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Abstract
Single-path code has some unique properties that make it interesting to explore different caching
and prefetching alternatives for the stream of instructions. In this paper, we explore different
cache organizations and how they perform with single-path code.
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1 Introduction

Worst-case execution time (WCET) analysis is a non-trivial analysis problem. It becomes
especially difficult with more complex processor architectures. A strategy to simplify WCET
analysis is to write programs that have a constant execution time, i.e., the best-case and
worst-case execution time are equal. In that case, we do not need to analyze the program, but
can simply measure the execution time. Single-path code gives constant execution time [15].

Single-path code is code that is structured so that there are no data dependent control
flows. On an if/else condition both conditions are executed. However, to retain the
program’s semantics and data flow, all instructions are executed with a predicate. The
compiler sets these predicates according to the original conditions of the branching code.
When executing single-path code, instructions whose predicate evaluates to false do not
update the processor state, i.e., they act as nop instructions. Loops always execute the
maximum number of iterations (the so-called loop bound), which is a known number in a
real-time context. Like the if/else case, the original loop condition is used to evaluate to a
predicate and all instructions within loops are predicated.

Single-path code can be manually coded or a compiler can translate normal code to
single-path code. The translation of an if/else condition is also a common technique in
compilers applied on small code fragments to avoid expensive branches. This is called if
conversion [1].
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The time-predictable execution of single-path code demands two features from a processor:
(1) the processor needs to support predicates or a conditional move and (2) a predicated
instruction shall have the same execution time irrespective of whether the predicate evaluates
to true or false. Therefore, we explore single-path code on a processor that fulfills both
conditions. Patmos is a processor that is designed especially for real-time systems [21]. Patmos
contains features that shall make WCET analysis simpler, but also supports execution of
single-path code with a predicated instruction set and constant execution time of instructions.

Patmos contains also a special instruction cache that caches full functions [4]. For historical
reasons this cache is named method cache (it appeared first in a Java processor [18]). Cache
misses can only occur at function calls or returns. Caching full functions has one drawback:
code that is not executed is still loaded into the cache. However, as programs organized as
single-path code execute all their instructions, this main drawback disappears. Therefore,
our hypothesis is that the method cache is a good cache organization for single-path code.

This paper explores the method cache in the context of single-path code. We compare
and evaluate the method cache against a standard instruction cache using the TACLeBench
benchmarks [6]. Furthermore, we explore performance benefits of an extension of a standard
instruction cache with a prefetcher that has been especially designed for single-path code.

The paper is organized in 6 sections: The following section presents related work. Sec-
tion 3 provides background on single-path code generation and the time-predictable Patmos
processor. Section 4 describes different options of caching for single-path code. Section 5
evaluates the different caching options on the Patmos processor and compares them. Section 6
concludes the paper.

2 Related Work

For real-time systems, caches are one of the main sources of temporal uncertainty. State-of-
the-art cache analysis tools are using abstract interpretation for classifying cache accesses [12].
However, even if these approaches derive safe bounds, the precision of the results derived
from the abstract models strongly vary depending on the cache architecture and replacement
policy [9]. For example, an abstract model for the LRU replacement policy achieves better
predictability than a model for FIFO or PLRU [17].

Another mechanism that aims at making caches more predictable is cache locking [14].
This technique loads memory contents into the cache and locks it to ensure that it will
remain unchanged afterwards. The benefit of cache locking is that all accesses to the locked
cache lines will always result into cache hits. The cache content can be locked entirely [7] or
partially, it can be locked for the whole system lifetime (static locking) or it can be changed
at runtime (dynamic locking) [5]. Although cache locking increases predictability, it reduces
performance by restricting the temporal locality of the cache to a set of locked cache lines.

In contrast to conventional code, single-path conversion overcomes predictability issues
by generating code that has only a single trace of execution. Thus, keeping traces of possible
cache states is no more needed. Furthermore, the use of single-path code eliminates the
necessity for cache locking.

