
Memory Management for Safety-Critical Java

Martin Schoeberl
Department of Informatics and Mathematical Modeling

Technical University of Denmark
masca@imm.dtu.dk

ABSTRACT
Safety-Critical Java (SCJ) is based on the Real-Time Specification
for Java. To simplify the certification of Java programs, SCJ sup-
ports only a restricted scoped memory model. Individual threads
share only immortal memory and the newly introduced mission
memory. All other scoped memories are thread private. Further-
more, the notation of a maximum backing store requirement en-
ables implementation of the scoped memories without fragmenta-
tion issues.

In this paper we explore the implications of this new scoped
memory model and possible simplifications in the implementation.
It is possible to unify the three memory area types and provide a
single class to represent all three memory areas of SCJ. The knowl-
edge of the maximum storage requirements allows using nested
backing stores in the implementation of the memory area repre-
sentation. The proposed design of an SCJ compliant scope imple-
mentation is evaluated on an embedded Java processor.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—Real-time
systems and embedded systems; D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection)

Keywords
Safety-critical Java, scoped memory

1. INTRODUCTION
Memory management for real-time and safety-critical systems is

a critical issue. In a desktop application a memory leak might not
be noticed as virtual memory gives the illusion of almost infinite
main memory. We are also already used to programs that once in a
while crash, which is often caused by a too early release of dynamic
memory. However, in safety-critical systems both issues cannot be
tolerated. Safety-critical applications often run for a very long time
and a memory leak will lead to an error. Furthermore, real-time
systems often do not use virtual memory due to the unpredictable
timing a page swap introduces.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES 2011 September 26-28, 2011, York, UK
Copyright 2011 ACM 978-1-4503-0731-4I/11/09 ...$10.00.

As a result, memory is used in a very conservative way in safety-
critical systems. Most data structures are static and temporary data
is allocated only on the runtime stack. Heap allocation with malloc
is avoided, as the effects of heap fragmentation are hard to predict.

However, standard Java has no notion of static objects or arrays
and no stack allocation. All data is allocated on the heap and mem-
ory is recycled with the help of a garbage collector (GC). To bridge
the gap between the conservative memory management in real-time
systems and the very dynamic memory management in Java, the
Real-Time Specification for Java (RTSJ) [4] introduces new mem-
ory areas. Immortal memory is used for the statically allocated data
and scoped memory to provide a similar facility as stack allocation.

Safety-Critical Java (SCJ) [6], as a subset of the RTSJ, provides
similar, but restricted memory areas. SCJ defines immortal mem-
ory, mission memory, and private memory. Furthermore, the max-
imum size of a collection of memory areas (their backing store
requirement) needs to be specified by the application. This size
is needed for an implementation of scoped memories that avoids
memory fragmentation.

Scoped memories can be nested. The object, which represents
the memory area, is allocated in a scope memory and the nested,
inner scope can be entered. Contrary to intuition, the memory for
the nested scope (the backing store) is not allocated from the outer
scope.

The SCJ inherits the same semantic for nested scopes. A size
for a scope does not need to include any size of a nested scope.
However, with the knowledge of the maximum backing store re-
quirement, an implementation can actually use nested backing store
allocation – without changing the application visible contract. The
nested allocation can also include immortal memory and mission
memory. Therefore, the implementation of all three different mem-
ory areas can be unified. In this paper we show how a single class
can represent all memory types. The memory areas form a hier-
archy with respect to lifetime, which can also be represented as
nesting level. The initial mission memory is allocated in immortal
memory, handler private scopes are allocated in mission memory,
and nested private memories within their outer private memory.

The SCJ memory model is the result of discussions within the
SCJ expert group. The original proposal [7] by Kelvin Nilsen sug-
gested stack allocation of objects instead of using scoped mem-
ories. Stack allocation has been implemented in PERC Pico [1].
The difference between the SCJ memory model and the PERC Pico
memory memory model is described in a recent paper [8].

