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ABSTRACT
Utilizing a stack cache in a real-time system can aid pre-
dictability by avoiding interference that heap memory traf-
fic causes on the data cache. While loads and stores are
guaranteed cache hits, explicit operations are responsible
for managing the stack cache. The behavior of these op-
erations can be analyzed statically. We present algorithms
that derive worst-case bounds on the latency-inducing op-
erations of the stack cache. Their results can be used by a
static WCET tool. By breaking the analysis down into sub-
problems that solve intra-procedural data-flow analysis and
path searches on the call-graph, the worst-case bounds can
be efficiently yet precisely determined. Our evaluation us-
ing the MiBench benchmark suite shows that only 37% and
21% of potential stack cache operations actually store to and
load from memory, respectively. Analysis times are modest,
on average running between 0.46s and 1.30s per benchmark,
depending on the size of the stack cache.

Categories and Subject Descriptors
F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program analysis; C.3 [Special-
Purpose and Application-Based Systems]: Real-time
and embedded systems

General Terms
Theory, Algorithms, Measurement, Performance

Keywords
Program Analysis, Stack Cache, Real-Time Systems

1. INTRODUCTION
Real-time systems need a time-predictable computer plat-

form to enable static worst-case execution time (WCET)
analysis of the associated software. Caches pose a partic-
ular challenge with regard to WCET analysis, as a poten-
tially huge state space reflecting a long execution history of
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the program has to be tracked. A solution to this prob-
lem is splitting the caches according to access patterns. For
instance, it is recommended to split data and instruction
caches to avoid interference [4]. Data caches can similarly
be split to adapt the caching strategy to the access patterns
of different memory areas [11], e.g., stack and static data.

Stack accesses via a standard data cache are typically hard
to analyze, as the accessed addresses depend on the value
of the stack pointer. The cache analysis thus needs to first
find potential address ranges for the stack pointer, which in-
herently depend on the nesting of function calls and thus re-
quires high levels of context-sensitivity. Having a closer look
at typical usage patterns of stack data, one finds that (1)
data in the stack frame of a function is usually exclusive to
that function and (2) the data in the stack frame is usually
only accessed while the function is active. This suggests a
caching strategy that follows the nesting of function calls
such that the stack frame of the active function is readily
available in the cache. Recent work proposed such a stack
cache using a rather simple ring buffer [1]. Even though
simple, this cache design handles up to 75% of the dynamic
data accesses of embedded benchmarks. In this work, we
explore analysis techniques for this stack cache design.

The stack cache is explicitly controlled by the compiler
(or programmer) using dedicated instructions to reserve and
free space on the stack cache for the stack frames of func-
tions. During a reserve operation the requested space might
exceed the cache’s capacity and cause spilling of (parts of)
the stack cache’s content. If the stack frame of a function
has been spilled to memory it can be reloaded, or filled,
using an ensure operation, e.g., when a function becomes
active after returning from another function. Using these
stack control primitives, a sliding window of cached data is
realized that follows the nesting of function calls and ensures
that all accesses to the stack data of a function are guaran-
teed hits with constant latency, independent of the precise
address of the access and independent of the current value
of the stack pointer. This results in a considerably simpler
analysis model. The task of the stack cache analysis is to
determine the worst-case filling and spilling of the ensure
and reserve primitives by defining two analysis problems.

Both analysis problems depend on the occupancy level of
the stack cache before the respective control primitives. An
interesting observation here is that information on this oc-
cupancy can be pre-computed locally within functions us-
ing the stack cache displacement at function calls, i.e., the
amount of stack data potentially evicted from the stack
cache while executing the call. The analysis problem for



ensures is thus entirely context-insensitive, while the analy-
sis for reserves can be performed on the program’s call graph
– without reanalyzing the instructions within the functions.

The paper is organized as follows: Section 2 provides back-
ground on the stack cache, the program representation for
the analysis, data-flow analysis. The following section de-
scribes the stack cache analysis. Sections 4 and 5 describe
some extensions and applications of the analysis. We eval-
uate our approach before discussing related work and con-
cluding in Section 8.

2. BACKGROUND
In this section, we describe the general functionality of a

stack cache. A detailed description of the implementation
in the Patmos processor [12] can be found in [1].

2.1 Stack Cache
Compared to accessing heap storage, a stack cache enables

accesses within a stack-allocated memory region to complete
with a small and predictable latency. The stack cache rel-
evant load and store operations address values relative to
a base address (stack pointer). Furthermore, the model we
consider herein uses three primitives to manage the stack
cache. These are responsible for reserving space for stack-
allocated data, freeing the same space again, and ensuring
that data, which will be subsequently used, is available.

Conceptually, the stack in question grows towards lower
addresses and is divided into a set of equally sized blocks.
The number and actual size of the blocks are properties left
to the implementor. Each operation takes an argument rep-
resenting a block count. In detail, the semantics for stack
cache manipulation are as follows:

Reserve: sres k
Allocates an area of k blocks in the stack cache and sets
the stack pointer to the beginning of this region. If k and
the number of currently reserved blocks counted together
exceed the capacity of the stack cache, some blocks need
to be spilled (i.e., saved to main memory). The stack
cache always selects a minimal number of blocks from the
earliest reserved (highest address) blocks for spilling.

Free: sfree k
Discards the k most recently reserved (lowest address)
blocks and adjusts the stack pointer accordingly. The con-
tents of the stack cache are not changed.

Ensure: sens k
If not all of the k blocks at the current stack pointer are
available in the stack cache, (only) the missing blocks are
filled (i.e., loaded from main memory).

Only an sres or sens operation may access main memory
and can cause a variable-time latency. Particularly WCET
analysis benefits from this characteristic, as it is sufficient
to know (an upper bound on) the number of blocks being
transferred, to statically calculate the latency. Our model
assumes uniform cost for the transfer of every stack cache
block, but this can be trivially adapted to the behavior of
any implementation (as long as it remains predictable). This
stack cache model can be implemented in several ways. In the
concrete case of the Patmos processor, all three stack cache
operations are exposed in the instruction set. Also, the hard-
ware is responsible for spilling data to and loading data from
external memory. Without any impact on the results herein,
some (or all) functionality could be shifted to software.
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Figure 1: Sliding window visualization of the stack
cache with three functions

The rationale for splitting the sens from the sfree opera-
tion can be easily seen when unwinding the allocated stack:
when the unwinding logic issues a series of sfrees, it is not
interested in any values on the stack. Thus, filling the stack
cache from main memory at this point is unnecessary.