3 Background

This paper builds on prior research work on single-path code and research on the time-
predictable computer architecture developed for the T-CREST platform [19].
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3.1 Single-path Code Generation
Puschner and Burns propose single-path code to simplify WCET analysis by avoiding data-
dependent control flow decisions [15]. The defining property of single-path code is that any
execution follows a single instruction trace, independent from input data. This is achieved by
conversion of control dependence to data dependence, with the use of predicated instructions.
In code that is WCET analyzable, loops must be bounded. The compiler transforms input-
data dependent loops such that they iterate for a fixed number of times, which is the local
loop bound [13].

The resulting single-path code may have a longer execution path, due to the serialization
of otherwise alternative paths in the original program. Also, in some scenarios it is undesirable
to always consume the computational resources required for the worst-case, e.g., in mixed-
critical systems where slack time is used for non-critical tasks. Nonetheless, single-path
code generation provides a constructive approach to time-predictable real-time code. On a
“well-behaved” hardware platform, the execution time for single-path tasks is constant. In
this ideal case, WCET analysis simplifies to measurement.

One requirement is that the instruction timing is independent of the instruction operands.
Memory accesses introduce another source of variability in execution time. Though, the single-
path property makes the code easier to analyze with regards to instruction memory. Abstract
interpretation based analysis becomes superfluous, there is no need for approximation. The
known singleton instruction stream can be directly applied to a hardware model of the
instruction cache (as in simulation). This knowledge is exploited to implement perfectly
accurate prefetching schemes for instructions [2].

Data accesses are also subject to execution-time variability. Enforcing local availability
of the required data during the task execution may alleviate the problem, e.g., by data cache
locking or usage of a scratchpad memory. However, we restrict ourselves to the instruction
cache in this paper.

3.2 Patmos and the T-CREST Platform
We explore instruction caching options on the Patmos processor [21], which itself is part of
the T-CREST multicore platform [19]. The T-CREST platform aims to build a processor,
network-on-chip, and compiler toolchain [16] to simplify WCET analysis. We optimized all
components to be time-predictable, even when average-case performance is reduced. AbsInt
aiT [8] static WCET analyzer supports the Patmos processor. T-CREST also includes the
research WCET analyzer platin [11].

Patmos is a RISC architecture supporting dual-issue instructions. To the best of our
knowledge, Patmos is timing anomaly free. There is no timing dependency between any
two instructions. Even all cache misses (instruction or data) happen in the same pipeline
stage (the memory stage). Therefore, only a single cache miss can happen any clock cycle.
Patmos uses special forms of instruction and data cache that shall simplify cache analysis.
For instructions, Patmos has a method cache [4], which caches whole functions. Besides
these special caches Patmos also supports a standard instruction cache, a standard data
cache, and instruction and data scratchpad memories.

One issue with a method cache is that complete functions are loaded into the method
cache, even when only part of it is executed. We attack this issue by splitting larger functions
into smaller subfunctions [10]. However, with single-path code there is no code that is not
executed. The processor executes all instructions of a called function. Therefore, a method
cache may well fit for caching single-path code, especially when callee functions are not

WCET 2017
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evicted by called functions.
We extended a standard instruction cache by a prefetching unit [3] to improve single-path

execution time. The prefetcher uses the static “knowledge” of single-path code to anticipate
the upcoming instructions and bring them into the cache before they are needed. Such a
property allows the prefetcher to perform in time-predictable fashion without polluting the
cache with unused instructions.

4 Caching of Single-Path Code

Single-path code is instruction-cache friendly as all instructions that are loaded into the
cache are executed, except at the end of a function.

4.1 Standard Instruction Cache
A standard instruction cache is organized in cache blocks and can be configured as direct
mapped cache or set associative cache. Some single-path code can benefit from a direct
mapped instruction cache, especially when the cache is small [3]. We will evaluate direct
mapped and set-associative instruction caches for single-path code.

4.2 Method Cache
The method cache is an instruction cache designed to simplify WCET analysis. The method
cache caches full functions/methods. Therefore, a cache miss can only happen on a call or
a return. All other instructions are guaranteed hits and cache analysis can ignore those.
Method cache analysis only needs to consider functions and not individual instructions.