The presented design of the unified memory area for SCJ might
guide future implementations of it. As the SCJ specification is still
in draft, implementations of it are still rare. A first prototype of a
Level 0 implementation on top of OVM [2] and Fiji [9] is presented
in [10]. A SCJ like implementation, called predictable Java pro-

file [3], implements a different class hierarchy where RTSJ classes
extend SCJ classes. In the mean time, the predictable Java project
adapts to the SCJ defined class hierarchy. The upcoming version of
PERC Pico [1] will be SCJ compliant. PERC Pico will use the C
execution stack for the backing store of scoped memories.1

2. SAFETY-CRITICAL JAVA
The SCJ specification [6] is developed within the Java commu-

nity process (JCP) under specification request number JSR 302.
The SCJ specification is a subset of the RTSJ [4]. To cover dif-
ferent criticality levels, SCJ defines three different levels: Level 0
is a single-threaded cyclic executive, Level 1 a single mission with
a preemptive scheduler, and Level 2 allows nested missions and
usage of an adapted version of RTSJ’s NoHeapRealtimeThread. To
enforce that all tasks are either periodic or event triggered, the tasks
are named handlers in SCJ.

With respect to memory areas, all three levels support immor-
tal memory, mission memory, and thread private scopes. The only
difference is that the backing store for private memories for all han-
dlers in Level 0 can be reused.

2.1 Missions and Scheduling
SCJ defines the concept of a mission. A mission consists of a

set of handlers (schedulable objects) and a mission memory.2 The
number of handlers is fixed. Handlers are either periodic or event
triggered. The event can be triggered from the application or from
an interrupt handler.

The mission memory can be used for data shared between tasks.
A mission has three phases: initialization, execution, and cleanup.
The mission memory is created by the SCJ implementation before
executing the initialization phase. Within the initialization phase
all shared data is allocated in mission memory and the handlers
are created and registered. On the transition to the execution phase
all handlers are started. During the execution phase no new han-
dlers can be registered or started. In the execution phase temporary
objects are allocated in handler private memory. Allocation in mis-
sion memory is not prohibited, but strongly discouraged. After the
cleanup phase, the mission memory is cleared and a new mission
can be started.

A SCJ application does not contain a main() method. Instead, it
is represented by a class that extends Mission and implements the
Safelet interface. How this main class is specified as the SCJ ap-
plication is vendor specific. Figure 1 shows a minimal SCJ, Level
1 application – an SCJ Hello World. We can see that an applica-
tion needs to define the maximum memory consumption of mis-
sion memory, immortal memory, and the maximum memory for all
private memories a handler may use. This is the key element to
avoid fragmentation and also to allow the nested implementation
of memory areas, as described in this paper.

2.2 Memory Model
SCJ defines three memory areas: immortal memory, mission

memory, and anonymous private scope memories. Immortal mem-
ory is like in the RTSJ for objects that live for the whole application,
which might consist of several missions. Mission memory repre-
sents a scoped memory that exists for the lifetime of a mission and
is the main memory for data exchange between handlers. Each han-
dler has an initial private scope, which is entered on release by the
infrastructure and cleaned up at the end of the release. The handler
can enter nested private scopes. The private scopes are anonymous,

1Private communication with Kelvin Nilsen.
2SCJ Level 2 also allows managed threads.

as the application code has no access to a ScopedMemory object
that might represent this private memory.

In contrast to the RTSJ, SCJ does not require a garbage collected
heap. As there is no GC, the original heap of a JVM might just
be considered as being the immortal memory; or immortal memory
plus space for the scopes’ backing stores.

The SCJ specification restricts the usage of scoped memory and
defines the maximum size of backing store for each thread (han-
dler). Therefore, management of the backing store can be imple-
mented without memory fragmentation.