Stack cache operations can be placed at arbitrary points in
the program (with some inherent rules for legal programs).
Commonly they appear around function calls, i.e., sres is
placed after function entry, sfree before the return, and if
required, the caller places sens immediately after the call. In
the following, when we present our analysis, we first assume
the simple case of placement being restricted around calls.
A generalization is discussed in Section 4.

We further assume that every function reserves a value k
less than, or equal to the size of the stack cache. This re-
quirement is guaranteed by the compiler.

The spill and fill operations inherently provide a WCET
bound. In the most pessimistic manner, we could assume
that at every sres and sens the entire size of the argument
k, needs to be spilled and filled respectively. In the following,
our analyses shall reduce this worst-case bound.

Example 1. Figure 1 visualizes the operation of a stack
cache for a series of function calls. In the first row of Fig-
ure 1(b), A reserves its stack space, which is partly evicted
when B is called. Calling C then partly evicts the stack space
of B, while the remainder of the stack cache is allocated to
C’s data. C frees its space before returning, leaving the cache
empty except for those parts of B’s stack space that were
not evicted. B then reloads its stack data (assuming it needs
to access some of it). The stack cache is now almost fully
occupied by B’s stack space, while the rest remains empty.
Finally, when B returns, the stack cache becomes completely
empty and A would need to reload all of its previously evicted
stack data.

2.2 Program Representation
To calculate worst-case bounds for stack cache operations,

we integrate two analyses on different program levels. Func-
tion-local (i.e., intra-procedural) stack cache analysis tar-
gets the control-flow graph of each function individually. To
model the inter-procedural effects of the stack cache we use
the program’s call graph.



Definition 1. The control-flow graph CFG = (N,E, r, e)
is a directed graph, with node set N and edge set E. Nodes
n ∈ N represent instructions, edges (m,n) ∈ E control-flow
between them, and artificial nodes r and e, which denote the
unique start and end node in CFG, respectively. Addition-
ally we define Preds(n) = {m | (m,n) ∈ E}, the set of
immediate predecessors of n.

Note that only a small subset of instructions is relevant for
the analysis. It consist of calls to other functions and the
three instructions that manipulate the stack cache: sres,
sfree, and sens. All remaining instructions in the CFG
(including all loads and stores) are transparent with regard
to the stack cache analysis.

Definition 2. The call graph CG = (N,E, s, t) is a di-
rected graph, consisting of nodes in N , the distinguished
source and sink nodes s, t ∈ N , and directed edges E. Nodes
represent functions of a program, while each edge (m,n) ∈ E
represents an individual call (site) from function m to n.

The source and sink nodes exist for convenience and are
established by connecting s to the entry function (e.g., main),
while all functions containing a call-free path, i.e., a path
through the function’s CFG that does not contain a call
instruction, are connected to the sink node.

2.3 Data-flow Analysis
Data-flow analysis is used to gather information about the

behavior of a program without executing it. For a specific
property (e.g., variable liveness) the effect of every instruc-
tion (i.e., every node in some CFG) and its dependencies
on other instructions are examined. A common way to per-
form data-flow analysis is to attach equations that relate
input and output information to every node, then solving
these equations for every node repeatedly, until their re-
sults no longer change (i.e., a fixpoint for the whole system
is reached). Two parts of our stack cache analysis closely
resemble this concept and are thus best described in the
standard way for data-flow analyses.

We are interested in bounds for the stack cache occupancy
at certain points in the program. I.e., a value from a finite
subset of N0 (N∪{0}) bounded from above by the number of
blocks in the stack cache |SC|. Formally, the value domain
for the analysis is D = {0, . . . , |SC|}. To set up the system
of equations, every instruction i in the CFG is associated
with two variables, IN(i) and OUT (i), which can take val-
ues from D and represent the occupancy bound before and
after the instruction respectively. Data-flow equations (also
known as transfer functions) between the variables define (1)
the change of the worst-case occupancy bound induced by
instructions and (2) how to merge those bounds at control-
flow joins. The algorithm to solve these equations will not
be shown here for brevity. Together with a detailed descrip-
tion of the related theoretical foundations, it can be found
in standard literature on the topic [2, 8].

3. STACK CACHE ANALYSIS
In order to determine the worst-case behavior of a real-

time program utilizing a stack cache, two analysis problems
have to be solved: (1) for every sres-instruction in the pro-
gram, the worst-case spilling behavior has to be computed
and (2) for every sens-instruction, the worst-case filling be-
havior has to be computed. We refer to these two problems
as the reserve and ensure analyses respectively.

Reserve analysis We will first tackle reserve analysis,
which has to consider the (maximum) stack cache occupancy
on all potential executions leading up to an sres-instruction.
This information cannot be computed using local informa-
tion alone and thus requires a context-sensitive analysis.
The worst-case behavior of an sres depends on the stack
cache occupancy of the current function, which in turn de-
pends on the occupancy at the invoking call instruction, thus
on the occupancy of the function surrounding the call, and
so on until the program’s entry point is reached. In or-
der to compute this information efficiently, the analysis has
to account for the change of stack occupancy that occurs
between the entry of a function and each call instruction.
Note that the stack occupancy not necessarily increases here.
If, for instance, parts of the stack cache are intermittently
spilled, the occupancy may also decrease. A key observation
here is, that the worst-case occupancy at call sites can be
bounded by a function-local analysis, which is based on the
minimum displacement occurring between the function en-
try and the call. This displacement determines how much of
the allocated stack space remains allocated in the worst-case
when calling a function. Using the results of this prelimi-
nary analysis, a function-local data-flow analysis can prop-
agate worst-case occupancy bounds along all paths from a
function’s entry to all call sites, initially assuming a fully
occupied stack cache. The final step of reserve analysis is an
inter-procedural data-flow analysis that propagates context-
sensitive stack occupancy on the program’s call graph.

