
A Desktop 3D Printer in Safety-Critical Java

Tórur Biskopstø Strøm
Department of Informatics and Mathematical

Modeling
Technical University of Denmark

torur.strom@gmail.com

Martin Schoeberl
Department of Informatics and Mathematical

Modeling
Technical University of Denmark

masca@imm.dtu.dk

ABSTRACT
It is desirable to bring Java technology to safety-critical systems.
To this end The Open Group has created the safety-critical Java
specification, which will allow Java applications, written accord-
ing to the specification, to be certifiable in accordance with safety-
critical standards. Although there exist several safety-critical Java
framework implementations, there is a lack of safety-critical use
cases implemented according to the specification.

In this paper we present a 3D printer and its safety-critical Java
level 1 implementation as a use case. With basis in the implemen-
tation we evaluate the specification and its usability for developers
of safety-critical systems.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—Real-time
systems and embedded systems

Keywords
Safety-critical Java, scoped memory, RepRap

1. INTRODUCTION
The popularity of Java has spawned projects that have brought

Java into real-time systems. A continuity of this process is done by
The Open Group with the safety-critical Java (SCJ) specification,
such that Java can be used in certifiable safety-critical applications.
This specification is a work in progress. To evaluate the expressive-
ness of the specification, the simplicity of the API, and the ease in
which safety-critical applications can be written in Java, we need
implementations of SCJ and very important use cases. These use
cases shall show the strength and weakness of SCJ.

Implementations of SCJ are already on the way [19, 16]. How-
ever, use cases are still very rare. In this paper we evaluate the
specification by implementing a RepRap 3D desktop printer as a
use case. A RepRap is a desktop printer capable of creating 3-
dimensional (3D) objects in plastic [8]. Some of the components of
a RepRap are printable by the RepRap itself. Therefore, a RepRap
is partially self-replicable. The 3D drawings are interpreted by a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES 2012 October 24-26, 2012, Copenhagen, Denmark
Copyright 2012 ACM 978-1-4503-1688-0 ...$15.00.

host computer (a normal PC) and printing instructions are sent to
the RepRap controller. The RepRap controller interprets the in-
structions, moves the printing head, heats the plastic and extrudes
it. This controlling has real-time constraints. In our project we have
substituted the microcontroller with an FPGA board and rewrote
the original C based firmware as a SCJ application.

As SCJ platform we use the Java processor JOP on a Altera DE2-
70 FPGA platform. The FPGA platform allows us to build appli-
cation specific I/O devices to access the sensors and actuators of a
RepRap system. Besides implementing the controller software in
SCJ, we have built the RepRap printer hardware, electrical circuits
to interface the stepper motors, the the FPGA platform, and use
simple analog-digital converter for the melding temperature mea-
surement.

The main contribution of the paper is the first real SCJ-based
application controlling a robot and providing it in open-source. We
also provide feedback on the SCJ specification and API from the
point of view of a Java programmer

The paper is organized as follows: The following section
presents background on safety-critical Java and the Java processor
JOP and related work on SCJ use cases and the RepRap project.
Section 3 describes the implementation of the RepRap controller
in SCJ on top of JOP. The Evaluation in Section 4 gives feedback
on our programming experiences with SCJ and compares the SCJ
implementation against an implementation in C. Section 5 provides
links to the source of the application and Section 6 concludes the
paper.

2. BACKGROUND AND RELATED WORK
The intention of this work is the evaluation of safety-critical

Java; how expressive this specification is and where the restrictions
are. Therefore, we present a brief background on safety-critical
Java here. Details can be found in the public draft of SCJ [5].

As JVM we use a Java processor, which is implemented in an
FPGA. Therefore, we also give some background information on
JOP.

2.1 Safety-Critical Java
Safety-critical Java (SCJ) [5] is intended for future safety-critical

systems that need certification. To allow certification of Java pro-
grams only a very restricted subset of Java is defined. SCJ itself
is based on the real-time specification for Java (RTSJ) [1]. It is a
subset of RTSJ with some additional class files. It is so defined that
it can in principle be implemented on top of RTSJ.