3. SCOPED MEMORY
The Java language and especially the library and coding style

rely heavily on creation of temporary objects. In standard Java
the GC is responsible to collect unused objects to free memory.
Although real-time GC development advances, real-time program-
mers are still skeptic on relying on a GC. Therefore, the RTSJ in-
troduced scoped memory for temporary allocated objects. Scoped
memory is similar to stack allocation in C, except that it can be
shared between threads.3

3.1 RTSJ
The RTSJ introduces, additionally to the Java heap, two mem-

ory areas: immortal memory and scoped memory. The intention of
scoped memory is to allow memory management of dynamically
allocated objects without a GC. A thread enters a scoped mem-
ory, creates temporary objects, and on exit of the scoped memory
the storage of the temporary objects is reclaimed. With RTSJ sev-
eral threads are allowed to enter a scoped memory concurrently.
Only when the last thread exits the scoped memory, the storage is
reclaimed. Scopes can also be nested and strict assignment rules
have to be checked at runtime to avoid pointers from longer-lived
objects to shorter-lived objects.

Scopes are represented by objects of class ScopedMemory. The
memory that is used for the objects allocated in the scope is called
backing store. The notion of the backing store is a little bit vague.
Here is the description from RTSJ 1.0.2:

When a ScopedMemory area is instantiated, the
object itself is allocated from the current memory allo-
cation context, but the memory space that object repre-
sents (it’s [sic] backing store) is allocated from mem-
ory that is not otherwise directly visible to Java code;
e.g., it might be allocated with the C malloc function.
This backing store behaves effectively as if it were al-
located when the associated scoped memory object is
constructed and freed at that scoped memory object’s
finalization.

Intuitively one would assume that a nested scope will reserve its
backing store from the outer scope and a scope would need to be
sized for all allocated objects plus its inner scope memory require-
ment. However, this intuition is wrong. Backing stores for different
scopes, independent of wether they are nested or not, are not related
at all. This fact can be derived from “might be allocated with the
C malloc function”. This definition of the allocation and freeing
of backing store easily leads to fragmentation of the memory from
where backing stores are allocated.

Furthermore, the backing store is only freed when the scoped
memory object is released. The memory cannot be reused by other
3In principle data on a C stack can also be shared between threads.
However, this is considered bad programming style, whilst the
RTSJ encourages scope sharing.

public class HelloSCJ extends Mission implements Safelet {

static SimplePrintStream out;

// Mission methods
@Override
protected void initialize () {

OutputStream os = null;
try {

os = Connector.openOutputStream("console:");
} catch (IOException e) {

throw new Error("No console available");
}
out = new SimplePrintStream(os);

PeriodicEventHandler peh = new PeriodicEventHandler(
new PriorityParameters(11),
new PeriodicParameters(new RelativeTime(0, 0), new RelativeTime(1000, 0)),
new StorageParameters(10000, 1000, 1000)) {

int cnt;

public void handleAsyncEvent() {
out. println ("Ping " + cnt);
++cnt;

}
};
peh.register ();

}
@Override
public long missionMemorySize() { return 1000; }

// Safelet methods
@Override
public MissionSequencer getSequencer() {

// we assume that this method is invoked only once
StorageParameters sp = new StorageParameters(20000, 0, 0);
return new LinearMissionSequencer(new PriorityParameters(13), sp, this);

}
@Override
public long immortalMemorySize() { return 100; }

}

Figure 1: A safety-critical Java Hello World application

scopes, even when it is known that two scopes, allocated at the
same scope levels, are never entered together.

3.2 SCJ
SCJ bases its memory classes on the RTSJ memory classes as

they are defined by the upcoming version 1.1 of the RTSJ. In the
following we show the public visible memory classes and methods
from the packages javax.realtime and javax.safetycritical. Package
private methods and methods available in a standard RTSJ imple-
mentation, but forbidden in SCJ, are omitted from the description.