Ensure analysis The analysis of ensure instructions
similarly relies on the stack displacement at function calls.
In contrast to the reserve analysis, however, the maximum
displacement is required, i.e., how much of the stack space
allocated by the current function is spilled to main mem-
ory by another function in the worst-case. Based on this
preliminary analysis of the maximum displacement, the en-
sure analysis can be formulated as a function-local data-flow
analysis that tracks the amount of stack space belonging to
the current function that has been potentially spilled and
thus needs to be reloaded by ensure instructions.

Example 2. Consider a stack cache of size 4 and the ex-
ample program in Figure 2. The stack cache occupancy at the
entry of function C depends on its three calling contexts (iA5 ,
iB3 , iB5 ). We are only interested in the last calling context
(iB5 ) for now. By assuming a full stack cache at the entry of
the calling function B and examining the path leading to the
call instruction, we realize that the minimum displacement
along this path can be used to bound the worst-case occu-
pancy for this context. Since the sres-instruction at the
entry of B cannot further increase the occupancy, the first

(iA1 ) func A() {

(iA2 ) sres 2;

(iA3 ) B();

(iA4 ) sens 2;

(iA5 ) C();

(iA6 ) sens 2

(iA7 ) sfree 2;

(iA8 ) }

(a) Code of A

(iB1 ) func B() {

(iB2 ) sres 3;

(iB3 ) C();

(iB4 ) sens 3

(iB5 ) C();

(iB6 ) sens 3

(iB7 ) sfree 3;

(iB8 ) }

(b) Code of B

(iC1 ) func C() {

(iC2 ) sres 2;

(iC3 ) sfree 2;

(iC4 ) }

(c) Code of C

Figure 2: Program consisting of 3 functions, reserv-
ing, freeing and ensuring space on the stack cache.



call to C (iB3 ) displaces 2 blocks from the full stack cache, re-
sulting in a worst-case occupancy of 2 when returning. Due
to the displacement, the worst-case occupancy at iB5 cannot
be higher than 2. The sens-instruction (iB4 ) again raises the
occupancy to 3, which bounds the occupancy at iB5 .

Finally, during the context-sensitive part of the reserve
analysis, we use this bound to derive the occupancy at the call
site without having to reanalyze the instructions in B. When
the occupancy at the entry of B plus the locally reserved space
exceeds the bound, it is sufficient to propagate the bound to C.
Otherwise, the smaller occupancy level has to be propagated.

The ensure analysis similarly first pre-computes the max-
imum displacement of function calls and then propagates
information within functions. Function A for instance, re-
serves 2 blocks on the stack cache. The displacement of the
call to functions B is determined to be 4. The ensure analy-
sis thus finds that the entire stack space of A may have been
evicted after returning from B. The sens-instruction iA4 thus
has to fill 2 blocks from main memory in the worst-case.

Combined Analysis The reserve and the ensure anal-
ysis both rely on related underlying computations and can
be combined. The combined analysis then consists of three
main phases: (1) the pre-computation of the minimum and
maximum displacements on the call graph, followed by (2)
the function-local data-flow analyses for the reserve and en-
sure analysis, and finally (3) the context-sensitive reserve
analysis on the program’s call graph. We will discuss each
of the phases in the following sub-sections.

3.1 Computing the Stack Cache Displacement
Computing the minimum displacement of a call site, as

required by the reserve analysis, corresponds to a shortest
path search in the call graph, where edges are annotated
with weights representing the amount of stack space reserved
by the calling function. We will later see that ensure anal-
ysis depends on the maximum displacement, which can be
computed in the same way, but performing a longest path
search. Assuming the placement of ensure and free instruc-
tions as defined in Section 2 for now, this technique can eas-
ily be extended to the larger class of well-formed programs
as described in Section 4.

Algorithm 1 Algorithm to compute the displacement at
call sites (ComputeMinimumDisplacement, ComputeMaximum-
Displacement).

Require: ACG = (N,E, s, t) . . . An annotated call graph.
Ensure: The minimum/maximum displacement at each

call site is returned.

1: foreach n ∈ N do
2: I Sub-graph with zero costs.
3: N0 = {v0|v ∈ N, v 6= t}
4: E0 = {(u0, v0, 0)|(u, v, w) ∈ E, v 6= t}
5: I Weighted sub-graph.
6: NW = V \ {s}
7: EW = E \ {(u, v, w) ∈ E|u = s ∨ v = s}
8: I Edges to transition between sub-graphs.
9: ET = {(u0, n, 0)|(u, n, w) ∈ E}

10: let ACG′ = (N0 ∪NW , E0 ∪ EW ∪ ET , s0, t) in
11: D[n] = ComputePathOver(ACG′, n)

12: return D

Definition 3. The annotated call graph ACG = (N,E,
s, t) is a call graph, with weighted edges (u, v, w) ∈ E ⊆
N × N × N0. The weight w represents the stack space re-
served in function u. The edge connecting s to the entry
function is assumed to have weight 0, while edges incident
to t are normally annotated with the stack space reserved in
the respective functions.

Definition 4. For a call site (u, v, w) of an annotated
call graph ACG = (N,E, s, t) the minimum (maximum) dis-
placement is given by the shortest (longest) tail from v to the
sink node t for any path of the form (s, . . . ,u,v, . . . , t).

Acyclic Call Graphs In the case of acyclic call graphs,
i.e., programs without recursion, the minimum and maxi-
mum displacement of all nodes can be computed using dy-
namic programming [3] in linear time (O(|N | + |E|)). The
nodes are traversed in reverse topological order, computing
each node’s displacement from the displacement of their re-
spective successors in the graph.

3.1.1 Call Graphs With Recursion
Shortest and longest path searches for programs with cyclic

call graphs, i.e., with recursion, can be modeled using inte-
ger linear programming (ILP). The technique resembles ap-
proaches from standard WCET analysis [9, 10]. Instead of
searching for the shortest (longest) path, the path with the
shortest (longest) tail, where the tail starts with a specific
node, needs to be computed. The reason for this will become
clear when we later introduce user constraints.