One disadvantage of the method cache is that instructions in a function that are not
executed are still loaded on a cache miss. However, with single-path code all instructions
of a function are always executed. Therefore, the method cache should perform well with
single-path code.

4.3 Time-predictable Prefetcher with a Standard Cache
Prefetching hides large memory access latencies by loading instructions into the cache before
they are needed. However, to take advantage of this improvement, the prefetcher needs to
guess the right prefetch target and issue the request at the right time. Any wrong speculation
on these two parameters can degrade the system performance.

The time-predictable prefetcher exploits properties of single-path code to anticipate the
future instruction cache accesses with full accuracy and bring those instructions into the
cache at the right moment [3]. For higher efficiency, the prefetcher implements an aggressive
algorithm that prefetches every cache line of the code. Its direction is controlled through a
Reference Prediction Table (RPT), which is an optimized projection of single-path code that
captures the control-flow behavior of the code.

The entries of the RPT control the behavior of the prefetcher. They contain addresses
at which the prefetcher should switch between sequential and non-sequential prefetching.
Figure 1 shows the generation of the RPT. It begins with obtaining the execution trace of
the single-path code. We use the Patmos simulator to export the program counter values
during a program run. We extract the start addresses of the functions from the symbol table
of the executable. The trace analyzer uses the trace and the start addresses to produce a
dynamic control-flow graph of the single-path function, where nodes are addresses of single
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Figure 1 Generation of the Reference Prediction Table (RPT).

instructions. The trace analyzer identifies call sites, loops, loop nests, and loop iteration
counts. The RPT creator then creates entries containing an address that shall trigger a
change in the behavior of the prefetcher, a destination where to continue prefetching, and
additional information depending on the entry type.

Generation of the RPT is based on a form of dynamic program analysis, without instru-
mentation of the original program. However, the extracted instruction trace is invariable
regardless of the program inputs because of the single-path code. Also, in contrast to
trace-based and profile-guided optimization, the analysis results are not directed back to the
compiler. Instead, the execution is optimized by means of hardware in form of the specialized
prefetcher.

5 Evaluation

We evaluate the program performance of single-path code with different caching methods.
For the comparison, we use the Patmos processor. We configure Patmos for the Altera
DE2-115 FPGA board, which means that the main memory is a 16-bit SRAM. This memory
results in 21 clock cycles for a burst of 4 32-bit words to fill or spill a 16-byte cache line. All
standard caches have the line size of the burst length, 16 bytes. We configure the instruction
or method cache to be 8 KB large and the method cache to cache up to 16 functions. The
data cache is 4 KB and the stack cache 2 KB. We use hardware simulation to get cycle
accurate measurements.

For the evaluation, we use the TACLeBench benchmark collection [6] in version 1.9. We
have added an attribute to the benchmarks’ main function to avoid that it is inlined by the
compiler. Otherwise we did not touch the source of TACLeBench. This main function is also
the root function for the single-path code generation. We measure the execution time of the
whole program, including initialization and result comparison code, in clock cycles.

We used a subset of the benchmarks. The variation of the execution time of the benchmarks
is high, i.e., between hundreds and a billion clock cycles. For practical reasons, we did not
use the long running benchmarks, as cycle accurate hardware simulation is time consuming.1
However, a large execution time does not necessarily mean that those benchmarks would
have a larger memory foot print. Furthermore, we dropped benchmarks where we cannot
generate single-path code, e.g., recursive benchmarks. Also, we removed two outliers (ludcmp

1 The simulation of the remaining benchmarks, just for a single cache size configuration, still takes 6–8
hours on a contemporary notebook.
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Figure 2 Relative average-case performance comparing the method cache with a standard cache
on normal programs

and minver) as their results showed improvements of factors 3 to 4 for the method cache
compared to a standard instruction cache.