3.2.1 javax.realtime
The interface AllocationContext defines the contract for all mem-

ory areas. Compared to the RTSJ, the enter() method is not avail-
able, as SCJ applications shall not explicitly enter a memory area.

public interface AllocationContext {

public void executeInArea(Runnable logic);
public long memoryConsumed();
public long memoryRemaining();
public Object newArray(Class type, int number)

throws IllegalArgumentException;
public Object newInstance(Class type)

throws ExceptionInInitializerError ,
InstantiationException , InvocationTargetException;

public long size ();
}

In RTSJ the interface ScopedAllocationContext defines methods
to set and get a portal. As portals are not part of SCJ, this interface
is empty.

public interface ScopedAllocationContext
extends AllocationContext {

}

The class MemoryArea is the base class of all RTSJ memory ar-
eas (including heap memory). Within SCJ, immortal, mission, and
private memories are based on MemoryArea.

public abstract class MemoryArea implements AllocationContext {

public static MemoryArea getMemoryArea(Object object) {...}
public void executeInArea(Runnable logic)

throws InaccessibleAreaException {...}
public Object newInstance(Class type)

throws IllegalArgumentException, InstantiationException,
OutOfMemoryError, InaccessibleAreaException {...}

public Object newArray(Class type, int size) {...}
public Object newArrayInArea(Object o, Class t, int size) {...}
public abstract long memoryConsumed();
public abstract long memoryRemaining();
public abstract long size ();
}

The class that represents immortal memory is the unchanged ver-
sion of the RTSJ class ImmortalMemory. However, we assume that
the method enter() shall not be part of the SCJ version of Immor-
talMemory.

public final class ImmortalMemory extends MemoryArea
{

public static ImmortalMemory instance() {...}
public void enter(Runnable logic) {...}
public long memoryConsumed() {...}
public long memoryRemaining() {...}
public long size () {...}

}

Class ScopedMemory has no public visible methods.

public abstract class ScopedMemory
extends MemoryArea implements ScopedAllocationContext {

}

The LTMemory class from the RTSJ is the base class for SCJ
memory areas. However, as SCJ applications shall not explicitly
enter a memory area, we assume that the enter() method should not
be part of the SCJ API. We are further quite skeptic that method
resize() should be part of the SCJ API. An indication that this is an
error is that method resize() in the super class ScopedMemory is
restricted for infrastructure code.

Note, there is a difference between the appendix of the specifi-
cation [6] and the memory chapter. In the memory chapter LT-
Memory does not contain any public methods. At least the abstract
methods from MemoryArea shall be implemented by this class.

public class LTMemory extends ScopedMemory {

public void enter(Runnable logic) {...}
public long memoryConsumed() {...}
public long memoryRemaining() {...}
public long size () {...}
public void resize(long size) {...}

}

3.2.2 javax.safetycritcal
Class ManagedMemory is the base class for mission memory and

private memory. Creation of the memory areas is performed by the

SCJ implementation. A SCJ application cannot directly instantiate
any scoped memory. If a handler wants to enter a nested private
memory, it invokes enterPrivateMemory() and the nested scope is
created by the infrastructure. This mechanism ensures that a private
scope cannot be entered by more than one handler.

However, with getCurrentManagedMemory() a reference to the
private memory can be obtained and shared via mission or immortal
memory. Therefore, allocateInArea() has to check if the private
memory belongs to the invoking thread.

Note, the method getMaxManagedMemorySize() should proba-
bly not be part of the public API. It is in the appendix of the spec-
ification, but not explained. It is assumed that the specification of
ManagedMemory will change in the future and the following class
definition might already be out of date when the paper is published.

public abstract class ManagedMemory extends LTMemory {

public static ManagedMemory getCurrentManagedMemory() {...}
public static long getMaxManagedMemorySize() {...}
public static void enterPrivateMemory(long sz, Runnable r) {...}
public long size () {...}
}

The class, which represents mission memory, has only two pub-
lic methods. However, we assume that the public enter() method
is an error in the specification. It should actually not be part of
the SCJ API, as mission memory is entered by infrastructure code.
We also do not see any good reason why this class shall support a
toString() method. If both public methods are dropped, the Mission-
Memory class can be dropped from the public API, similar to the
PrivateMemory class.

