
An SDRAM Controller for Real-Time Systems
Edgar Lakis, Martin Schoeberl

Department of Applied Mathematics and Computer Science
Technical University of Denmark

Email: edgar.lakis@gmail.com, masca@imm.dtu.dk

Abstract—For real-time systems we need to statically deter-
mine worst-case execution times (WCET) of tasks to proof the
schedulability of the system. To enable static WCET analysis, the
platform needs to be time-predictable. The platform includes the
processor, the caches, the memory system, the operating system,
and the application software itself. All those components need to
be timing analyzable.

Current computers use DRAM as a cost effective main
memory. However, these DRAM chips have timing requirements
that depend on former accesses and also need to be refreshed to
retain their content. Standard memory controllers for DRAM
memories are optimized to provide maximum bandwidth or
throughput at the cost of variable latency for individual memory
accesses. In this paper we present an SDRAM controller for real-
time systems. The controller is optimized for the worst case and
constant latency to provide a base of the memory hierarchy for
time-predictable systems.

I. INTRODUCTION

The use of modern, conventional architectures in real-time
systems (RTS) requires complex analysis and suffers from high
resource over-allocation, needed to cover uncertainties stem-
ming from employed speculative, average-case optimizations.
The design of time-predictable, RTS optimized architectures
that allow easy timing analysis and tight timing guaranties is
an active research topic [7], [8], [19].

The goal of this paper is to develop a time-predictable
SDRAM controller for the T-CREST platform.1 The T-CREST
project is an ongoing research project supported by the Euro-
pean Union’s 7th Framework Programme, aiming to develop a
homogeneous time-predictable multi-processor platform. The
variable SDRAM access latencies pose some challenges for
its effective use in RTS. The many-core T-CREST platform
creates a new context for rethinking the previous results and
finding new solutions for external memory access.

We implemented a working prototype of a SDR (Single
Data Rate) SDRAM controller and integrated it with a pro-
cessor. We evaluate the controller by comparing it against a
series of other SDRAM controllers available for FPGAs. The
strict optimization for the worst-case results also in a simple
design that consumes less hardware resources than controllers
that implement average-case optimizations. Furthermore, the
controller can be clocked higher then the available single data
rate SDRAM chips and is therefore not a bottleneck of the
maximum operation frequency.

1Time-predictable Multi-Core Architecture for Embedded Systems
(T-CREST), see http://www.t-crest.org/

The paper is organized as follows: The following Section
presents related work in the area of SDRAM controllers
for real-time systems and approaches to handle the DRAM
refresh. Section III gives background information on SDRAM
memories. We present the design of the time-predictable
SDRAM controller in Section IV and show the evaluation
results in Section V. Section VI concludes the paper

II. RELATED WORK

Akesson et al. proposes the predictable controller called
Predator [1], [2]. To improve data bus utilization, the large
memory transfers are pipelined through bank interleaving with
automatic precharge after each access (i.e., closed page pol-
icy). The controller uses a hybrid approach between the static
SDRAM command scheduling, which is good for providing
timing guaranties, and the dynamic command scheduling,
which provides better average-case memory bandwidth utiliza-
tion. The elementary operation size is fixed and the sequences
of correctly interleaved SDRAM commands to perform a
read or write of elementary block are precomputed at design.
The patterns and their compositions are analyzed at design
time, to derive worst-case response times (WCRT) for each
memory operation. The refresh is handled by including it in
the WCRT of each memory operation, but accounting for the
refresh period for transfers of larger sizes. To allow a better
average-case performance, the memory requests are translated
dynamically into sequences of static patterns that are executed
by the configurable SDRAM command generator. For hard-RT
tasks all the responses are delayed to their worst-case latency
to provide isolation between different requestors.

Paolieri et al. describe the Analyzable Memory Controller
(AMC) [14] that was part of MERASA project [21] for pre-
dictable multi-core architectures. The bank interleaved com-
mand sequences are used as in the Predator. Fine-grained
round-robin arbitration is used for hard-RT tasks. They get
higher priority than non-HRT tasks. The WCRT is calculated
by using the maximum possible time needed for a single
transfer multiplied by the number of possible colliding re-
questers (i.e. one pending non-HRT task and all other hard-RT
tasks). Using the single maximum transfer estimate increases
the WCRT beyond the value that is possible in the worst
case. For example, the worst-case command is usually a write
invoked after a read. But it is impossible to have N write-
after-read switches in a sequence of N transfers. The same
authors propose improvements of the AMC [13]. They account

http://www.t-crest.org/


for maximum possible direction switches and additionally
allow preempting the non-HRT transfer at the bank boundary,
saving few additional latency cycles. The measurement based
worst-case execution time (WCET) estimates for the tasks are
used and refresh is handled by synchronizing the start of the
task with the refresh operation, to have refresh interference
incorporated into WCET.