We model the computation of these paths on a trans-
formed call graph, which is constructed by duplicating the
original graph twice (see Alg. 1 and Fig. 3). One duplicate
represents the paths’ tails and is thus associated with the
weights of the original graph (l. 6). The other duplicate is
associated with zero costs (l. 3) and represents the heads
of the paths. The two sub-graphs are connected only at
the node whose displacement is to be computed, i.e., edges
lead from the node’s duplicate in the sub-graph with zero
costs to the respective duplicate in the weighted sub-graph.
The shortest or longest path search is then performed on
this transformed graph (l. 11). Note that not all nodes and
edges need to be duplicated in practice. Only the nodes and
edges that may appear on a path from s to t and passing
through the currently considered node need to be considered
(this optimization is not shown here for brevity).

For the path search ComputePathOver (Alg. 1, l. 11) takes
the transformed call graph ACG′ and a target node n as
arguments and constructs an ILP, which models the nesting
of function calls that can be observed (in the worst-case)
when executing the program. Each ILP variable represents
the number of times a function has been called, or more
precisely, how often a specific call site was used to call a
function, in this nesting. The ILP variables can be seen as
representing flow that has to meet constraints. For instance,
the flow entering a function has to leave that function again,
i.e., the sum of the adjacent ILP variables needs to be equal.

The (flow) constraints of the ILP for the transformed call
graph ACG′ = (N ′, E′, s′, t′) are formally defined as:

V(v) =
∑

e=(u,v,w)∈E′

V(e)

V(v) =
∑

f=(v,u,w)∈E′

V(f)

 ∀v ∈ N ′ (1a)



V(s′) = 1 (1b)

V(t′) = 1 (1c)

V(n) > 0 (1d)

With integer variables:

V(e),V(v) ∈ N0 ∀e ∈ E′, ∀v ∈ N ′ (1e)

Variables (1e) are created for every node and every edge
in the transformed call graph and the functions V(n) and
V(e) map nodes and edges of the graph to their respective
ILP variables. For each node the incoming and outgoing flow
has to match (1a). In order to get a legal nesting of function
calls including the node n three more flow constraints have
to be added. These force the flow at the source (1b) and
sink node (1c) to 1 and the flow over the target node (1d)
to be non-zero.

The optimization objective is either to minimize the ob-
jective function, when the shortest path is to be computed:

min
∑

e=(u,v,w)∈E′

wV(e), (1f)

or maximize the same function for the longest path search:

max
∑

e=(u,v,w)∈E′

wV(e) (1g)

The ILP formulation presented above expresses all possi-
ble nestings of function calls that might potentially be ob-
served when the program is executed. However, in partic-
ular when the objective function is to be maximized, many
of these nestings cannot actually occur in practice, e.g., be-
cause the recursion in the program is limited to a certain
depth. This information can be supplied by the user and
expressed as an additional constraint for the affected ILP
variable. More complex user constraints can be expressed
by linear equations using different variables of the ILP.

Example 3. Consider the annotated call graph in Fig-
ure 3(a). Function D has a call-free path and is thus con-
nected to the sink. Assuming that the displacement of D shall
be determined, Figure 3(b) shows two duplicates of the graph,
where the sub-graph with zero costs is above the weighted
one. The edge that allows to transition between the two sub-
graphs (ET ) is highlighted using a dotted line. (Only nodes
and edges on a path from the source to the sink and passing
through D, as well as non-zero edge weights are shown.)

A() B() C() D()
0

2

2

3

3

2

1

1

(a) Call Graph

A()0 B()0 C()0 D()0

C() D()
2

1

1

(b) Transformed Graph

Figure 3: A recursive call graph and the correspond-
ing transformed graph to compute D’s displacement.

Assuming that function C can appear at most 10 times on
any legal nesting of function calls, we can add a user-specific
constraint such as: V(C()) + V(C()0) < 11. (Due to space
restrictions the full ILP cannot be shown here.) Since D can
only be invoked by C, this implies a maximum displacement
for D of 9 ·1+9 ·2+1 = 28. Because the constraint on C only
defines an upper bound, it is easy to see that the minimum
displacement for D (shortest path) is 1.

Certainly, as long as a user constraint does not interfere,
shortest path search can be solved efficiently on the origi-
nal graph (e.g., using Dijkstra’s algorithm). Also note that
the approach for cyclic and acyclic graphs can be combined
by collapsing the nodes of the individual strongly connected
components (SCCs) of the original call graph into represen-
tative nodes. This results in an acyclic graph that can be
traversed as described in Section 3.1. Whenever the repre-
sentative of an SCC is visited during the traversal, an ILP
is constructed as shown by Algorithm 1 based on the sub-
graph induced by the SCC in the original call graph.

3.2 Bounding the Stack Cache Occupancy
Once the minimum displacements are computed, the stack

cache occupancy can be bounded for each call site by an
intra-procedural data-flow analysis. Assuming a full stack
cache at function entry, the analysis propagates an upper
bound on the stack occupancy (obound) along all paths from
the entry to the call sites within the function. The minimal
displacement of call instructions as well as sens-instructions
along the path may have an impact on this bound, while all
other instructions can safely be ignored.

A standard data-flow analysis based on the framework
defined in Section 2.3, with domain D is then performed on
the CFG. The transfer functions for an instruction i are:

dloc(i) = min(|SC|, dmin(i)) (2)

OUT (i) =


max(IN(i), k) if i = sens k (3a)

min(IN(i), |SC| − dloc(i)) if i = call (3b)

IN(i) otherwise (3c)

When i is an ensure instruction (sens k) with its argu-
ment k ∈ N0 , the current upper bound is increased to
k (3a). The transfer function of a call i depends on the
size of the stack cache |SC| and the minimal displacement
dmin(i) of the functions that are potentially invoked by the
call (3b). (dmin(i) is computed as described in Section 3.1.)
For all other kinds of instructions the transfer function is
the identity function (3c).