The SCJ specification is developed within the Java community
process (JCP) under specification request number JSR 302. To
cover different criticality levels, SCJ defines three different levels
with increasing complexity of implementations and increasing ex-

pressive power for the application programmer. Level 0 provides
a single-threaded cyclic executive. All memory areas (immortal,
mission, and private) are available in level 0. As individual execu-
tions of handler releases are not preempted, the backing store for
the private memory of a handler can be reused by the next han-
dler. Level 1 introduces preemptive scheduling with ceiling based
locks. Furthermore, interrupt handlers, written in Java, are allowed
in level 1. Level 2 provides the notion of nested missions for more
dynamic systems. With the work presented in this paper we are
interested in the evaluation of SCJ level 1.

Concurrence is represented as handlers in SCJ, similar to RTSJ
style event handlers. In fact the SCJ handlers are a subclass of RT-
SJs BoundAsyncEventHandler. These handlers are either periodic
or event triggered.

SCJ has the notion of missions. An application can consist of
several missions, where each might represent a different operation
mode. The mission itself consists of the handlers and a mission
memory. The handlers within a mission are created at initialization
phase and the number of handlers is fixed for a mission. Handlers
come in two flavors: a periodic event handler to be released time-
triggered and an aperiodic handler released by an event. The event
to release an aperiodic handler can be a software event or an inter-
rupt.

A mission consists of three phases: initialization, execution, and
cleanup. At the initialization phase the mission memory is created
by the SCJ implementation and all handlers and data created during
initialization is by default allocated in the mission memory. Data
shared between handlers needs to be allocated in mission memory.
Data shared between missions needs to be allocated in immortal
memory.

The SCJ application is started on the transition to the execution
phase. Temporal objects are allocated in the handlers private mem-
ory. After the cleanup phase, the mission memory is cleared and a
new mission can be started. Our example is a single mission exam-
ple. There is no need for mission sequences. We assume that most
safety-critical applications are single mission applications.

A SCJ application is represented by a class that implements
Safelet and at least one class that extends Mission. Simple pro-
gram, consisting of a single mission, can use one class that extends
Mission and implements Safelet.

Three different memory areas are available for an SCJ applica-
tion: immortal memory, mission memory, and anonymous private
scope memories. Immortal memory is the same as immortal mem-
ory in the RTSJ. It contains static fields, objects that are created
during class initialization, and application data that needs to be
preserved over mission boundaries. Mission memory, as the name
implies, exists as long as a mission is active (in any of the three
phases).

Each handler has an initial private memory, which is cleared after
a release has finished. Therefore, no data can survive individual
releases. To allow more flexibility with in the release of a handler,
the handler can enter nested private memories. Different enters
in nested private memories might be sized different. Therefore,
the implementation of the private memory area needs to be able to
resize a memory area [13].

2.2 The Java Processor JOP
The Java processor JOP [12] is an implementation of the JVM

in hardware. The bytecodes of the JVM are the native instructions
of the processor. JOP has been optimized to be time-predictable,
while still performing well. The execution pipeline is a 4 stage
in-order pipeline. The execution time of individual bytecodes are
independent of each others. These properties enabled building

worst-case execution time (WCET) analysis tools for Java that
target JOP [15, 4].

The execution time of individual bytecodes, the instruction set of
the JVM, is known cycle accurate. Most bytecodes have a constant
execution, which means that the WCET and the best-case execution
time (BCET) are equal. Variability in the execution time mainly re-
sults from the instruction cache. To simplify WCET analysis of
the instruction cache, JOP caches whole methods [10]. Therefore,
cache misses can only happen on method invocations and on a re-
turn from a method. This method cache also simplifies the timing
model for WCET analysis.

The implementation in an FPGA also allows to add hardware
devices in the same FPGA. Within the RepRap project we added
the motor driver interface and an ADC interface for the temperature
sensor. Those I/O devices are represented as hardware objects in
Java [14]. In a standard SCJ or RTSJ implementation access to the
I/O devices would be via raw memory interfaces.