Reineke et al. describe the SDRAM controller for the ARM
based precision timed architecture (PTARM) processor [15].
The processor implements a four thread-interleaved pipeline,
and a separate bank is assigned for each thread, thus conflicts
are avoided. Because this privatization removes the concept
of a shared memory, PTARM threads use the on-chip memory
for shared data. The refresh is performed manually. Because of
their tight integration with the interleaved pipeline, they exploit
some properties of the architecture while issuing refresh. The
refresh is deferred to the end of the read operation where it
does not incur additional cost, because the pipeline cannot use
two consecutive read slots. For larger memory transfers (DMA
transfers to/from the scratchpad) they account for maximal
possible interference from refresh.

Atanassov and Puschner [5] described a problem with re-
fresh incorporation into WCET of the task without considering
each transfer. They showed, that even though the WCET
augmented with the possible refresh interference is safe, the
actual WCET path of the program might be different. This
does not seem to be a problem in practice, if well behaved
architecture without timing anomalies is used.

Bhat and Mueller propose grouping the refresh operations
together and executing them in a separate task [6]. This
eliminates refresh interference uncertainty, because the refresh
interference can be handled by the schedulability analysis. The
refresh operation does not have to be pessimistically incorpo-
rated into the WCRT of each memory operation. Unfortunately
the authors did not mention that there are strong limitations
on burst refreshes in later generations of SDRAM memories.

III. SDRAM BACKGROUND

This section provides the background on Dynamic Random
Access Memory (DRAM). In this work, the focus is on
Synchronous DRAM (SDRAM), which has been the most
prevalent volatile off-chip memory for more than a decade. It
is called synchronous to distinguish it from the asynchronous
DRAM interfaces that were dominant at the time the standard
was created. The JEDEC Solid State Technology Association
prepares the standard and several generations of the standards
have evolved over the years.

A. Structure and Operation

The DRAM is called dynamic because the value of each
bit is represented as a charge of a small capacitor, which
discharges due to leakage over time. The capacitors must be
refreshed periodically to preserve the valid value. In addition
to the capacitor, the bit cell contains a pass transistor, which
is enabled when the value is read or written. The bits are not
accessible individually; instead, they are organized in arrays

of rows×columns. A row must be prepared before a bit of
relevant column can be read. This requires two steps: (1)
precharge – the bit-lines (columns) are charged to midpoint
voltage between logical 0 and 1; (2) activate – the capacitors
of the single row are connected to the bit-lines. During the
activation the charge of the capacitor creates a small voltage
swing on the bit-line, which is recovered to full voltage by
the sense amplifier. Both steps contribute significantly to the
latency of the DRAM access, because the bit-line runs over the
thousands of rows and has huge capacitance. However,, once
the row has been activated its columns can be read/written
with lower latency.

To increase the throughput, a memory device contains
several independent arrays called banks. The data can be
transfered from one bank while other banks are precharging or
activating. Similarly, few devices can be connected to the same
SDRAM interface and enabled by chip-select. This address
dimension is called rank.

B. Signaling

The controller accesses the memory device through parallel
buses, i.e., each signal bit is sent independently at the same
clock cycle. The data bus and the control/address bus are
independent; this allows sending commands to a different bank
during the longer data transfer cycles.

There are no handshaking or acknowledge signals in the
interface; instead, the controller obeys the implicit timing
parameters of the memory chip to assure proper operation.
The timing parameters are presented in Section III-D.

C. Commands

The SDRAM has a synchronous interface and is operated
by a predefined set of commands. The four main commands
are precharge, activate, read and write. The other commands
are: auto refresh which is discussed in separate subsection;
mode register set configures the memory; and burst stop,
which is redundant, and has been removed starting from DDR2
generation.

Precharge (bank or ALL) charges the bit-lines of the
specified or all banks to the reference voltage, to enable
data recovery by the sense amplifiers during subsequent row
activation. The precharge requires tRP time before the activate
command can be issued.

Activate (bank, row) activates the row of the specified bank.
The data of the activated row will be available for read/write
after tRCD time, but restoration of the values into the bit
capacitors usually requires more time, specified as tRAS . The
bank can not be precharged before that.

Read (bank, column, optional auto-precharge) requests to
read a number of words from the active row. The data must
be sampled from the data bus after tCAC cycles. The length
of the transfer is configured by a mode register set command.
The device will issue the precharge command automatically
at earliest allowed time if auto-precharge is enabled for this
read command. In addition to tRCD mentioned in activate
command, there might be a constraint on minimal separation



D_nD_iD_1DATA

ACTReadACTCMD

CLK

Di-1 Dn-1

tRAS

tRC

tRP

tRCD tCAC tPQL

PRE

Fig. 1. SDRAM (SDR) read related timing parameters.

D_nD_1DATA

ACTWriteACTCMD

CLK

Dn-1

tDPL

tDALtRCD

PRE

Fig. 2. SDRAM (SDR) write related timing parameters (the tRAS , tRP

and tRC are not shown).

between consecutive read and write commands specified as
tCCD.