class MissionMemory extends ManagedMemory {
public final void enter(Runnable logic) {...}
public String toString () {...}

}

Class PrivateMemory represents the scoped memories that are
used by the handler. However, the class has no public visible meth-
ods as this class shall not be used directly by an application. In that
case it might be reasonable to drop this class from the public API
and just explain the concept of private memories, which is behind
the method enterPrivateMemory().

public class PrivateMemory extends ManagedMemory {
}

3.3 Discussion
Due to the inheritance of memory area classes from the RTSJ and

specialization for mission and private memories in SCJ, the class
hierarchy is quite large. As some features, e.g., portals and invoca-
tion of enter(), are not available within SCJ, some of the classes are
basically empty.

One challenge an SCJ implementation faces is that the classes
for the memory management live in different packages. Java does
not have the friend concept of C++ for fine grain access restriction.
Therefore, if a class in package javax.safetycritical needs to invoke
a method from a superclass in javax.realtime this method has to be
public.

As the allocation methods and executeInArea are concrete meth-
ods of MemoryArea, the meat of the implementation will be there.
However, the enterPrivateMemory() method in ManagedMemory
will need to call into MemoryArea for entering the memory area.
The current approach within SCJ is that there are public methods
in the RTSJ classes (e.g., enter()). These methods are marked with

IM

Reserved backing store

Immortal IM M

Reserved backing store

Immortal

Mission

IM

P1

M

P2 P3

Immortal

Mission

Private 1

Private 2

Private 3

Reserved backing store

IM

P1

M

P2 P3

Immortal

Mission

Private 1

Private 2

Private 3

Nested

N

(1) Safelet startup (2) Mission creation (3) Handler creation (4) Nested private of P2

Figure 2: Memory layout with the single Memory class for all SCJ memory types

an annotation that application code is not allowed to invoke them.
A checking tool will enforce these annotation rules.

An alternative would be to define just managed memory and
immortal memory classes in javax.safetycritical that do not inherit
from the RTSJ. In that case there is no package crossing and
Java’s protection scheme of public and package private methods is
enough. There might be the counter argument that the reference
implementation (RI) of SCJ shall execute on RTSJ. However, the
SCJ memory area classes can simply use the RTSJ classes in the
form of composition instead of inheritance [5].

With the current solution of using subsets of the RTSJ classes,
the execution of the RI on a plain RTSJ JVM has following two
issues: (1) the SCJ programmer does not see which classes and
methods from the RTSJ are legal in an SCJ application and which
not; (2) as a standard RTSJ is not SCJ aware their classes do not
contain the annotations and the checker approach fails.

A clear separation of SCJ and RTSJ classes would actually sim-
plify the implementation and the usage of the RI. A SCJ application
is compiled against the javax.safetycritical classes of the RI, which
enforces using only the SCJ API.4 The RI itself is compiled against
the javax.realtime classes.

4. MEMORY MANAGEMENT DESIGN
To allow a fragmentation free implementation of scoped memo-

ries, the maximum size of backing store requirements needs to be
specified. The SCJ application has to specify the size of immortal
memory, the size of the mission memory, and the size of all private
memories per handler.

Furthermore, the memory areas have a unique nesting relation.
Mission memory is an inner memory of immortal, and private
memories are inner memories of mission memory. According to
the RTSJ notion of scoped memories, the object that represents the

4The author has seen students struggling to build test cases for SCJ
with a version of the RI on top of the RTSJ. They used RTSJ fea-
tures without noticing that those features are not allowed in a real
SCJ runtime.

memory area is allocated in the outer memory. However, the size,
given in the constructor of a scoped memory does not include the
memory requirements of the nested scopes. Therefore, the actual
memory, the backing store, is not nested in RTSJ style scopes.

However, with the information of the maximum sizes of nested
scopes an implementation of the memory area can actually use real
nesting of the backing store. We use this property in a single class
that can be used for all three memory types of SCJ. The class Mem-
ory is a system class and is used to implement ImmortalMemory,
MissionMemory, and PrivateMemory.