In this project we use the SCJ implementation on top of JOP [16].
Only the I/O devices are platform specific (as usual in an embed-
ded system), but the application code shall be standard SCJ. We
intend to verify this by building a self-contained benchmark, where
I/O devices are simulated. With this benchmark we can evaluate
different SCJ implementations.

2.3 SCJ Use Cases
While there is a lack of use cases for SCJ, some work has been

done. In [6] the CDx benchmark is ported to the SCJ level 0 com-
pliant oSCJ framework. The benchmark is used to evaluate perfor-
mance of the framework compared to the equivalent C code. In this
paper we move to a level 1 compliant framework and focus more
on the problems a developer may encounter.

In [17] a framework called PERC Pico is described, which
slightly diverges from SCJ. The paper describes the porting of it to
two ARINC 653 compliant operating systems. A simplified flight
warning system developed by THALES is used to validate the
porting. It is desirable to implement real safety-critical use cases in
SCJ, such as a flight warning system, however they are not readily
accessible. The RepRap is freely available and, depending on the
implementation, provides a real-time use case capable of testing a
large part of the SCJ specification.

A very recent use case, a cardiac pacemaker, compares the im-
plementation in Ravenscar Ada [2] against one in SCJ [18]. The
conclusion of this experiment is that SCJ is missing a watchdog
timer. They propose (and expect) that a future version of SCJ will
support one-shot timers. In our use case all tasks are time trig-
gered, or the input of a serial port is periodically polled. Therefore,
we have not missed a one-shot timer.

2.4 The RepRap Project
A RepRap is a desktop printer capable of creating 3-dimensional

(3D) objects in plastic [8]. Some of the components are printable,
meaning that the RepRap is partially self-replicable. In a stan-
dard setup the host software, running on a computer, reads a 3D
drawing, such as an STL file from a CAD application, and sends
printing instructions, called G-codes, to the RepRap. The RepRap
firmware interprets the instructions and ensures that the printing
head is moved to the instructed coordinates while heating and ex-
truding plastic.

The RepRap does not fall under the normal definition of a safety
critical system where human lives are in danger [20], however it is
still a useful SCJ use case. The firmware has to control the stepper-
motors that move the printing head (extruder) and extrude plastic,
read the end-stop sensors, and also control and measure the tem-

perature of the head. The temperature has to be high before the
plastic is optimally extruded, e.g. as high as 230◦C for PLA [7],
but it should not overshoot, as too high temperatures might destroy
the plastic and components. It is therefore reasonable to imple-
ment the firmware as a SCJ application, where all measurements
and controls are done within well defined timing boundaries.

3. IMPLEMENTATION
The implementation is comprised of the host software, an FPGA,

an interface board and the RepRap hardware, connected as shown
in Figure 1.

Host FPGA

Interface
BoardRepRap

SLT

G-Codes
(Serial)

I2C, Pulses
(IO Pins)

(Wires)

Figure 1: Hardware Layout

Figure 2: FPGA

The host software is the official Java RepRap host software. It
is capable of slicing 3D drawings into G-codes and send the codes
to the firmware over a serial line. The communication between the
firmware and the host software uses a simple protocol: At startup
the firmware is waiting for G-codes. Each code received from the
host must be confirmed by sending an acknowledgement back to

Figure 3: Interface Board

Figure 4: RepRap

the host. Since the host does not send any further codes until it
receives an acknowledgement, the firmware can control the com-
munication flow and avoid overflowing the serial buffers. If check-
sums are used in the communication a corrupted code triggers a
resend request by the firmware to the host, which resends the re-
quested code line.

3.1 Hardware
The FPGA is used for the RepRap firmware and is therefore con-

nected to the host. We use the Altera DE2-70 board shown in Fig-
ure 2. To drive the motors, temperature and sensors of the RepRap,
we have built the interface board shown in Figure 3. The RepRap
itself is shown in Figure 4. Figure 5 shows the complete RepRap
system consisting of the robot, a power supply, and FPGA board
and the motor interface. The host PC is not shown.

The FPGA is configured with the implementation of JOP. JOP is
loaded with a SCJ level 1 compliant framework, on top of which
the firmware is running (see Figure 6).