Write (bank, column, optional auto-precharge) requests to
write a number of words into the active row. The controller
of an SDR SDRAM starts the data burst together with the
command. A mode register set command controls the burst
length. The length is either one word or the value of the
read length. The notes regarding the tCCD, tRCD and auto-
precharge of read apply to write as well. Additional constraints
(tWTR and tWR) are required to allow the last data word to
be stored properly.

D. Timing Parameters

The timing parameters of the SDRAM device need to be
obeyed by the controller. The parameters can be divided into
two groups. The first group contains the signal integrity re-
quirements that are present when interfacing any synchronous
component. Those are setup/hold requirements for the inputs
with respect to clock/strobe signals. The clock-to-output tim-
ing are provided for all the outputs and the timing of the
tristate buffers needed for bidirectional signals. The other
group contains protocol level requirements which describe the
separation between commands/data on the SDRAM bus. For
example, the sharing of the I/O and control hardware by the
banks requires delays between the commands even if they are
directed to different banks. Also, the single bidirectional data
bus requires extra delay when the direction of the transfer is
changed. The extra separation might also be required when
getting data from the different ranks [11].

The Figure 1 and Figure 2 show the timing requirements
for read and write transactions. The precharge command is
issued explicitly to show its place in the transaction. The action
could also be scheduled for automatic execution by enabling
the auto-precharge during read and write commands.

E. Performing Refresh
There is some flexibility in performing refresh. The methods

of invoking a refresh are listed first, followed by the possible
ways of organizing them in time.

Activating a row has a side effect of refreshing its capacitors
because the sense amplifiers restore the charge. Activation is
performed for a row of a single bank, so in case of refresh
by activate all the banks have to be refreshed separately.
Additionally, the controller/software needs to keep track of the
row counters. Auto refresh2 is triggered by issuing a dedicated
refresh command. The command does not specify the address
of the row; instead a counter inside the memory chip points to
the row. The same row is updated in all the banks in parallel,
and the counter is incremented to point to the row for the next
refresh operation. Self refresh is an autonomous refresh mode,
which can be performed by the SDRAM chip during longer
inactivity periods.

There are two strategies regarding the refresh invocation of
different rows: distributed and burst refresh. The distributed
refresh is commonly used. The refresh operations are spread
out evenly in time. Alternatively, the burst refresh can be
used. The longer period without refresh is followed by several
refresh operations invoked one after another.

The first generation SDRAM (Single Data Rate) devices
usually allow performing the refresh command bursts of
arbitrary length. Thus refresh actions for all the rows can be
grouped together and invoked at a convenient time to avoid
refresh interference with normal operation. The later, Double
Data Rate generations are less flexible. The maximum of 8
auto refresh operations can be postponed or pulled (issued in
advance), but not both. In another words, the maximum of
9 × tREFI interval between surrounding auto refresh com-
mands is allowed [12].

F. Refresh Timing
The SDR SDRAM describes refresh requirement in terms of

retention time tREF for each cell (which is the same as each
row). The specifications of subsequent generations use tREFI

parameter, which is longest period between two consecutive
refreshes operations. For simple memories—which perform
a refresh of single row during one operation—the relation
between the two parameters is tREFI = tREF /Nrows. But,
bigger devices of later generations refresh multiple rows
during the single auto refresh operation; hence the tREFI

parameter is given in the specifications. While the time needed
by the auto refresh operation is given in tRFC parameter. It
is usually slightly greater than row cycle time (tRC) for very
small devices, but can be several times greater for the larger
devices.

At a higher temperatures the leakage current is larger
and the retention time is smaller. The specifications usually
requires doubling the refresh rate if the temperature is higher
than 85◦C. This slightly reduces the memory throughput, but
does not complicate the controller design.

2Also known as CBR (CAS Before RAS) from the times of non-
synchronous DRAM interface



TABLE I
RELEVANT SDRAM(SDR) TIMING PARAMETERS

7 ns clk 8 ns clk 10 ns clk Min Max
(cycles) (cycles) (cycles) (ns) (ns)

Clock Frequency (MHz) 143 125 100
tCAC CAS Latency 3 3 2
tRRD Row to Row Delay 2 2 2 14
tRCD Row to Column Delay 3 3 2 20
tRAS Row Access Strobe 7 6 5 45 120K
tRC Row Cycle 10 9 7 67.5
tRP Row Precharge 3 3 2 20
tCCD Column Command Delay Time 1 1 1
tDPL Input Data to Precharge 2 2 2 14
tDAL Input Data to Activate 5 5(4) 4 35
tRBD Burst Stop to High Impedance tCAC tCAC tCAC

tWBD Burst Stop to Input in Invalid 0 0 0
tPQL Last Output to Auto-Precharge Start 1-tCAC 1-tCAC 1-tCAC

tQMD DQM to Output 2 2 2
tDMD DQM to Input 0 0 0
tMRD Mode Register Program Time 3(2) 2 2 15
tREF Refresh Cycle (8192 rows) 64M

TABLE II
TIMING REQUIREMENTS FOR VALID SIGNALING IN NS

Symbol Parameter Min Max
tAC2 Access Time from CLK (CL=2) 6.5
tAC3 Access Time from CLK (CL=3) 5.4
tOH2 Output Data Hold Time (CL=2) 2.7
tOH3 Output Data Hold Time (CL=3) 3
tHZ CLK to High Impedance Time 2.7 5.4
tLZ CLK to Low Impedance Time 0 0
tSU Input Setup Time 2
tH Input Hold Time 1

IV. A TIME-PREDICTABLE MEMORY CONTROLLER

This section provides information on the design, implemen-
tation, integration, and testing of the SDR (Single Data Rate)
SDRAM controller. Section V presents the evaluation of the
controller.