Between instructions, the obound also needs to be propa-
gated (i.e., from the OUT -values of the predecessors of an
instruction to the instruction’s IN -value). This is done us-
ing the transfer functions:

IN(i) =

{ |SC| if i = r (4a)

max
p∈Preds(i)

(OUT (p)) otherwise (4b)

At joins in the CFG, the maximum (max) of all incoming
values is used as the meet operator (4b). In order to model a
full cache at the entry of the current function, the IN -value
of the first instruction in the function’s CFG r is initial-
ized with the full size of the stack cache |SC| (4a). For the
remaining initial values at each program point, we use the
value 0 ∈ D which is the neutral element with respect to max.



sres 2
IN(i1) = 4

call <>
IN(i2) = 4, dmin(i2) = 1

sens 2
IN(i3) = 3

Figure 4: Propagation of stack cache bounds in a
function-local control-flow graph.

Example 4. Given the control-flow graph shown in Fig-
ure 4 and a stack cache size of 4, the analysis starts by as-
sociating the IN-value of instruction i1 with the full stack
cache size (|SC| = 4). Since i1 is an sres-instruction the
identity function leaves the stack cache occupancy bound un-
changed for the following instruction. i2 is a call with a
minimal displacement of 1 (dmin(i2) = 1). Applying the
corresponding transfer function (see Eq. 3b) yields a stack
occupancy of 3 after the call, which is propagated to the IN-
value of instruction i3.

3.3 Worst-Case Spilling of Reserves
Having determined bounds for the stack cache occupancy,

we can finally define AnalyzeReserves, which computes the
worst-case spilling of reserve instructions within the pro-
gram. More precisely, an sres-instruction will cause spilling
when the occupancy before the reserve is too high and the re-
quested space is not available in the stack cache. As we have
noted before, the maximum occupancy at function entry is
specific to a calling-context and depends on the accumulated
occupancy of the nested function calls leading to the entry.
On the other hand, we need to account for spilling caused
by calls to other functions that may have evicted parts of
the stack cache before the execution reaches the respective
reserve. Given the obound value (see Section 3.2) for a call
site, the context-dependent analysis of its maximum stack
occupancy becomes simple: when a new stack occupancy is
derived for the entry of the enclosing function, either (1) the
new stack occupancy plus the locally reserved space is prop-
agated to the call site or (2) the bound is propagated to the
call site, which ever is smaller. From the context-dependent
stack occupancy a graph can be constructed that can be
used to represent the spill costs of the sres-instructions of
the individual contexts:

Definition 5. The spill cost analysis graph is a directed
graph SCA = (ACG,Nc, Ec) consisting of nodes in Nc rep-
resenting occupancy-annotated calling-contexts and edges in
Ec ⊆ Nc ×Nc that correspond to call sites of the call graph
ACG. The nodes are pairs (n, o) ∈ Nc, where n is a node
of ACG and o ∈ N0 is the context’s stack cache occupancy.

Algorithm 2 constructs an SCA graph from an annotated
call graph (see Def. 3) using a simple work list. The anal-
ysis starts at the sink node s, which is assumed to have
a stack occupancy of 0 (l. 3–2). From this initial context
other SCA contexts are derived by processing one context
from the work list at a time (l. 7). The context is removed
from the work list and new contexts are constructed con-
sidering the current occupancy and the weighted call sites
associated with the corresponding call graph node of the
context (l. 11). Note the use of the occupancy bound that
was computed before (see Section 3.2). If the so discovered

Algorithm 2 Constructing the Spill Cost Analysis Graph
(SCA), as part of AnalyzeReserves.

Require: ACG = (N,E, s, t) . . . An annotated call graph.
Obound . . . The occupancy bounds of call sites.

Ensure: Context-sensitive stack cache occupancy derived
for the SCA = (ACG,Nc, Ec).

1: I Initialize the SCA graph and work list
2: Ec = ∅; Nc = {(s, 0)}
3: W = {(s, 0)}
4: I Iteratively derive new SCA contexts
5: while W 6= ∅ do
6: I Process some context from the work list
7: let c = (u, o) ∈W in
8: W = W \ c
9: foreach e = (u, v, w) ∈ E do

10: I Derive a potentially new SCA context
11: let c′ = (v,min(o + w,Obound[e])) in
12: I Update the work list
13: if c′ /∈ NSCA then
14: W = W ∪ c′

15: I Update the SCA graph
16: Nc = Nc ∪ c′

17: Ec = Ec ∪ (c, c′)

18: return SCA

contexts were not yet known, they are added to the work
list (l. 14). Finally, the SCA graph is updated to cover the
newly discovered contexts (l. 16).

Using the occupancy information of the SCA graph, the
spill costs of the individual reserve instructions in the pro-
gram can immediately be derived. Assuming uniform per-
block spill cost ĉs and a context c = (n, o) of an sres-
instruction i that reserves k blocks, the spill cost is:

spillcost(i, c) = ĉs ·max(0, o + k − |SC|) (5)

Example 5. Assuming a stack cache with 4 blocks, the
spill cost analysis graph shown in Figure 5 is constructed
from the example program from Figure 2. While only a sin-
gle context is constructed for the functions A and B respec-
tively, three different contexts are created for C. The stack
occupancy of these contexts are 4, 3, and 2 blocks. This re-
sults in a worst-case spilling of 1 and 2 blocks respectively
for the first two context. No spilling is performed in the last
context. Note that the edges in the SCA graph correspond to
edges in the call graph (shown in Figure 5(a)).

A() B() C()
0

2

2

3

3 2

(a) Call Graph

A(), 0 B(), 2 C(), 4

C(), 3

C(), 2
(b) Spill Cost Graph

Figure 5: Annotated call graph and spill cost graph
of the program from Figure 2.



3.4 Worst-Case Filling of Ensures
What remains is to analyze the filling behavior of sens-

instructions. Before we define the analysis formally, let us
consider the cases when refilling the stack cache becomes
necessary. In the model specified in Section 2, an ensure
instruction always refers to the stack space reserved by the
sres-instruction at the entry of the current function. This
means that filling may only become necessary when some of
the locally reserved stack space is evicted from the cache on
any path between the reserve and the ensure. It thus suffices
to examine the minimum occupancy induced by the maxi-
mum displacement along all paths between the two instruc-
tions, while accounting for the effects of intermittent ensure
instructions. An interesting aspect of this analysis problem
is that once the maximum displacement of individual call
instructions is known (by solving the longest path problem
from Section 3.1), the analysis can be performed locally for
each function. This makes ensure analysis considerably eas-
ier (context-insensitive) compared to its reserve counterpart.
Note that a similar property holds for well-formed programs
discussed in Section 4.