Figure 5: RepRap setup without the host

3.2 Software
The RepRap firmware is implemented from scratch. It is

designed as a SCJ level 1 single mission application and con-
sists of 4 PeriodicEventHandlers (PEHs), as shown in Figure
7: HostController, CommandParser, CommandController and
RepRapController. The idea is to have a pipeline where a G-code
is received, parsed and executed. For each type of G-code there
is a respective command class who’s instances represent received
valid G-codes. Each command class has an object pool with at
least one instance of itself that resides in mission memory. Instead
of creating a new command object when the G-code has been
parsed, the respective object is retrieved from mission memory.
This allows the object reference to be passed between PEHs.
Command classes that have an object pool represent G-codes that
are buffered, i.e., the firmware should send an acknowledge to
the host as soon as the code is verified, and not wait until it has
executed like the other codes.

The HostController represents the receiver and handles the serial
communication with the host computer. As PEHs have guaranteed
response times, no characters are left unprocessed as long as the
host does not send characters faster then the agreed upon baud rate.
The controller strips the received G-code string of any comments
before marking it as ready.

The CommandParser represents the parser. It polls the HostCon-
troller for a ready code string and, if ready, copies it. The string
is then parsed. If the string is valid the respective command object
is pulled out of its pool, and enqueued in the CommandController.
The HostController does not save further characters until the Com-
mandParser is finished with the last command, however the func-
tionality is split into two PEHs to decrease the WCET, allowing
greater throughput.

The CommandController is a part of the command object exe-
cution. It has a command object queue which is traversed in FIFO

FPGA

JOP

SCJ Framework

RepRap Firmware

Figure 6: Firmware layers

Host

CommandControllerRepRapController

HostController CommandParser

Interface
Board

FPGA

Figure 7: PeriodicEventHandler communication

order. When an object is pulled out of the queue the Command-
Controller calls the command’s execute method, which performs
the command. If the command needs to interact with the RepRap
or host as part of the execution, it calls the necessary methods in
the RepRapController or HostController. After a command has ex-
ecuted it is returned to its respective command pool.

The RepRapController handles all communication with the
RepRap hardware. It ensures that all axes move toward their
target points. It also reads all necessary measurements, such as
temperature and end-stop signals. The RepRapController uses
SimpCon [11] to map a“hardware object” to the input/output pins
on the FPGA. The pins are connected to the interface board, which
in turn is connected to all the RepRap hardware.

4. EVALUATION
From a programmer’s perspective there can be several reasons

to want to use Java technology for safety-critical applications, e.g.
avoid/reduce memory and timing management, overall ease of use,
used to Java programming, etc. SCJ aims to bring Java to safety-
critical systems. However, SCJ restricts Java in several areas, so the
question is whether the difference between SCJ and Java alienates
Java, and other, developers.

4.1 SCJ Programming Experience
Being used to Java threads, programming with PEHs is similar,

since the application can be functionally distributed across PEHs in
the same manner as threads. One difference is that PEHs are cre-

ated at mission start-up and are periodic, which might be a prob-
lem where one would create threads on the fly in Java, such as
when processing large data sets. However this is not necessarily a
problem for safety-critical applications. In Java, to create a peri-
odic task, one would typically create a thread and override the run
method, as shown in Figure 8. In SCJ this done by overriding the
handleAsyncEvent method, as shown in Figure 9.

@Override
public void run()
{

boolean loop = true;
while(loop)
{

/*
* Do work

*/
try
{

wait (10);
}
catch (InterruptedException e)
{

e.printStackTrace ();
}

}
}

Figure 8: Periodic Java thread

new PeriodicEventHandler(new PriorityParameters(1),
new PeriodicParameters(null, new RelativeTime(10,0)),
new StorageParameters(50, null, 0, 0), 40)

{

@Override
public void handleAsyncEvent()
{

/*
* Do work

*/
}

};

Figure 9: PeriodicEventHandler

Whilst it is an improvement knowing that the handleAsyncEvent
method is guaranteed to be called in the specified period, the stor-
age parameters are troublesome. It is possible to count the number
of objects and primitives used in a memory scope, however the size
of objects is platform dependent, so unless the programmer has a
thorough knowledge of the platform, the correct value for the pa-
rameters is not clear. Development would be made easier if a tool
was available to statically analyse the maximum memory usage of
the handleAsyncEvent method and thereby get a PEH’s necessary
storage parameters.