A. Analysis

The DE2-70 FPGA board, used for the project, contains two
IS42S16160B-7TLI SDRAM chips [10]. They are organized
as 16-bit words in 4 banks of 8192 rows by 512 columns. The
chips are speed grade 7, so according to the specification they
can be clocked up to 143 MHz (with CAS latency (CL) of 3) or
100 MHz (with CL=2). Table I lists the SDRAM parameters
for the chip, while Table II list the parameters relevant for
signal integrity.

1) Separation Between Transactions: The minimum num-
ber of cycles needed between two operations are summarized
in Table III. They depend on the type of the operation as well
as the banks the transactions use.

For random addresses the worst-case is when consecutive
accesses happen to different rows of the same bank (top part
of the table). Because we are interested in optimizing the
worst-case performance, we use the closed page policy, as
it assures the smaller worst case latency. The read transaction
requires: row activation, CAS latency, burst transfer cycles,

and precharge. In this case the precharge can be overlapped
with last few data transfers cycles; the negative tPQL term in
the equation accounts for this. The burst transfer cycles are
BL − 1, as tCAC already contains the first cycle of the data
transfer (see Figure 1). The max() is used to satisfy the tRAS

for smaller BL, and the whole sum must always be at least
tRC . The write transaction requires: precharge, activate, burst
transfer, and write recovery cycles. BL−1 is used, because the
transfer starts at the cycle of the write command (see Figure
2). Again, the whole sum must be at least tRC .

The length of the burst and two timing parameters affect
the separation of operations on different banks: the separation
between activates (tRRD) and the read or write commands
(tCCD). For SDR the smallest meaningful burst length for
interleaving is 2, because each operation requires at least two
command bus cycles (activate and read or write). Because
tCCD and tRRD are usually not larger than 2 clock cycles,
the separation becomes BL. This means that two consecutive
memory operations of the same kind (read or write), can result
in uninterrupted transfer on the data bus.

What remains to be considered, are the separation between
operations of different directions. The read after write is
constrained by tRTW , but for SDR memories this is one clock
cycle, which means that commands can be issued in consecu-
tive cycles. Because the write data transfer starts at the same
cycle as the write command, the minimum separation between
the commands is BL as in the previous case. However, this
creates tCAC idle cycles on the data bus. The read command
is issued in the next cycle after the last data is written, but the
read data comes a few cycles later. The write after read needs
an extra tCAC + 1 cycles between commands. The tCAC is
needed to let the read data to finish, and 1 extra idle cycle
that is needed to allow the tristate buffers of the SDRAM to
become high impedance before the controller starts driving the
data onto the bus.

The command separation limits the maximum bandwidth
available for random accesses. Table IV shows lengths of



TABLE III
MINIMAL SEPARATION BETWEEN SDRAM(SDR) TRANSACTIONS IN CLOCK CYCLES. THE SUBSCRIPTn−1 DENOTES PREVIOUS OPERATION, AND Bn−1

THE BANK IT USED. BL DENOTES BURST LENGTH, AND THE TIMING PARAMETERS ARE ROUNDED TO FULL CYCLES.

Readn−1(bn−1) Writen−1(bn−1)
Readn(bn=bn−1) max(tRC , max(tRC ,
Writen(bn=bn−1) tRCD + tCAC + (BL− 1) + tPQL + tRP ) tRCD + (BL− 1) + tDPL + tRP )
Readn(bn!=bn−1) max(tRRD, tCCD, BL) max(tRRD, tCCD, BL)
Writen(bn!=bn−1) max(tRRD, tCCD, BL+ tCAC + 1) max(tRRD, tCCD, BL)

TABLE IV
THE MAXIMUM GUARANTEED PERCENTAGE OF DATA TRANSFER CYCLES

FOR DIFFERENT BURST LENGTHS. THE TIMING PARAMETERS ARE FOR 100
MHZ OPERATION OF THE SDR MEMORY ON DE2-70 BOARD.