Formally, AnalyzeEnsures has to solve a data-flow anal-
ysis problem similar to that described in Section 3.2. The
algorithm takes two arguments: the function’s CFG G and
a mapping from call sites to their respective maximum dis-
placement Dmax. The analysis is based on the framework
defined in Section 2.3, with domain D. The transfer func-
tions are as follows:

dloc(i) = min(|SC|, dmax(i)) (6)

OUT (i) =


k if i = sres k

max(IN(i), k) if i = sens k

min(IN(i), |SC| − dloc(i)) if i = call

IN(i) otherwise

(7)

IN(i) =

{
0 if i = r

minp∈Preds(i)(OUT (p)) otherwise
(8)

Opposite to Section 3.2, the goal is to find a minimum
bound. Thus the meet operator in (8) accordingly changes
to min and the initial value is |SC|.

With the solution of the analysis above, we can compute
the worst-case filling cost for every sens-instruction (assum-
ing uniform per-block fill cost ĉf ):

fillcost(i) = ĉf · (OUT (i)− IN(i)) (9)

Example 6. Consider function A in Figure 2(a) and a
stack cache with size |SC| = 4. The ensure analysis starts by
applying the transfer function (Eq. 7) of the sres-instruction
iA2 . This causes a minimum stack occupancy of 2 to be prop-
agated to the following call iA3 to B. From the analysis of the
maximum displacement it is known that B might spill the
entire content of the stack cache since (dmax(iA3 ) = 5) in-
cluding what A reserved. The minimal stack occupancy after
the call thus has to be assumed to be 0 in the worst-case,
which is propagated to IN(iA4 ) of the following ensure. As
the stack cache might be empty, the ensure has to reload the
2 blocks specified as its argument and its OUT -value thus
becomes 2. The next call instruction iA5 invoking C has a
maximum displacement dmax(iA5 ) = 2. The analysis deter-
mines that |SC| − 2 = 2 and thus equal to the minimum
occupancy (Eq. 7), which therefore does not change (i.e.,

the content of A’s and C’s stack frames both fit into the stack
cache). Consequently it is not necessary for the final ensure
instruction iA6 to fill any data. The instruction could even
be removed without any side-effect.

3.5 Combining the Analyses
From the individual analyses above a simple algorithm

that solves both stack cache analysis problems at the same
time can be devised (see Alg. 3). The algorithm takes a call
graph and a set of control-flow graphs (one for each func-
tion in the program) as input and associates every sens-
and sres-instruction with information on their respective
worst-case filling and spilling behavior. It proceeds by first
computing the minimum and maximum displacement of the
call sites within the program using the input call graph (l. 2-
3). Next, the worst-case stack occupancy at call sites is
bounded (l. 8) using the previously computed minimum dis-
placements (Dmin) for each function separately. The en-
sure analysis (l. 6), which relies on the maximum displace-
ments (Dmax), is similarly performed for each function in-
dividually. Information on the minimum stack occupancy is
propagated locally from call sites to the ensure instructions.
Finally, the reserve analysis (l. 10) is performed on the call
graph. It uses the occupancy bound (BoundOccupancy, l. 8)
and propagates context-dependent information on the stack
occupancy to the individual reserve instructions.

Computational Complexity Examining the compu-
tational complexity of the individual analysis phases, Ana-
lyzeReserves is bounded by the number of possible con-
texts, i.e., the number of functions times the constant num-
ber of stack cache states. The data-flow analysis problems
of BoundOccupancy and AnalyzeEnsures are similarly linear,
but in the number of CFG nodes (due to the constant and
typically low |D|, the number of iterations until the analysis
fixpoint is sub-polynomial). The remaining two functions
are those that compute the minimum and maximum dis-
placement. Their underlying path search problems are poly-
nomial and NP respectively, when considered without user
constraints. Also when solved through an ILP, the problems
have shown to be efficiently solvable even for graphs larger
than the ones encountered here (the number of functions in
a program being naturally low). The shortest and acyclic
longest path searches are quadratic and linear, respectively.

Algorithm 3 Main steps of the stack cache analysis for
both, the ensure and reserve analysis problems.

Require: ACG . . . The call graph of the program.
CFGs . . . The CFGs of all functions.

Ensure: Annotate sens- and sres-instructions with their
worst-case filling and spilling behavior.

1: I Minimum/maximum displacement at call sites.
2: Dmin = ComputeMinimumDisplacement(ACG)
3: Dmax = ComputeMaximumDisplacement(ACG)

4: foreach G ∈ CFGs do
5: I Ensure analysis.
6: AnalyzeEnsures(G,Dmax)

7: I Bound worst-case occupancy at call sites.
8: Obound = Obound ∪ BoundOccupancy(G,Dmin)

9: I Reserve analysis.
10: AnalyzeReserves(ACG,Obound)



SCA Graph Pruning During the SCA graph con-
struction (Alg. 2), several contexts might be created for the
same function whose spill costs evaluate to 0, but have dif-
ferent occupancy values. When analyzing the worst-case
spilling behavior of a program, these contexts are equiva-
lent and can be merged. Note that this merging could also
be done during the construction at the expense of conserva-
tively collapsing descendent contexts having different costs.

Furthermore, potentially infeasible contexts could be cre-
ated, e.g., when the recursion depth of a recursive function
is limited, which can be eliminated during a post-processing
phase or during graph construction. The maximum displace-
ment, for instance, can be used to prune parts of the graph
already while processing it.

In addition to the lossless pruning opportunities men-
tioned above, the size of the graph can also be reduced by
merging contexts and annotating the merged context with
the larger occupancy and higher spill cost. This would, for
instance, allow us to reduce the complexity of any subse-
quent analysis that takes spill cost into account. The advan-
tage of this approach is that the degree of context merging
can be decided on-demand, which allows to trade analysis
precision against computational complexity.