Java programmers are used to the JVM handling memory man-
agement, with a garbage collector taking care of object dealloca-
tion. In SCJ there is no garbage collector. Instead objects are cre-
ated in memory scopes and deallocated when the scope is exited.

Since each PEH has a private scope this means that all objects cre-
ated in one execution of the PEH are deallocated when the PEH is
released. It is therefore not a problem to create temporary objects
during execution, similarly to using a garbage collector. However,
the objects cannot be referenced from anywhere outside the exe-
cution. This is a major difference to Java, where the programmer
can freely pass references between threads. If one PEH generates
a result object that is needed in another PEH, the primitive values
of the object have to be copied to a shared object in either mission
or immortal memory. This is why the SCJ RepRap firmware uses
object pools in mission memory. Initially the pools were created
in immortal memory, however the PEHs have to be created in mis-
sion memory and some Command objects need references to some
of the PEHs, which results in illegal referencing. Using immortal
memory can therefor be problematic. It is also not evident when
an object is initialized in immortal memory, e.g. is it only after
the Safelet is created or also when using static initializers? Having
an initialization method in the safelet similar to Mission.initialize
would be easier.

The referencing problem also affects the use of library code
which creates new objects. For example StringBuilder automati-
cally creates a new array in the append method if its buffer is full.
If the StringBuilder was created in mission memory and append
is called from a PEH’s execution context, this results in an illegal
reference. If the StringBuilder is created in the execution context,
it does not live after the PEH’s release. It is therefore not usable in
HostController, where a command string can be built over several
executions. The absence of a garbage collector therefore requires
more effort from programmers. To capture faulty references during
development we used the on-line scope checker shipped with JOP.
Optimally any wrong references can be caught with static analysis
instead [3].

4.2 Schedulability Tests
Similar to the problem with the storage parameters, the program-

mer cannot be sure if the PEH’s priority and periodic parameters
present a feasible schedule until the WCET of each PEH is found.
Since the execution time of each line of code is platform depen-
dent, the analysis must cover the application, the framework, and
the platform. For JOP the WCET analysis tool has this capability.
As it is the handleAsyncEvent method that is called at each PEH’s
execution, the WCET tool is used on this method for each PEH.
The results are shown in Table 1. The priorities are in decreasing
order, i.e. the PEH with the highest priority is the RepRapCon-
troller. The tool presents the results in cycles, which are converted
to execution time (in ms) when the clock frequency (60 MHz in our
case) is known. The tool is not able to include the maximum time a
PEH can be blocked due to a lower priority thread taking the same
resource. This is found by manually tracing a PEH’s execution and
finding each synchronization lock. Each other block of code that
uses the same lock and is called by another PEH is analysed with
the WCET tool. The largest one is added to the table.

To check if the PEHs are schedulable the utilization test
from [21, p. 137] is used in Figure 10, which takes into account
potential blocking times. All inequalities are satisfied so the PEHs
are schedulable. Note that in this analysis the switching time is
not included, as context switching code is not reachable from the
handleAsyncEvent methods. Analysing the system’s entry method
should result in a full system analysis, however this requires a lot
of changes. To achieve the current analysis it was necessary to
modify some framework libraries, since these were not analysable
or resulted in WCETs that were far too high.

PEH Priority Period (ms) WCET (ms) Maximum time potentially blocked (ms)
RepRapController 4 1 0,0718667 0,0016
HostController 3 1 0,42593 0,1529833
CommandController 2 20 0,9138333 0,1529833
CommandParser 1 20 3,5771167 0,1529833