BL CyclesRead CyclesWrite BwRead BwWrite

1 7 7 14.28% 14.28%
2 7 7 28.57% 28.57%
4 8 9 50% 44.44%
8 12 13 66.66% 61.53%

2*2 8 8 50% 50%
2*4 8+3 8+3 72.72% 72.72%

pair of 2*4 8+3+8 8+3+8 84.21% 84.21%

read and write bursts in cycles and the resulting bandwidth
in percent of the theoretical maximum bandwidth. The top
part of the table lists the numbers for the simple transactions
calculated according the Table III formulas. The bottom of
the table contains 3 examples of transactions interleaved over
two banks. The efficiency is increased, because precharge and
activation of one bank is overlapped with transfers by the
other bank. The 8 word transfers interleaved over 2 banks
(2*4 bursts) allow to fully utilize the data bus, but 3 cycles
gap is needed if the transfer direction is changed. The last
row in the table accounts for the fact that at most one change
in direction is needed for two transfers. The estimates in the
table do not account for cycles wasted for refresh and will be
lower. The efficiency will also be lower if higher frequency
operation is used.

2) Performing Refresh: The SDRAM refresh operation
interferes with regular read/write operations. Even though
the refresh is required to be invoked relatively infrequently,
its asynchronous nature can lead to memory access latency
overestimation. There are three options to handle refresh. (1)
Refresh operations can be grouped together and analyzed at
schedulability analysis level [6]. (2) They can be invoked
individually at a known time, for example in a dedicated TDM
slot of a CMP system. (3) The refresh is a higher priority
periodic operation invoked by the controller and increases the
WCRT of each memory accesses.

The first option is only effective for the SDR generation
of SDRAMs. Newer generations limits the grouping to only
8 refresh operations. The second option is constrained for
larger density devices, where refresh requires much more
time than the regular operations. The third option results in
a conservative WCET if the refresh interference is pessimisti-
cally incorporated into each request. However, tighter WCET
bounds are possible by calculating the refresh interference for
the whole execution of the task and not for each memory

request [5]. The architecture needs to be free from timing
anomalies for the approach to be valid.

B. Design

To simplify the first design we have decided to the build
controller using simple, non-interleaved transactions. The sim-
ple transaction controller issues the same sequence of com-
mands for different configurations. This way it can be made
configurable, where the target frequency and burst length are
specified as generic parameters and all the wait cycles are
calculated automatically by the synthesis software.

The controller can later be extended to use bank interleav-
ing. This would potentially require different state machines for
different configurations. However, the command patterns can
be very regular resulting in a simple design.

After reset, the controller performs the initialization se-
quence. The memory access requests are translated to prede-
fined sequence of actions. The single Mealy type state machine
is used to control the sequencing. The Mealy type allows
saving one clock cycle of latency on the requester’s interface.
This also works well with the SDRAM interface signals that
have to be registered in IO cells to improve the timing.

We decided to use a non-proprietary interface standard to
allow the reuse of the controller. The Open Core Protocol
(OCP) interface is chosen. The out of band signals defined in
the OCP protocol are used for manual triggering of refresh (if
the option of automatic refresh is disabled).

C. Implementation

The implementation has following features:
• It is a simple RTL state-machine in one entity. The result

is comprehensible and easily maintainable code, which
is synthesized into a reasonable implementation by a
standard vendor tool chain (see Section V-D)

• The code is meant to be portable. Therefore, we avoided
vendor specific components or design patterns. The only
vendor specific component is the PLL/DCM, which is
necessary for higher clock frequencies, but it is instanti-
ated externally to the controller. Also the use of IO-Block
registers has to be specified in a vendor specific way. For
Altera the signal attributes are used, but a .qsf file can be
used as well. For Xilinx, this can be specified on a per
signal basis in the constraint file.

• All the possible parameters are configurable through
generics: (1) the signal widths for the requester in-
terface (address/data) and the SDRAM interface (chip-
selects/banks/address); (2) the address mapping from a



linear address of the requester to rank, bank, row and
column; (3) the burst size supported by the SDRAM
specification; (4) the frequency, access latency, refresh
period, and other timing parameters from the memory
chip specification. The timing parameters are specified
using the VHDL time constants and are translated into
required number of clock cycles according the user
specified clock period automatically.

• Registers in IO-Blocks allow better setup times and clock
to output delay.

• Wait states and counters insure the correct timing be-
tween SDRAM bus commands. The binary counters are
sufficient for the needed wait ranges.

A 3 ns skew is introduced between the SDRAM clock and
the clock used for the controllers state-machine, to adjust the
clock edge with the data for the same setup/hold slack for both
read and write operations as described in [3].

D. Integration

This section describes the integration of the controller with
two processors for RTS.

1) Integration with the Patmos Processor: At the time of
this writing the Patmos processor [20] from the T-CREST plat-
form was still under development. The support for caches was
not yet finished and the processors pipeline used simplified
accesses to local memories without stalling. The integration
was performed through a simple, I/O controlled DMA (Direct
Memory Access) like device. The device can be asked to
perform external memory transfers with its local buffer. The
single cycle access is provided to the buffer to prevent stalling
the processor pipeline. Instead, the processor polls the device
status to find out if the memory transfer has been completed.