Memory has two size parameters, one for the memory area it rep-
resents, and the second for the size of the nested memory areas. At
JVM start the Memory object that represents immortal memory is
created. At SCJ application start, when the immortal memory size
is requested from the Safelet, the size parameter for the immor-
tal memory is set and the rest of the available memory is reserved
for the nested memories. In the next step, a mission memory ob-
ject is created within immortal memory. This mission memory ob-
ject consumes the entire remaining backing store, reserves mission
memory size for itself, and the remaining storage for private mem-
ories.5

The individual handlers have a StorageParameter in their con-
structors. Besides stack sizes, this parameter contains the size of
the initial private memory and the maximum backing store for the
nested private memories of that handler.

With this information the first private memory object can be
sized with its own size and the additionally required backing store
for the nested private memories. A nested private memory con-
sumes all the backing store of the outer memory, reserves memory

5The size of all memory that is available for an SCJ JVM cannot be
specified within a SCJ application. A SCJ JVM executing directly
on the hardware might use all available physical memory. If the
JVM is a process executing on an RTOS, the maximum memory
requirement may be given as a command line parameter at the JVM
start.

for the local allocation, and provides the backing store for the fur-
ther nested private memories.

Figure 2 shows how the memory data structure evolves over the
lifetime of an SCJ application. Boxes represent memory areas; cir-
cles represent memory area objects. IM is immortal memory, M
mission memory, Px are initial private memories for handlers, and
N is a nested private memory of handler 2.

The first subfigure shows the memory division at Safelet startup.
The immortal memory object IM is already created at JVM startup
and originally all available memory is allocated for immortal mem-
ory. At creation of the SCJ application the immortal memory is
resized and the remaining memory is reserved backing store for
nested memories. Subfigure (2) shows the memory layout after
creation of mission memory. The mission memory object resides in
immortal memory; the space for the mission memory is allocated;
and all remaining memory is allocated as reserved backing store
for the mission memory. At handler creation, shown in subfigure
(3), the handlers memory requests are allocated from the reserved
backing store of the mission memory. In this example three han-
dlers are shown with their initial private memories P1, P2, and P3.
Only handler 2 has reservation for a nested private memory, which
is part of its private memory P2. In the last subfigure (4) the mem-
ory is shown during a release of handler 2. Handler 2 has entered
a nested private memory. The object for this nested memory is N
and the backing store is allocated from the reserved backing store
of private memory P2.

4.1 Implementation
We base our implementation on the Java processor JOP [11]. Im-

plementing the SCJ compatible memory management is the first
step towards a full SCJ implementation on JOP. As part of the JVM
is implemented in Java, the low-level implementation of the mem-
ory class can also be implemented in Java. In a normal JVM this
kind of system level code is usually programmed in C. The pre-
sented concept is independent of the implementation form of the
JVM.

Figure 3 shows a sketch of the Memory class. We use plain in-
teger fields to represent memory addresses. For example, startPtr
contains the address of the start of the memory area. Allocation
in the memory area is just an increment of the allocation pointer
allocPtr; the end of the memory for the local allocations is stored in
endLocalPtr. Following this local area is the backing store for the
nested memories till endBsPtr. Nested memory areas are allocated
by changing the backing store allocation pointer allocBsPtr.

Each memory area has a nesting level: starting with 0 for immor-
tal memory, 1 for the first mission memory, and 2 and higher for the
private memories. As only immortal memory and mission memory
is shared between threads, the memory hierarchy, seen by a han-
dler, is a single stack of memories. Therefore, pointer assignment
checks can be simplified to just check the nesting level.

The first memory area that is created is the immortal memory and
is special as the object that represents it is itself allocated in immor-
tal memory. The creation of this special memory is performed as
part of the JVM startup code by calling getImmortal. This singleton
object is stored in the static reference immortal.

