints between tasks are met. This
scheduling problem is very similar to the problem of constructing static scheduling
tables for distributed hard real-time computer systems with TDMA message scheduling
in which task execution has to be planned such that task-order relations are obeyed and
the message and task sequencing guarantees that all communication constraints are met.
A solution to this scheduling problem can be found in [10].

Following our strategy to achieve predictability by minimizing the number of con-
trol decisions taken during runtime, all tasks are implemented in single path code. This
means, we apply the single-path transformation described in [1, 2] to (a) serialize all
input-dependent branches and (b) transform all loops with input-dependent termination
into loops with a constant iteration count. In this way, each instance of a task executes
the same sequence of instructions and has the same temporal access pattern to instruc-
tions and data.

2.4 Mechanisms for Performance and Time Predictability

By executing tasks on different cores with some local cache and scratchpad memory
we manage to increase the system’s performance over a single-processor system. The
following mechanisms make the operation of our system highly predictable:

– Tasks on a single core are executed in a cyclic executive, avoiding cache influences
due to preemption.

– Accesses to the global shared memory are arbitrated by a static TDMA mem-
ory arbitration scheme, thus leaving no room for unpredictable conflict resolution
schemes and unknown memory access times.

– The starting point of all task periods and the starting point of the TDMA cycle for
memory accesses are synchronized, and each task execution starts at a pre-defined
offset within its period. Further, the single-path task implementation guarantees a

1 More complex task structures can be simulated by splitting tasks into sets of cooperating sim-
ple tasks.



unique trace of instruction and memory accesses. All these properties taken to-
gether allow for an exact prediction of instruction execution times and memory
access times, thus making the overall task timing fully transparent and predictable.

– As the read and write sections of the tasks may need more than a single TDMA slot
for transferring their data between the local and the global memory, read and write
operations are pre-planned and executed in synchrony with the global execution
cycle of all tasks.

Besides its support for predictability, our planning-based approach allows for the
following optimizations of the TDMA schedules for global memory accesses. These
optimizations are based on the knowledge available at the planning time:

– The single-path implementation of tasks allows us to exactly spot which parts of
a task’s execute part need a higher and which parts need a lower bandwidth for
accessing the global memory (e.g., a task does not have to fetch instructions from
global memory while executing a method that it has just loaded into its local cache).
This information can be used to adapt the memory access schedule to optimize the
overall performance of memory accesses. While an adaption of memory-access
schedules to the bandwidth requirements of different processing phases has been
proposed before [11, 12], it seems that this technique can provide its maximum
benefit when applied to single-path code – only the execution of single-path code
yields a unique, and therefore fully predictable sequence and timing of memory
accesses.

– A similar optimization can be applied to optimize the timing of memory accesses
during the read and write sections of the task implementations. These sections ac-
cess shared data and should therefore run under mutual exclusion. Mutual exclusion
is guaranteed by the static, table-driven execution regime of the system. Still, the
critical sections should be kept short. The latter could be achieved by an adaption
of the TDMA memory schedule that assigns additional time slots to tasks at times
when they perform memory-transfer operations.

Our target is a time-deterministic system, which means that not only the value of
a function is deterministic, but also the execution time. It is desirable to exactly know
which instruction is executed at each point in time. Execution time shall be a repeatable
and predictable property of the system [13].

3 Implementation

The proposed design is evaluated in the context of the Java optimized processor
(JOP) [4] based CMP system [5]. We have extended JOP with two instructions: a pred-
icated move instruction for single-path programming in Java and a deadline instruction
to synchronize application tasks with the TDMA based memory arbiter.

3.1 Conditional Move

Single path programming substitutes control decisions (if-then-else) by predicated
move instructions. To avoid execution time jitter, the predicated move has to have a



constant execution time. On JOP we have implemented a predicated move for integer
values and references. This instruction represents a new, system specific Java virtual
machine (JVM) bytecode. This new bytecode is mapped to a native function for access
from Java code. The semantic of the function

result = Native.condMove(x, y, b);

is equivalent to

result = b ? x : y;

without the need for any branch instruction. The following listing shows usage of con-
ditional move for integer and reference data types. The program will print 1 and true.