2) Integration with the JOP Processor: JOP is a time-
predictable processor for real-time Java applications [17]. The
JOP processor accesses the memory and I/O devices through
the SimpCon [16] interface. The interface is optimized for the
processor’s pipeline. The processor drives the output signals
for one clock cycle and waits until the slave completes the
transaction. The interface allows the slave to perform the
early completion acknowledgements, by providing the master
a hint on how many wait cycles are needed before the data is
ready. A 2-bit rdy cnt signal is used for this purpose, where
the maximum value of 3 has a special meaning of unknown
number of cycles. The slave is required to keep the data value
and the acknowledgement after the transaction is complete.

A small VHDL entity was created to adapt the controller
to the SimpCon interface. Non-optimized adaptation is used,
without the early acknowledgement and burst length of 1.
When the transaction is issued the adapter sets the SimpCon
rdy cnt signal to 3 (busy with unknown completion time).
The command, address, and write data signals are also regis-
tered to keep them stable as required by the controller. When
the controller acknowledges the data, the rdy cnt register is
reset to 0 (ready, i.e. zero wait cycles left); and the data value
is registered.

The inefficiency of not using the SimpCon early acknowl-
edgement can easily be solved, as the controller keeps track
of when the data will be available. This information can
be used for rdy cnt. Enabling burst transfers needs exten-
sions to SimpCon interface and possible modification of the
controller. The pipelined transactions supported by SimpCon
could be used. Additional signals are needed to denote when
the transaction corresponding to the same burst are finished.
The controller could then use this information to start the bank
precharge. In addition the controller would need to be modified
to support pipelined transactions.

E. Testing

We used two testing methods: a VHDL testbench for con-
troller simulation and test programs for checking the controller
operation in the FPGA system.

1) VHDL Testbench: The testbench (TB) for RTL level
simulation of the controller tests its behavior in isolation. The
TB was also useful for locating the source of flaws, because
the complete observability of the controller’s state is available
during the simulation.

The TB performs writes and reads with different addressees
and checks that the read data matches the one written to that
location. The mismatched entries are reported. There are also
flags controlling the verbosity level of the reporting of the
transactions on both the controller and processor interfaces.
The reporting allows running the TB in batch mode, for simple
check of correctness without the need to examine the signal
waveforms.

The TB does not try to test all the configurations sup-
ported by the controller, because there are many. Instead, one
configuration is tested, which is selected by specifying the
configuration constants. The refresh period was configured to
a small value to check the refresh logic interference with
the regular transactions. The controller’s conformance with
the SDRAM timing constraint is verified with the SDRAM
simulation model.

2) Patmos Test Programs: The synthesized version of the
controller was tested on the FPGA configured with a system
composed of a Patmos processor, the memory controller
accessible through an I/O controlled DMA-like device (see
Section IV-D1), and serial port for communication with the PC
over an RS-323 cable. The test programs were written in C. At
the time of the writing only C programs with limited features
could be executed successfully by the available infrastructure.
Therefore, two simple test programs were written.

The first program uses only a tiny part of the memory. The
memory mapping of the I/O device is checked. Next some
strings are written to the memory, read back for comparison,
and are output to the serial port for examination. The second
program tests the whole addressable memory range, but does
not give hints on what went wrong. Distinct values are written
into each memory location. Before the read-back is performed,
the program waits for any input from the serial terminal. This
is used to check if the SDRAM is refreshed to preserve the



correct values. The program reports the error when it occurs
as well as the number of all errors discovered at the end.

3) JOP Hello World Test: The non-exhaustive test was used
to check the JOP integration (Section IV-D2). The JOP system
with the SDRAM as the only external memory was configured
on FPGA. Than the “Hello World” program was transmitted to
the FPGA over the RS-323 cable. The bootloader received the
program and wrote it into the external memory and executed
it from there.

V. CONTROLLER EVALUATION

In this section we present the synthesis results of the
controller. We compare our controller with three other SDR
SDRAM controllers.

A. Altera SDR SDRAM Reference Design

The Altera reference design for an SDRAM controller is
described in [4]. The controller is coded structurally without
an explicit state machine. Instead the state is distributed into a
number of internal control signals and counters, which control
the multiplexers driving SDRAM signals. The controller is
pipelined, introducing 4 cycles of additional data latency.
The pipeline does not allow multiple outstanding commands
to different banks, i.e., the new command is accepted after
the previous one is completed (except for precharge used to
interrupt the ongoing full-page read or write burst).

The controller provides a low-level interface to the SDRAM.
The user must initialize the SDRAM and must keep track of
data latency cycles (i.e., the controller does not acknowledge
the valid data). The read/write requests to the controller
are translated into pairs of activate and read/write (with auto-
precharge) SDRAM commands. The requests corresponding to
precharge, refresh, and mode register set commands are also
available and are used to control the SDRAM initialization
sequence. Two more requests configure the runtime parameters
of the controller.

B. Xilinx SDRAM Reference Design

The design is described in [22]. The design is almost 14
years old, and one can see that the synthesis tools had different
capabilities and a different hardware description style had to
be used. The controller is coded structurally at a very low-
level. The finite state machine (FSM) uses manually specified
one-hot encoding for the state register. The Xilinx SRL16
primitives (lookup table used as shift register) are manually
instantiated. Each counter is described in a separate entity
and the design consists of 9 entities in total. The design
provides the same functionality as the Altera design, albeit
through a slightly different interface. The controller is run-time
configurable and the user must initialize both the controller
and the SDRAM. The requests are handled as single burst
transaction with auto-precharge. The user must count the
cycles to know when the valid data should be sampled after
read. But the write data is accepted right away and is delayed
internally.