4. WELL-FORMED PROGRAMS
The presented algorithms are based on the simple pro-

gram model described in Section 2, which assumes a single
sres-instructions at the entry of a function and a single
sfree-instruction at the function exit. However, the ap-
proach is easy to extend to the larger class of well-formed
programs. We define a well-formed program in terms of the
paths through the program’s functions:

Definition 6. A program is well-formed when all func-
tions in the program are well-formed.

Definition 7. A function with CFG G = (N,E, r, e) is
well-formed, if every path of nodes p = (n1, . . . , nm), where
∀ 0 < i < m : (ni, ni+1) ∈ E, satisfies one of the conditions:
• No instruction ni ∈ p is an sres- or sfree-instruction.
• Two indices 0 < ir < if ≤ m exist, such that nir

is the first sres-instruction and nif is the last sfree-
instruction on the path, and the amount of space re-
served by nir is equal to the amount freed by nif , and

the path p′ = (nir+1, . . . , nif−1) is empty or well-formed.

The above definition can also be extended to cover sens-
instructions, which we omit here for brevity. Note that
the definition of well-formed paths is based on all possi-
ble paths through the CFG, including potentially infeasible
paths. Well-formed programs have the nice property that
allows them to be analyzed using the previously described
algorithms with only minor modifications:

Lemma 1. (Proof omitted for space reasons.) Given the
CFG G = (N,E, r, e) of a well-formed function and a node
n ∈ N , the accumulated amount of space reserved on the
stack cache locally within the function is identical at n for
all paths from the root node r to n.

The previous lemma allows us to adapt the definition of
the annotated call graph (Def. 3) to weight the edges in
the graph using the accumulated amount of stack space re-
served locally within functions. The algorithms to compute

the minimum and maximum displacement (Sec. 3.1) can
then be used without modification. The data-flow analy-
ses (Sec. 3.2 and 3.4) have to be adapted to account for the
nesting of sres-instructions, but otherwise proceed as be-
fore. The SCA graph also needs to be adapted to capture
reserve instructions within functions explicitly using logical
contexts. This can easily be done as the propagation rules
to construct logical contexts from reserves are the same as
those for calls. It is even possible to model the effect of loops
explicitly in the SCA graph by loop peeling, i.e., several log-
ical contexts may be constructed for one reserve instruction.

5. WCET-TOOL INTEGRATION
The stack cache analysis presented in this work is in-

tended to be used as part of a worst-case execution time
(WCET) analysis tool. The standard technique to perform
WCET analysis is IPET [9, 10], which expresses the po-
tential execution flows of the program as an ILP. The ILP
variables express the execution frequency of the basic blocks
and control-flow edges in the program, while ILP constraints
express the legal flow of execution. Maximizing a weighted
sum of the ILP variables then gives the WCET of the pro-
gram. The standard IPET approach can be extended to be
context-sensitive, by duplicating the ILP variables for each
context and adapting the ILP constraints accordingly.

The results of the previously described stack cache anal-
ysis, can be used to extended the traditional ILP formula-
tion of the IPET approach. As ensure analysis is context-
independent, the cost it computes can trivially be added to
the weight of the respective code block in the ILP. This can
also be done when the IPET problem is context-sensitive.

Integrating spill cost requires more care, as the spill cost
analysis graph is fully context-sensitive with regard to the
observable stack cache state. The contexts considered by
the reserve analysis might thus differ from the contexts used
by the IPET analysis. Two options can be considered to
overcome this problem. The first option is to merge the
SCA contexts (as described above) so they match the con-
texts of the IPET analysis. The merging might then cause
some loss of precision. The other option is to account for
the full context information encoded in the SCA graph by
introducing additional ILP variables representing the nodes
and edges of the SCA graph. ILP constraints then connect
these ILP variables to those of the original IPET problem.
For instance, in an IPET formulation without contexts, the
execution frequency of the basic block containing an sres-
instruction has to be equal to the sum of the ILP variables
of the corresponding SCA contexts. Using this approach the
full context information of the SCA graph can be encoded.

6. EVALUATION
We evaluated our approach using the LLVM-based1 com-

piler framework of the Patmos processor [12], which comes
with a stack cache and its associated control instructions [1].
Both, the compiler and the processor, are available as open-
source.2 Benchmarks of the MiBench benchmark suite [7]
were compiled using aggressive optimizations (-O3) and sub-
sequently analyzed using our technique, assuming stack cache
sizes of 1024 (1k), 512 (512b), and 256 (256b) byte with 4
byte blocks. Note that the compiler automatically allocates

1http://www.llvm.org/
2http://github.com/t-crest

http://www.llvm.org/
http://github.com/t-crest
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Figure 6: Total number of sres-instructions and
number of sres-instructions potentially spilling in
the worst-case (lower is better).

stack data on the stack cache [1]. The compiled benchmarks
contain between 9550 and 74291 instructions, of which 0.3 -
0.5% are sres- and 0.1 - 5.5% are sens-instructions.

Figure 6 summarizes the result of the reserve analysis
(Section 3.3). It shows the total number of sres-instructions
in the benchmarks (white bar) as well as the number of po-
tentially spilling instructions among theses (colored bars).
For the 1k configuration the analysis can prove that almost
no spilling will occur at runtime as the benchmarks have a
rather shallow nesting of function calls. Even for the smaller

cache configurations, the analysis finds that only about 37%
of sres-instructions cause spilling in the worst-case. The
analysis results reflect the observed spilling behavior at run-
time reported in previous work [1].

More detailed numbers are presented in Table 1. In total
728 ILPs are generated (column ILP) during the displace-
ment analysis (Section 3.1), 94 of which are due to djpeg.
Note that the shortest path search was also performed using
ILP to disambiguate calls through function pointers.

The number of contexts computed by the reserve analysis
(Section 3.3) before pruning grows linearly with the stack
cache size (columns O1k, O512b, O256b), while the growth is
much smaller for the pruned graphs (columns P). The high-
est number of contexts is initially computed for the 1k con-
figuration, where up to 53487 distinct contexts (tiffdither)
are computed. Most of these are irrelevant for the worst-case
spilling and can thus be eliminated. The pruned graphs
only retain 15% of the original contexts in the mean (ig-
noring empty graphs). For the 256b configuration fewer
contexts are computed, at most 8198 distinct contexts for
djpeg. However, a larger number of contexts is retained
during pruning (29%).