String a = ”true” ;
String b = ” false ” ;
String result ;
int val ;

boolean cond = true;

val = Native.condMove(1, 2, cond);
System.out.println(val );
result = (String) Native.condMoveRef(a, b, cond);
System.out.println( result );

The representation of the conditional move as a native function call has no call
overhead. The function is substituted by the system specific bytecode during link time
(similar to function inlining).

3.2 Deadline Instruction

In order to synchronize a task with the TDMA schedule a wait instruction with a reso-
lution of single clock cycles is needed. We have implemented a deadline instruction as
proposed in [14]. The deadline instruction stalls the processor pipeline until the desired
time in clock cycles.

To avoid a change in the execution pipeline we have implemented a semantic equiv-
alent to the deadline instruction. Instead of changing the instruction set of JOP, we have
implemented an I/O device for the cycle accurate delay. The time value for the absolute
delay is written to the I/O device and the device delays the acknowledgment of the I/O
operation until the cycle counter reaches this value. This simple device is independent
of the processor and can be used in any architecture where an I/O request needs an
acknowledgment.

I/O devices on JOP are mapped to so called hardware objects [15]. A hardware
object represents an I/O device as a plain Java object. Field read and write access are
actual I/O register read and write accesses. The following code shows the usage of the
deadline I/O device.



SysDevice sys = IOFactory.getFactory().getSysDevice();

int time = sys. cntInt ;
time += 1000;
sys.deadLine = time;

The first instruction requests a reference to the system device hardware object. This
object (sys) is accessed to read out the current value of the clock cycle counter. The
deadline is set to 1000 cycles after the current time and the assignment sys.deadline =
time writes the deadline time stamp into the I/O device and blocks until that time.

4 Evaluation

We evaluate our proposed system within a Cyclone EP1C12 field-programmable gate
array that contains 3 processor cores and 1 MB of shared memory. The shared memory
is an SRAM with 2 cycles read access time and 3 cycles write access time. Some byte-
code instructions contain several memory accesses (e.g., an array access needs three
memory reads: read of the array size for the bounds check, an indirection through a
forwarding handle,2 and the actual read of the array value). For several bytecode in-
structions the WCET is minimized with a slot length of 6 cycles. The resulting TDMA
round for three cores is 18 cycles.

As a first experiment we measure the execution time of a short program fragment
with access to the main memory. Without synchronizing the task start with the TDMA
arbiter we expect some jitter. To provoke all possible phase relations between the task
and the TDMA schedule the deadline instruction was used to shift the task start rela-
tive to the TDMA schedule. The resulting execution time varies between 342 and 359
clock cycles. Therefore, the maximum observed execution time jitter is the length of
the TDMA round minus one (17 cycles).

With the deadline instruction we make each iteration of the task start at multiples of
the TDMA round (18 clock cycles in our example). In that case each task executes for
a cycle accurate constant duration. This little experiment shows that single-path pro-
gramming on a CMP system, synchronized with the TDMA based memory arbitration,
results in repeatable execution time [13].

4.1 A Sample Application

To validate our programming model for cycle-accurate real-time computing, we devel-
oped a controller application that consists of five communicating tasks. This case study
is a demonstrator that cycle-accurate computing is possible on a CMP system. Further,
this case study give us some insights about the practical aspects of using the proposed
programming model.

The architecture of the sample application is given in Figure 2. The application
is demonstrative because of its rather complex inter-process communication pattern,
which shows the need of precise scheduling decisions to meet the different precedence
constraints. The application consists of the following tasks:

2 The forwarding handle is needed for the implementation of the real-time garbage collector.
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Fig. 2. Sample application: control application

– τ1 and τ2 are the sampling tasks that read from sensors. τ1 samples the reference
value and τ2 samples the system value. This two tasks share the same code basis
and they run at the double frequency than the controller task to allow a low-pass
filtering by averaging the sensor values.

– τ3 is the proportional-integral-derivative controller (PID controller) that gets the
reference value from τ1 and the feedback of the current system value from τ2.

– τ4 is a system guard similar to a watchdog timer that controls the liveness of τ1, τ2,
and τ3. Whenever the write phase of τ1, τ2, and τ3 has not been executed between
two subsequent activations of τ4 then the system is set into an error state.

– τ5 is a monitoring task that periodically collects the sensor values (from τ1 and
τ2) and the control value (from τ3). The write part of τ5 is currently empty, but it
can be used to include the code for transferring the collected system state to a host
computer.