Table 1: WCET for the PeriodicEventHandlers

RepRapController

0,0718667
1 + 0,0016

1 ≤ 1∗ (2
1
1 −1)⇔ 0,0734667≤ 1

HostController

0,0718667
1 + 0,42593

1 + 0,1529833
1 ≤ 2 ∗ (2

1
2 − 1) ⇔ 0,65078 ≤

0,8284271

CommandController

0,0718667
1 + 0,42593

1 + 0,9138333
20 + 0,1529833

20 ≤ 3 ∗ (2
1
3 − 1) ⇔

0,55113753≤ 0,7797631

CommandParser

0,0718667
1 + 0,42593

1 + 0,9138333
20 + 3,5771167

20 + 0,1529833
20 ≤

4∗ (2
1
4 −1)⇔ 0,729993365≤ 0,7568285

Figure 10: Utilization test

To produce an analysable application it is necessary to program
while keeping in mind schedulability, e.g. the time PEH1 blocks
PEH2 is relevant to PEH2’s utilization test, which is why blocking
times must be diminished. Figure 11 shows a design with this in-
tent. Instead of locking the entire handleAsyncEvent method, only
a small part is synchronized with the getInputStatus and setInput-
Status methods. Although the locking could be done with synchro-
nization blocks, thereby avoid the overhead of method calls, they
are not available according to the SCJ specification. It is not evident
why this is so.

The //@WCA loop=16 line acts as an annotation for the WCET
tool and indicates that the loop will run a maximum of 16 times.
This annotation is necessary for most non-trivial loops, as the tool
is otherwise unable to determine the execution time. This is rele-
vant to system classes such as String that are designed for strings of
almost arbitrary size. As the tool is not able to see if an application
only uses strings with a fixed length, the maximum length must be
manually added to the loops. Another problem is while loops. From
the tool’s perspective they are unbounded. It is therefore necessary
to annotate or avoid them. This becomes especially troublesome
when the framework itself uses them for blocking reads/writes, e.g.
System.in.read(). Reading and writing to streams needs to be orga-
nized such that a PEH can check availability before reading/writ-
ing. If characters on the stream are not available, the PEH can be
released allowing other PEHs to execute.

4.3 Safety-Critical Java vs. C
There are several RepRap firmwares written in either C or C++

for micro-controllers. One of them is the Teacup firmware, a
rewrite of the original FiveD firmware, written entirely in C [9]. It
does not use any real-time framework, so there are no guarantees
for execution times. The application handles the timing itself, such

as setting up and deactivating timer interrupts. The SCJ firmware
lets the framework handle timing, which seems simpler for the
programmer. The major difference between the two firmwares is
the use of two very different programming languages, but basic ad-
vantages/disadvantages in using an object oriented languages will
not be discussed here. Instead, we highlight the performance cost
of using SCJ based firmware, as opposed to using a minimalistic
firmware such as Teacup, in Table 2. The firmware size includes
all framework and application code. The size difference is not as
bad as expected, especially considering that the SCJ firmware size
can be further reduced by using an optimization tool that removes
unused methods from classes. The steps indicate how many steps
the firmware can move the motors per second. The frequency
shows the frequency of the CPU. Teacup has a clear advantage
even at a lower frequency. The SCJ firmware steps are based
on the period of the RepRapController, which is limited by the
framework. The RepRapController WCET analysis and utilization
test shows that it can almost run with a period of 0.1 ms. This
is certainly achievable by increasing the number of cores in JOP
from 1 to 4 so that the utilization factor of the RepRapController
doesn’t affect the other PEHs. However this is not as interesting
in the schedulability analysis, since the PEHs would simply run in
parallel. In any case, the Teacup stepping performance is roughly
3 times better than the best SCJ firmware performance. If the
RepRapController’s responsibilities are delegated to hardware
components, such as writing the stepping controls in VHDL, this
gap can be reduced and even reversed. The question is therefore
whether SCJ is better suited for high-level computing, whereas
low-level and performance intensive computing is delegated to
other systems/components.

5. SOURCE ACCESS
The SCJ RepRap implementation is open source and hosted at
https://github.com/torurstrom/jop. The basic application
is according to the current SCJ specification and not dependent
on the JOP platform. However, access to I/O devices is always
platform dependent. And in the current form the project currently
uses SimpCon based hardware objects and is therefore dependent
on JOP. It is hosted as a JOP fork, with the RepRap Java code
located in https://github.com/torurstrom/jop/tree/
master/java/target/src/rtapi/org/reprap.