The ensure analysis (Section 3.4) finds that very few of
the ensure instructions may cause filling in the worst-case
(columns F1k, F512b, F256b). Up to 99% (adpcm) of the ensures
never perform any filling for the 256b configuration (in the
mean 79%, column Ratio256b).

As most parts of the analysis are linear in the program
size, the computational overhead of the entire analysis is
low. Using an unoptimized executable, the average analysis
time was 1.30s, 0.75s, and 0.46s for the 1k, 512b, and 256b

configurations respectively.

SCA graph size (original/pruned) Number of sens-instructions (filling/non-filling)
Benchmark Fun. ILP O1k P1k O512b P512b O256b P256b F1k NF1k F512b NF512b F256b NF256b Ratio256b

adpcm 63 12 755 0 428 0 270 46 0 99 0 99 1 98 0.99
crc-32 103 2 1750 0 821 62 415 80 0 358 4 354 68 290 0.81

fft 159 14 5060 0 1751 258 761 207 0 842 10 832 182 660 0.78
bf 111 14 2574 0 1136 66 509 104 0 368 2 366 64 304 0.83

rijndael 95 2 2710 0 1051 119 352 61 0 358 7 351 78 280 0.78
sha 101 2 2655 0 1048 97 338 76 0 360 5 355 73 287 0.80
say 217 20 25170 2422 8945 1781 2218 700 17 1907 77 1847 271 1653 0.86

search 78 2 1521 0 581 75 231 29 0 311 6 305 67 244 0.78
dijkstra 138 16 8402 483 2868 410 653 197 2 586 8 580 167 421 0.72
patricia 157 16 3100 63 1565 133 706 159 2 629 7 624 164 467 0.74

basicmath 99 2 1691 0 780 92 363 82 0 839 18 821 85 754 0.90
bitcnts 117 16 2193 0 930 76 407 77 0 365 5 360 67 298 0.82

qsort 124 4 2037 14 1010 103 373 110 2 588 8 582 166 424 0.72
susan 173 14 8989 0 3455 411 964 311 0 760 10 750 101 659 0.87

ansi2knr 119 14 3478 0 1424 139 639 173 0 397 11 386 76 321 0.81
cjpeg 351 50 45599 17434 19615 9570 7086 4061 24 1669 487 1206 666 1027 0.61
djpeg 363 94 52677 14783 22725 8619 8198 3771 158 1388 421 1125 588 958 0.62

jpegtran 301 90 45664 17605 19168 9427 6597 3870 119 1306 438 987 614 811 0.57
jpgcom 113 14 5394 0 2196 168 730 211 0 387 7 380 72 315 0.81

lame 303 14 18134 237 7098 1196 2403 574 4 3898 70 3832 322 3580 0.92
tiff2bw 327 72 53482 16436 21748 9215 6771 3522 82 1449 269 1262 392 1139 0.74

tiff2rgba 402 72 53189 17542 21371 5806 6195 3111 129 2022 395 1756 518 1633 0.76
tiffdither 326 72 53487 17254 21753 9213 6776 3520 76 1457 263 1270 386 1147 0.75

tiffmedian 325 72 53065 17410 21079 8943 6055 2980 79 1407 267 1219 336 1150 0.77

Table 1: The number of functions, the number of ILP runs, the SCA graph size before and after pruning, as
well as the number of ensure instructions that are potentially filling or are certain to not cause any filling.



7. RELATED WORK
Static analysis [14, 6] of caches typically proceeds in two

phases: (1) potential addresses of memory accesses are de-
termined, (2) the potential cache content for every program
point is computed. The stack cache allows for a simpler
analysis model that does not require the precise knowledge
of addresses. This eliminates a source of complexity and im-
precision. The hardware states of the stack cache can, fur-
thermore, be summarized using the stack occupancy. The
analysis is thus simplified drastically, allowing us to com-
pute fully context-dependent cache states. This information
can be encoded on-demand into the actual timing analysis.
This is further supported by the observation that the stack
cache serves up to 75% of the dynamic memory accesses [1].

Tidorum Ltd.’s WCET analysis tool Bound-T supports
the analysis of over- and underflow of the register-window
mechanism of the SPARC architecture [13, Section 2.2]. They
compute bounds on the number of register windows that are
pushed to/popped from the stack and use these bounds to
classify the corresponding save and restore instructions as
trapping or non-trapping. The analysis imposes several lim-
itations on the program structure and operating system’s
trap handler. Additionally, it is unclear how calling con-
texts and recursion are handled.

Our approach to compute the stack cache displacement
has some similarity to techniques used to statically analyze
the maximum stack depth [5, 13]. Instead of only finding the
maximum stack depth for the program’s entry function , i.e.,
a longest path on a weighted call graph, the displacement
information is required for every function. We duplicate the
call graph, such that one copy represents the cost-free head
and the second copy the weighted tail of the desired path.

8. CONCLUSION
We have shown how to efficiently analyze the worst-case

behavior of a stack cache. Implemented in a real-time sys-
tem, the stack cache benefits cache predictability and in
combination with a tailor-made analysis has the potential to
lower the WCET bound for real-time programs. We thor-
oughly investigated the behavior of reserve (spill) and en-
sure (fill) operations. Ensure analysis has proven to be a
local problem and can be solved with minimal computa-
tional overhead. In general, our techniques combine intra-
procedural data-flow analysis with longest (as well as short-
est) path search on the inter-procedural call graph. By prop-
agating bounds induced by stack cache size, we can avoid a
costly context-sensitive data-flow analysis at program scope.

To find the maximum remaining stack depth starting from
arbitrary points in the call graph, we augment the graph and
enable path search on the weighted tail.

We also introduced the SCA graph, which fully models the
context-sensitive spill cost of the stack cache and is suitable
for integration in a worst-case timing analysis. Opportuni-
ties for pruning the graph with and without loss of analysis
precision have been presented.

For future work, we intend to investigate the feasibility of
integrating the SCA graph with a WCET tool without the
loss of analysis precision.
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