TABLE V
SYNTHESIS RESULTS FOR THE EVALUATED SDR CONTROLLERS. THE

COLUMNS SHOW: CLOCK FREQUENCY IN MHZ, THE OVERALL NUMBER
OF LOGIC-CELLS/SLICES, THE NUMBER OF LOOK-UP-TABLES AND THE

NUMBER OF FLIP-FLOPS

Design Fmax LC LUT FF
(MHz)

Altera 392.77 309 107 284
JOP 207.30 592 457 355
JOPOptimized 249.38 308 174 238
Our 221.39 194 126 129
OurSimpCon 222.42 272 119 211
OurOptimized 349.41 200 127 131
Xilinx Spartan 3 Fmax Slices LUT FF
XilinxS3 116.20 229 165 293
OurS3 117.79 114 147 130

The controller uses a double frequency clock for the
SDRAM interface, and communicates the data with the user
on both edges of the slower clock. The controller seams to be
designed for use in an external chip, because a single 32-bit
inout signal is used for address, datain, dataout and part of
the command encoding. The controller introduces 8 SDRAM
cycles (4 system cycles) of additional data latency during read.

C. JOP SDRAM Controller

The JOP controller [9] was made to enable the access to the
SDRAM from JOP [18] on the Altera DE2 board. The timing
parameters are hardcoded. Differently to the two previously
presented designs, the controller performs SDRAM initializa-
tion automatically. The controller provides a 32-bit SimpCon
[16] interface, but uses a 16-bit wide SDRAM chip. Therefore,
some extra buffers and logic is used for this purpose. Two FSM
are used, one handles the SDRAM command sequence, while
the other interacts with the SimpCon and assembles/splits
the two half-words. The SDRAM address multiplexing is
performed in a separate process.

D. SDRAM Controllers Synthesis Results

The synthesis results for three designs mentioned in pre-
vious sections and our design are presented in Table V. The
top part shows the numbers for the Altera Cyclone II target
(EP2C70F896C6). The bottom part list numbers for a Xilinx
Spartan 3 (xc3s5000-5fg900), because Xilinx reference design
is not portable. The table has two entries for the JOP design.
The numbers for the original design (JOP) were suspiciously
large, and we were able to fix the problem by constraining
the ranges of the counters (JOPOptimized). The original design
used full range integer types, resulting in the inferring of 32-
bit counters. For the purpose of the JOP comparison we have
also included the numbers (OurSimpCon) of our design adapted
for the use in JOP system (Section IV-D2). Finally the line
OurOptimized represents the design after splitting the increment
and comparison logic of the refresh counter into separate
cycles (by registering the done flag). The initialization counter
was also separated and made free running. The optimization
is not necessary for our application, because the unoptimized
device can run above the required speed. Nevertheless, the



high frequency of Altera design, stimulated us to see how big
the speed gain of the optimization will be.

Comparing the hardware resources, we can see that our
design is the smallest design. The comparison shows that the
performance of our simple behavioral controller description is
reasonable, and also that some speed gains are possible by
simple optimization of critical path (see OurOptimized vs. Our).

The Altera design is clearly optimized for speed, so the high
frequency is not surprising. The design is pipelined and the
control logic is distributed and always depends on just a few
bits. The critical path is on some wide multiplexer used to
initialize a delay counter according the configuration register.

The higher FF count of Altera design results from pipelin-
ing, especially of the 32-bit wide data signal. All the input/out-
puts are also additionally latched, whereas our design expects
the requester to hold the address and data stable. The Xilinx
design uses many FF to register the input and additionally to
store it in a few places, because the address/configuration/data
all use a single bus.

Even though the maximum clock frequency of the Xilinx
and our design are almost the same, the Xilinx controller
supports higher SDRAM frequencies, because the SDRAM
interface is operated with double frequency. The same trick
could probably be applied to speed up our design if needed.
Thought the frequency might decrease because of a possible
introduction of critical path at the shorter period paths.

VI. CONCLUSION

Real-time systems need time-predictable components to
support static WCET analysis. In this paper we presented
an SDRAM controller that provides constant and well-known
access time to the SDRAM memory. The controller is placed
into open source and has been tested with two real-time
platforms: the Java processor JOP and the time-predictable
CMP platform T-CREST.

As future work we consider to explore the possibilities of
performing memory access analysis at schedulability level.
The precision and feasibility of this approach will depend on
the modeling of the task’s memory demand.

Acknowledgment

This work was partially funded under the European Union’s
7th Framework Programme under grant agreement no. 288008:
Time-predictable Multi-Core Architecture for Embedded Sys-
tems (T-CREST).