All the following figures show measured performance improvements, where a bigger
number means a better result. The figures show relative performance as one execution time
scaled by the other execution time. That means a number larger than 1 is an improvement,
and a number less than 1 is a regression. E.g., when comparing the method cache with
the standard cache, the figure shows how much better (or worse) the configuration of the
method cache is compared with the standard cache. For this example, the relation is the
execution time of the benchmark with the standard cache divided by the execution time of
the benchmark with the method cache (as a shorter execution time is better).

5.1 Baseline
As a baseline, we show the performance difference between using a method cache and a
direct mapped instruction cache on normal compiled code. Figure 2 shows the execution
time relation between those two configurations (normalized to the execution time with the
standard cache). The geometric mean of the comparison is 0.88, which means that on
average the configuration with the direct mapped instruction cache performs better. Those
measurements are average case measurements and cannot be an indication of WCET analysis
bounds. In these average case measurements, we see that some benchmarks perform equally
for the two cache configurations. We assume those cases are when the benchmark fits entirely
into the cache. Several benchmarks perform better with a normal instruction cache than
with the method cache. However, this is an average case measurement and the method cache
was designed to simplify WCET analysis.

5.2 Single-Path Comparison and Prefetching
Figure 3 shows the performance comparison between a method cache and a standard cache
with single-path generated code. The figure is now more diverse than the average-case figure.
Some benchmarks gain and some lose when using a method cache. There is no clear winner.
The geometric mean of the comparison is 0.96, which means that on average the standard
cache configuration performs slightly better.
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Figure 3 Relative single-path performance comparing the method cache with a standard cache
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Figure 4 Relative single-path performance comparing the method cache with a prefetching cache

Figure 4 show the performance comparison between a method cache and an instruction
cache that includes the prefetching unit. The results are similar to the results in Figure 3.
Some benchmarks gain a little bit with the prefetching unit. The geometric mean of the
comparison is 0.94. We assume that most benchmarks are almost fitting into the cache and
leaving not enough room for improvement by prefetching. It has been shown that smaller
caches benefit most from the prefetcher [3].

5.3 Associativity

Figure 5 shows the comparison of a 2-way cache with LRU replacement with a direct mapped
instruction cache. Originally we assumed that a direct mapped cache is a better fit for
single-path code as is avoids cache thrashing on loops that are larger than the cache. However,
we see in the figure that some benchmarks benefit from a higher associativity. Only statemate
performs better with a direct mapped cache. Therefore, we deduct that the 4 KB of one way
is large enough for the larger loops in the benchmarks. The geometric mean of the comparison
is 1.014, which means that on average the configuration with the 2-way instruction cache
performs slightly better than the configuration with the direct mapped cache.
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Figure 5 Relative single-path performance comparing a 2-way cache with a direct mapped cache
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Figure 6 Benchmark dynamic sizes (instruction memory footprint)

5.4 Benchmark Sizes

To better understand the benchmark results, we measure the instruction memory footprint
of the benchmarks. We collect actual runtime data of which code is executed. We trace
the execution of a benchmark with the Patmos simulator and collect which functions are
executed. We extract the function sizes from the executable. As single-path code executes the
whole function, we simply add all sizes of the executed functions to retrieve the instruction
memory footprint. We exclude startup and exit code.

Figure 6 shows the memory footprint of the benchmarks. We can see three typical sizes
of benchmarks: (1) very small benchmarks, such as binarysearch or duff where the memory
footprint is less than 1 KB, (2) medium sized benchmarks with a memory footprint of 4–5 KB,
and (3) larger benchmarks with a memory footprint of around 10 KB. The largest benchmark
is lms with 14.7 KB. These numbers do not include any startup or exit code executed, which
by itself is 7048 bytes. That means for the small benchmarks the startup and exit code
dominates the memory footprint.

With our standard configuration of 8 KB instruction cache, 23 out of the 30 benchmarks
will fit into the cache (excluding startup and exit code). This means that many of the
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Figure 7 Relative single-path performance comparing the method cache with a standard cache
(2 KB size)

TACLeBench benchmarks are too small for the evaluation of different instruction caches.
Therefore, we explore artificial small caches in the following subsection.