Work is currently being done to create a version that removes the
I/O dependency of JOP (and the FPGA board). The input sensors
(and the UART) and the actuators will be simulated. This will allow
the SCJ RepRap project to act as general test-case for other SCJ
frameworks.

6. CONCLUSION
The RepRap implementation reveals several points of interest in

safety-critical Java that affect both vendors and developers. Tools
should be available to analyse WCET and maximum memory usage
of the applications. Platforms, frameworks, and libraries must be
modified so the tools are able to perform the analysis. This means
that code should not use unbounded loops or otherwise block Pe-

https://github.com/torurstrom/jop
https://github.com/torurstrom/jop/tree/master/java/target/src/rtapi/org/reprap
https://github.com/torurstrom/jop/tree/master/java/target/src/rtapi/org/reprap

SCJ firmware Teacup
Firmware size (KB) 79 ∼32
Maximum steps per second 500 @ 60 MHz 15570 @ 20 MHz

Table 2: Firmware performance costs

riodicEventHandlers indefinitely. Java programmers will have fa-
miliarity with safety-critical Java but must learn to code with more
responsibility. The lack of garbage-collection means that the pro-
grammer has to be careful where created objects are referenced.
The programmer must have a deeper knowledge of the library code
to ensure that objects aren’t created and wrongly referenced dur-
ing execution. This can be made easier with static analysis tools
that check possible references. A safety-critical Java implemented
firmware has a much larger execution overhead than an optimized
C based firmware, which could indicate that safety-critical Java ap-
plications are better suited for high-level computing.

7. ACKNOWLEDGMENTS
This work is part of the project “Certifiable Java for Embedded

Systems” (CJ4ES) and received partial funding from the Danish
Research Council for Technology and Production Sciences under
contract 10-083159.

8. REFERENCES
[1] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and

M. Turnbull. The Real-Time Specification for Java. Java
Series. Addison-Wesley, June 2000.

[2] A. Burns, B. Dobbing, and G. Romanski. The ravenscar
tasking profile for high integrity real-time programs. In
Proceedings of the 1998 Ada-Europe International
Conference on Reliable Software Technologies, pages
263–275. Springer-Verlag, 1998.

[3] A. E. Dalsgaard, R. R. Hansen, and M. Schoeberl. Private
memory allocation analysis for safety-critical Java. In
Proceedings of the 10th International Workshop on Java
Technologies for Real-Time and Embedded Systems (JTRES
2012), Copenhagen, DK, October 2012. ACM.

[4] T. Harmon. Interactive Worst-case Execution Time Analysis
of Hard Real-time Systems. PhD thesis, University of
California, Irvine, 2009.

[5] D. Locke, B. S. Andersen, B. Brosgol, M. Fulton, T. Henties,
J. J. Hunt, J. O. Nielsen, K. Nilsen, M. Schoeberl, J. Tokar,
J. Vitek, and A. Wellings. Safety-critical Java technology
specification, public draft, 2011.

[6] A. Plsek, L. Zhao, V. H. Sahin, D. Tang, T. Kalibera, and
J. Vitek. Developing safety critical Java applications with
oSCJ/L0. In Proceedings of the 8th International Workshop
on Java Technologies for Real-Time and Embedded Systems
(JTRES 2010), pages 95–101, New York, NY, USA, 2010.
ACM.

[7] RepRap Project. Polylactic acid.
http://reprap.org/wiki/PLA, June 2012.

[8] RepRap Project. The reprap project website.
http://reprap.org/wiki/Main_Page, June 2012.

[9] RepRap Project. Teacup firmware.
http://reprap.org/wiki/Teacup_Firmware, June
2012.

[10] M. Schoeberl. A time predictable instruction cache for a Java
processor. In On the Move to Meaningful Internet Systems
2004: Workshop on Java Technologies for Real-Time and

Embedded Systems (JTRES 2004), volume 3292 of LNCS,
pages 371–382, Agia Napa, Cyprus, October 2004. Springer.

[11] M. Schoeberl. SimpCon - a simple and efficient SoC
interconnect. In Proceedings of the 15th Austrian Workhop
on Microelectronics, Austrochip 2007, Graz, Austria,
October 2007.