Source Access

We provide the VHDL code of the controller in open-source
within the T-CREST repository at: https://github.com/t-crest/
sdram

REFERENCES

[1] Benny Akesson. Predictable and Composable System-on-Chip Memory
Controllers. PhD thesis, Eindhoven University of Technology, February
2010.

[2] Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator:
a predictable SDRAM memory controller. In Soonhoi Ha, Kiyoung
Choi, Nikil D. Dutt, and Jürgen Teich, editors, Proceedings of the 5th
International Conference on Hardware/Software Codesign and System
Synthesis, CODES+ISSS 2007, Salzburg, Austria, September 30 - Octo-
ber 3, 2007, pages 251–256. ACM, 2007.

[3] Altera. SDRAM Controller Core, Quartus II Handbook Version 9.1
Volume 5: Embedded Peripherals, v9.1 edition, November 2009.

[4] Altera Corporation. SDR SDRAM Controller White Paper, ver. 1.1
edition, August 2002.

[5] Pavel Atanassov and Peter Puschner. Impact of dram refresh on the
execution time of real-time tasks. In Proc. IEEE International Workshop
on Application of Reliable Computing and Communication, pages 29–
34, Dec. 2001.

[6] Balasubramanya Bhat and Frank Mueller. Making DRAM refresh
predictable. Real-Time Systems, 47(5):430–453, 2011.

[7] Christoph Cullmann, Christian Ferdinand, Gernot Gebhard, Daniel
Grund, Claire Maiza, Jan Reineke, Benoı̂t Triquet, and Reinhard Wil-
helm. Predictability considerations in the design of multi-core embedded
systems. In Proceedings of Embedded Real Time Software and Systems,
May 2010.

[8] Stephen A. Edwards and Edward A. Lee. The case for the precision
timed (PRET) machine. In DAC ’07: Proceedings of the 44th annual
conference on Design automation, pages 264–265, New York, NY, USA,
2007. ACM.

[9] Julian Grahsl. JOP DRAM support for Altera DE2 board (source code),
2012.

[10] Integrated Silicon Solutions, Inc. IS42S16160B – 16Meg×16 256-MBIT
Synchronous DRAM, March 2007.

[11] Bruce L. Jacob, Spencer W. Ng, and David T. Wang. Memory Systems:
Cache, DRAM, Disk. Morgan Kaufmann, 2008.

[12] JEDEC Solid State Technology Association. Double Data Rate DDR
SDRAM Standard, (JESD79F), February 2008.

[13] M. PAOLIERI, E.Q.U.I. NONES, and F.J. CAZORLA. Timing effects
of ddr memory systems in hard real-time multicore architectures: Issues
and solutions.

[14] Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, and Mateo
Valero. An analyzable memory controller for hard real-time CMPs.
Embedded Systems Letters, 1(4):86–90, 2009.

[15] Jan Reineke, Isaac Liu, Hiren D. Patel, Sungjun Kim, and Edward A.
Lee. PRET DRAM controller: bank privatization for predictability
and temporal isolation. In Robert P. Dick and Jan Madsen, editors,
Proceedings of the 9th International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS 2011, part of ESWeek ’11
Seventh Embedded Systems Week, Taipei, Taiwan, 9-14 October, 2011,
pages 99–108. ACM, 2011.

[16] Martin Schoeberl. SimpCon - a simple and efficient SoC interconnect.
In Proceedings of the 15th Austrian Workhop on Microelectronics,
Austrochip 2007, Graz, Austria, October 2007.

[17] Martin Schoeberl. A Java processor architecture for embedded real-time
systems. Journal of Systems Architecture, 54/1–2:265–286, 2008.

[18] Martin Schoeberl. JOP Reference Handbook: Building Embedded
Systems with a Java Processor. Number ISBN 978-1438239699.
CreateSpace, August 2009. Available at http://www.jopdesign.com/doc/
handbook.pdf.

[19] Martin Schoeberl. Time-predictable computer architecture. EURASIP
Journal on Embedded Systems, vol. 2009, Article ID 758480:17 pages,
2009.

[20] Martin Schoeberl, Pascal Schleuniger, Wolfgang Puffitsch, Florian
Brandner, Christian W. Probst, Sven Karlsson, and Tommy Thorn.
Towards a time-predictable dual-issue microprocessor: The Patmos ap-
proach. In First Workshop on Bringing Theory to Practice: Predictability
and Performance in Embedded Systems (PPES 2011), pages 11–20,
Grenoble, France, March 2011.

[21] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange,
E. Quiñones, M. Gerdes, M. Paolieri, and J. Wolf. Merasa: Multi-core
execution of hard real-time applications supporting analysability. Micro,
IEEE, 30(5):66–75, 2010.

[22] Xilinx. Synthesizable High Performance SDRAM Controller, Application
Note XAPP134, v3.1 edition, February 2000.

https://github.com/t-crest/sdram
https://github.com/t-crest/sdram
http://www.jopdesign.com/doc/handbook.pdf
http://www.jopdesign.com/doc/handbook.pdf