5.5 Small Caches
For further experiments we reduce the size of the instruction and method cache to just 2 KB,
a very small size for current embedded processors. Figure 7 compares the method cache with
the direct mapped instruction cache. For this evaluation we leave the compiler parameter
preferred subfunction size at the default value of 256. The geometric mean of the comparison
is 0.92, which means that on average a direct mapped instruction cache is a slightly better
solution for small caches.

Figure 8 compares a 2-way cache with LRU replacement with a direct mapped instruction
cache. Compared to Figure 5 we see different benchmarks benefitting from associativity.
Furthermore, with the larger cache only a single benchmark (statemate) performed worse with
the 2-way cache. For the small configuration, several benchmarks perform worse with a 2-way
set associative cache. Therefore, for small caches there is no clear winner when comparing a
direct mapped and a 2-way set associative instruction cache. The geometric mean of the
comparison is 1.05, which means that on average a 2-way set associative instruction cache is
a slightly better solution than a direct mapped instruction cache for small cache sizes.

5.6 Discussion
Single-path code has different characteristics than normal code. We see some of the different
characteristics when comparing different caching methods. The method cache, which works
not so well in the average-case, is a better fit when using single-path code. Prefetching with
a standard cache provides some benefit.

As we see in the results, there is no clear winner for all benchmarks. Therefore, if we use
an FPGA as execution platform, we can select an application specific caching method. This
is like an application specific instruction set in a processor.

It might also be interesting to compare the different caching methods for single-path code
with either cache locking or allocation in a scratchpad memory (SPM). In earlier work, we
compared two alternatives to a standard instruction cache: an SPM and a method cache [22].
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Figure 8 Relative single-path performance comparing a 2-way cache with a direct mapped cache
(2 KB size)

The comparison considers the true WCET and the estimated WCET bound. We found that
a method cache is preferable to an SPM for the true WCET. However, if WCET bounds
are derived by analysis, the WCET bounds for an instruction SPM are often lower than the
bounds for a method cache. As there is no WCET overestimation in single-path code, it
would be interesting to repeat this comparison with single-path code.

5.7 Reproducing the Results

We think reproducibility is of primary importance in science. As we are working in the
context of an open-source project, it is relative easy to provide pointers and a description
how to reproduce the presented results.

The T-CREST project is open-source and the README2 of the Patmos repository
provides a brief introduction how to setup an Ubuntu installation for T-CREST and how to
build T-CREST from the source. More detailed installation instructions, including setup
on Mac OS X, are available in the Patmos handbook [20]. To simplify the evaluation, we
also provide a VM3 where all needed packages and tools are already preinstalled. However,
that VM is currently used in teaching and does not contain the latest version of T-CREST,
including the scripts for the experiments. Therefore, you need to reinstall and build T-CREST
as described in the README.

We have scripted all experiments and host those scripts in the misc repository of T-
CREST. Details to rerun the experiments are described in a README.4 The Makefile is
setup to run the base experiments and for producing the figures as PDFs. Variations can be
obtained by changing the respective variables.

2 https://github.com/t-crest/patmos
3 http://patmos.compute.dtu.dk/
4 https://github.com/t-crest/patmos-misc/tree/master/experiments/cache_prefetch_lock/
wcet2017

https://github.com/t-crest/patmos
http://patmos.compute.dtu.dk/
https://github.com/t-crest/patmos-misc/tree/master/experiments/cache_prefetch_lock/wcet2017
https://github.com/t-crest/patmos-misc/tree/master/experiments/cache_prefetch_lock/wcet2017


M. Schoeberl, B. Cilku, D. Prokesch, P. Puschner, 2:11

6 Conclusion

In this paper, we compared different caching methods for single-path code. We found that
the method cache, which performs not so well in the average case, shows an improvement
on some benchmarks when compared to a standard instruction cache. With small cache
configurations the best solution is in most cases a set associative instruction cache. When we
use an FPGA as execution platform we have the freedom to choose the best caching solution
for each individual application.
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