Each memory object has a reference to its parent, the outer scope.
The memory object also contains a field for a nested memory area.
An object for a nested private memory is allocated on the first invo-
cation of enterPrivateMemory() from that level. To not leak mem-
ory area objects on entering nested private memories in a loop, the
object for the nested memory is reused on a repeated enter. It is
possible that a handler enters in one release several private memo-

public class Memory {

/** Start address of memory area */
int startPtr ;
/** Allocation pointer */
int allocPtr ;
/** End of area for local allocations */
int endLocalPtr;
/** Allocation pointer for the nested backing store */
int allocBsPtr;
/** End of backing store */
int endBsPtr;
/** Parent scope */
Memory parent;
/** Nesting level */
int level ;
/**
* A reference for an inner memory that shall be reused

* for enterPrivateMemory.

*/
Memory inner;
/**
* The singleton reference for the immortal memory.

*/
static Memory immortal;

Memory() {}

/**
* Create a Scope object that represents immortal memory.

*/
static Memory getImmortal(int start, int end) {...}

/**
* Create a scope of the specified size and

* bsSize backing store.

*/
Memory(int size, int bsSize) {...}
/**
* Create a scope and use all available backing store.

*/
Memory(int size) {...}

void enter(Runnable logic) {...}
void executeInArea(Runnable logic) {...}

/**
* Return the memory region which we are currently in.

*/
static Memory getCurrentMemory() {...}
/**
* This is SCJ style inner scopes for private memory.

*/
void enterPrivateMemory(int size, Runnable logic) {...}

}

Figure 3: The Memory system class for the SCJ memory areas

ries with different sizes. Therefore, the memory object needs to be
mutable to adjust it to different storage requirements.

4.2 Interaction with Handlers
Each SCJ handler, which is implemented by a periodic real-time

thread on JOP, contains a reference to its current allocations con-
text. That allocation context is represented by a Memory object.
Object creation, which is also implemented in Java on JOP, looks
up the thread’s allocation context on the execution of bytecode new
and the versions for array allocations. One optimization would be
to store the current allocation context in a static variable in the
thread data structure and change it on a thread switch.

4.3 Nested Missions
The proposed way to organize the memory areas is designed

from an SCJ Level 1 point of view. However, it will also work
for Level 2 implementations. After allocation of the first mission
memory and the reservation for all handlers memory needs, some
memory in the reserved backing store in the first mission must re-
main. A nested mission memory (plus the backing store for its
handlers, plus the backing store for further nested missions) is allo-
cated in the remaining backing store of the outer mission, similar to
the backing stores for handlers of the outer mission are allocated.

To enable reservation of backing store for nested mission, the
sizes of the missions is included in the storage parameters of mis-
sion sequencers. The mission sequencers are created at initializa-
tion of the outer mission. Therefore, all storage requirements are
available at initialization time.

For a Level 1 implementation of SCJ, the storage parameter of
a mission sequencer is redundant. The implementation can use all
remaining memory after sizing of the immortal memory for mission
memory and private memories. However, to enable reasoning about
the memory requirements of an SCJ Level 1 application, the storage
parameter for the mission sequencer is also used in Level 1. It has
to be set to the maximum size of any sequenced mission, including
backing store for the mission memory and the handlers.

4.4 Discussion
The current version of SCJ allows allocation of objects in immor-

tal memory and mission memory also during the execution phase.
However, when a periodic handler allocates objects on each release,
this is a memory leak that will result on an out-of-memory excep-
tion.

Safety-critical programs are usually very conservative with stati-
cally allocated data and allocate it within the initialization phase. If
SCJ would disallow allocation in mission or immortal memory dur-
ing mission, the allocation operation can further be simplified. In
that case only a single thread is allocating at any time in any mem-
ory area. Therefor, the synchronization within a new operation can
be avoided.

5. CONCLUSION
In this paper we presented the current memory model of the

safety-critical Java specification. The main differences to the RTSJ
memory model are: single nesting of scopes, thread private mem-
ory areas, and that the application has to size the maximum backing
store for all nested private memories. This model avoids fragmen-
tation of backing store and allows for a simple implementation of
the memory areas.