[12] M. Schoeberl. A Java processor architecture for embedded
real-time systems. Journal of Systems Architecture,
54/1–2:265–286, 2008.

[13] M. Schoeberl. Memory management for safety-critical Java.
In Proceedings of the 9th International Workshop on Java
Technologies for Real-Time and Embedded Systems (JTRES
2011), pages 47–53, York, UK, September 2011. ACM.

[14] M. Schoeberl, S. Korsholm, T. Kalibera, and A. P. Ravn. A
hardware abstraction layer in Java. ACM Trans. Embed.
Comput. Syst., 10(4):42:1–42:40, November 2011.

[15] M. Schoeberl, W. Puffitsch, R. U. Pedersen, and B. Huber.
Worst-case execution time analysis for a Java processor.
Software: Practice and Experience, 40/6:507–542, 2010.

[16] M. Schoeberl and J. R. Rios. Safety-critical Java on a Java
processor. In Proceedings of the 10th International Workshop
on Java Technologies for Real-Time and Embedded Systems
(JTRES 2012), Copenhagen, DK, October 2012. ACM.

[17] T. Schoofs, E. Jenn, S. Leriche, K. Nilsen, L. Gauthier, and
M. Richard-Foy. Use of perc pico in the aida avionics
platform. In Proceedings of the 7th International Workshop
on Java Technologies for Real-Time and Embedded Systems,
JTRES ’09, pages 169–178, New York, NY, USA, 2009.
ACM.

[18] N. K. Singh, A. Wellings, and A. Cavalcanti. The cardiac
pacemaker case study and its implementation in
safety-critical Java and Ravenscar Ada. In Proceedings of the
10th International Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES 2012),
Copenhagen, DK, October 2012. ACM.

[19] H. Søndergaard, S. E. Korsholm, and A. P. Ravn.
Safety-critical Java for low-end embedded platforms. In
Proceedings of the 10th International Workshop on Java
Technologies for Real-Time and Embedded Systems (JTRES
2012), Copenhagen, DK, October 2012. ACM.

[20] The Free On-line Dictionary of Computing. safety-critical
system. http://encyclopedia2.thefreedictionary.
com/safety-critical+system, July 2012.

[21] A. Van Tilborg, G. Koob, and U. S. O. of Naval Research.
Foundations of Real-Time Computing: Scheduling and
Resource Management. Kluwer international series in
engineering and computer science: Real-time systems.
Kluwer Academic Publishers, 1991.

http://reprap.org/wiki/PLA
http://reprap.org/wiki/Main_Page
http://reprap.org/wiki/Teacup_Firmware
http://encyclopedia2.thefreedictionary.com/safety-critical+system
http://encyclopedia2.thefreedictionary.com/safety-critical+system

synchronized private void setInputStatus(boolean status)
{

inputStatus = status;
}

synchronized private boolean getInputStatus()
{

return inputStatus;
}

@Override
public void handleAsyncEvent()
{

char[] output = outputBuffer.getChars(16);
for (int i = 0; i < output.length; i++) // @WCA loop = 16
{

SP.write(output[i]);
}
// Input buffer is still full so do nothing
if (getInputStatus())
{

return ;
}
for (int i = 0; i < 16; i++) // @WCA loop = 16
{

char character;
if (! SP.rxFull ())
{

// No input
return ;

}
character = (char)SP.read();
if (character == ’ ; ’)
{

comment = true;
}
else if (character == ’ \n’)
{

comment = false;
if (inputCount > 0)
{

setInputStatus(true);
return ;

}
}
else if (! comment) //Ignore comments
{

if (inputBuffer .add(character))
{

inputCount++;
}

}
}

}

Figure 11: Excerpt of HostController.java

	Introduction
	Background and Related Work
	Safety-Critical Java
	The Java Processor JOP
	SCJ Use Cases
	The RepRap Project

	Implementation
	Hardware
	Software

	Evaluation
	SCJ Programming Experience
	Schedulability Tests
	Safety-Critical Java vs. C

	Source Access
	Conclusion
	Acknowledgments
	References