The inter-task communication of the sample application is summarized in Figure 3.
It shows that this small application has a relatively complex communication pattern.
Each task communicates with almost all other tasks. The communication pattern has a
direct influence on the system schedule. The resulting precedence constraints have to be
taken into account for scheduling the read, execute, and write phases for each task. And
of course, since this is a CMP system, some of the task phases are executed in parallel,
which complicates the search for a tight schedule.

Tasks τ1-τ5 are implemented in single-path code, thus their execution time does not
depend on control-flow decisions. Since also the scheduler has a single-path implemen-
tation, the system executes exactly the same instruction sequence at each scheduling
round.

All tasks are synchronized on each activation with the same phase of the TDMA
based memory arbiter. Therefore, their execution time does not have any jitter due to
different phase alignments of the memory arbiter.

With such an implementation style it is possible on the JOP to determine the WCET
of each task directly by a single execution-time measurement (by enforcing either a
cache hit or miss of the method). Table 1 shows the observed WCET values for each
task, given separately for the read, execute, and write part of the tasks. The absolute
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Fig. 3. Communication directions of the control application

Table 1. Measured single-path execution time in clock cycles

Task Read Execute Write Total

τ1,τ2 594 774 576 1944
τ3 864 65250 576 66690
τ4 26604 324 28422 55350
τ5 1368 324 324 2016

WCET values are not that important to discuss, but more important is the fact that the
execution time of each task is deterministic, not depending on the input data.

To summarize on the practical aspects of the programming model, it has shown
that even this relatively simple application results in a scheduling problem that is rather
tricky to be solved without tool support. For the purpose of our paper we solved it man-
ually using a graphical visualization of the relative execution times and determining the
activation times of each task manually. However, to successfully use this programming
model for industrial production code, the use of a scheduling tool is highly advisable
[10]. With respect to generating a tight schedule, it has shown that the predictable exe-
cution time of all tasks is very helpful.

5 Related Work

Time-predictable multi-threading is developed within the PRET project [14]. The pro-
cessor cores are based on a RISC architecture. Chip-level multi-threading for up to six
threads eliminates the need for data forwarding, pipeline stalling, and branch prediction.
The access of the individual threads to the shared main memory is scheduled similar to
our TDMA arbiter with the so called memory wheel. The PRET architecture implements
the deadline instruction to perform time based, instead of lock based, synchronization
for access to shared data. In contrast to our simple task model, where synchronization



is avoided due to the three different execution phases, the PRET architecture performs
time based synchronization within the execution phase of a task.

The approach, which is closest related to our work, is presented in [11, 12]. The
proposed CMP system is also intended for tasks according to the simple task model
[9]. Furthermore, the local cache loading for the cores is performed from a shared main
memory. Similar to our approach, a TDMA based memory arbitration is used. The paper
deals with optimization of the TDMA schedule to reduce the WCET of the tasks. The
design also considers changes of the arbiter schedule during task execution to optimize
the execution time. We think that this optimization can be best performed when the
access pattern to the memory is statically known – which is only possible with single-
path programming. Therefore, the former approach to TDMA schedule optimization
shall be combined with our single-path based CMP system.

Optimization of the TDMA schedule of a CMP based real-time system has been
proposed in [7]. The described system proposes a single core per thread to avoid the
overhead of thread preemption. It is argued that future systems will contain many cores
and the limiting resource will be the memory bandwidth. Therefore, the memory access
is scheduled instead of the processing time.

6 Conclusion

A statically scheduled chip-multiprocessor system with single-path programming and
a TDMA based memory arbitration delivers repeatable timing. The repeatable and pre-
dictable timing of the system simplifies the safety argument: measurement of the ex-
ecution time can be used instead of WCET analysis. We have evaluated the idea in
the context of a time-predictable Java chip-multiprocessor system. The cycle accurate
measurements showed that the approach is sound.

For the evaluation of the system we have chosen a TDMA slot length that was
optimal for the WCET of individual bytecodes. If this slot length is also optimal for
single-path code is an open question. In future work we will evaluate different slot
lengths to optimize the execution time of single-path tasks. Furthermore, the change of
the TDMA schedule at predefined points in time is another option we want to explore.
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