We also presented a unified memory class that can be used to
represent immortal, mission, and private memory. This class con-
tains, besides the backing store of the memory area it represents,
also the backing store for nested memory areas. As scoped mem-
ories are not explicitly created in an SCJ application, the memory
class contains already the reference for a nested scope. The ob-
ject to represent a nested private memory is allocated on the first

enter of a nested private memory, but reused when repeatedly en-
tered during a single release of a handler. To allow different sized
scopes in the same release, the size of the private memory needs to
be mutable.

6. ACKNOWLEDGMENTS
I would like to thank the JSR 302 expert group, and especially

Kelvin Nilsen, for the long (and sometimes intense) discussions
of the memory model for SCJ at enjoyable expert group meetings.
Nevertheless, this paper does not necessarily represent the opinion
of the expert group and all mistakes remain in the responsibility of
the author. I would also like to thank the anonymous reviewers for
their very detailed reviews.

The author would like to thank Anders P. Ravn for discussions on
the memory design for SCJ. This work is part of the project CJ4ES
and received partial funding from the Danish Research Council for
Technology and Production Sciences under contract 10-083159.

7. REFERENCES
[1] Aonix. Perc pico 1.1 user manual.

http://research.aonix.com/jsc/pico-manual.4-19-08.pdf, April
2008.

[2] A. Armbruster, J. Baker, A. Cunei, C. Flack, D. Holmes,
F. Pizlo, E. Pla, M. Prochazka, and J. Vitek. A real-time Java
virtual machine with applications in avionics. Trans. on
Embedded Computing Sys., 7(1):1–49, 2007.

[3] T. Bøgholm, R. R. Hansen, A. P. Ravn, B. Thomsen, and
H. Søndergaard. A predictable java profile: rationale and
implementations. In JTRES ’09: Proceedings of the 7th
International Workshop on Java Technologies for Real-Time
and Embedded Systems, pages 150–159, New York, NY,
USA, 2009. ACM.

[4] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and
M. Turnbull. The Real-Time Specification for Java. Java
Series. Addison-Wesley, June 2000.

[5] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley Professional, 1994.

[6] D. Locke, B. S. Andersen, B. Brosgol, M. Fulton, T. Henties,
J. J. Hunt, J. O. Nielsen, K. Nilsen, M. Schoeberl, J. Tokar,
J. Vitek, and A. Wellings. Safety-critical Java technology
specification, public draft, 2011.

[7] K. Nilsen. Draft safety critical Java standard. available from
http://research.aonix.com/jsc/, April 2004.

[8] K. Nilsen. Harmonizing alternative approaches to
safety-critical development with Java. In Proceedings of the
9th International Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES 2011), 2011.

[9] F. Pizlo, L. Ziarek, and J. Vitek. Real time java on
resource-constrained platforms with Fiji VM. In Proceedings
of the 7th International Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES 2009), pages
110–119, New York, NY, USA, 2009. ACM.

[10] A. Plsek, L. Zhao, V. H. Sahin, D. Tang, T. Kalibera, and
J. Vitek. Developing safety critical Java applications with
oSCJ/L0. In Proceedings of the 8th International Workshop
on Java Technologies for Real-Time and Embedded Systems
(JTRES 2010), pages 95–101, New York, NY, USA, 2010.
ACM.

[11] M. Schoeberl. A Java processor architecture for embedded
real-time systems. Journal of Systems Architecture,
54/1–2:265–286, 2008.

	Introduction
	Safety-Critical Java
	Missions and Scheduling
	Memory Model

	Scoped Memory
	RTSJ
	SCJ
	javax.realtime
	javax.safetycritcal

	Discussion

	Memory Management Design
	Implementation
	Interaction with Handlers
	Nested Missions
	Discussion

	Conclusion
	Acknowledgments
	References

