
Safety-Critical Java on a Time-Predictable Processor

Stephan E. Korsholm
VIA University College

Horsens, Denmark
sek@via.dk

Martin Schoeberl, Wolfgang Puffitsch
Department of Applied Mathematics and

Computer Science
Technical University of Denmark

masca@dtu.dk, wopu@dtu.dk

ABSTRACT
For real-time systems the whole execution stack needs to be
time-predictable and analyzable for the worst-case execution
time (WCET). This paper presents a time-predictable plat-
form for safety-critical Java. The platform consists of (1)
the Patmos processor, which is a time-predictable proces-
sor; (2) a C compiler for Patmos with support for WCET
analysis; (3) the HVM, which is a Java-to-C compiler; (4)
the HVM-SCJ implementation which supports SCJ Level 0,
1, and 2 (for both single and multicore platforms); and (5)
a WCET analysis tool.

We show that real-time Java programs translated to C and
compiled to a Patmos binary can be analyzed by the AbsInt
aiT WCET analysis tool. To the best of our knowledge the
presented system is the second WCET analyzable real-time
Java system; and the first one on top of a RISC processor.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems

Keywords
Safety-Critical Java, hardware locks, synchronization

1. INTRODUCTION
Embedded devices are often used in scenarios where time

predictability and real-time behavior is a requirement. In
such scenarios it must be possible to guarantee that a given
piece of software (e.g., an interrupt handler) will never take
more than a certain amount of time to execute. This up-
per bound to execution time, the worst-case execution time
(WCET), is found prior to runtime by analysis tools exe-
cuted by the software developer. The input to these tools is
knowledge about the hardware that will eventually execute
the program and the program itself.

Modern day hardware architectures may support features,
e.g., caches, speculation, and out-of-order execution, that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
JTRES ’15, October 07-08, 2015, Paris, France
Copyright 2015 ACM X-XXXXX-XX-X/XX/XX ...$15.00.
http://dx.doi.org/10.1145/2822304.2822309.

OS SCJ

VM HVM

CPU Patmos

Figure 1: Time-Predictable execution stack for Java.

are designed to achieve a higher average-case execution time.
Also for the software part, features, such as garbage collec-
tion or just-in-time compilation, are often used to achieve
a higher average-case throughput. Unfortunately these fea-
tures can make the job of finding an accurate WCET harder,
or even impossible. For an execution environment to be fully
time-predictable, both the hardware and the software parts
of the environment must be time-predictable.

This paper presents a time-predictable execution environ-
ment for real-time and safety-critical Java (SCJ). The exe-
cution environment consists of a time-predictable processor
and its compiler, a real-time Java-to-C compiler, the run-
time for SCJ, and a WCET analysis tool.

The Patmos [31,35] processor is a time-predictable RISC
processor. It comes with a C compiler tool chain for pro-
gramming the Patmos processor using the C programming
language. Additionally, Patmos comes with tools for analyz-
ing C programs and finding the WCETs of selected software
components executed by Patmos.

The HVM is a Java-to-C compiler that translates any Java
program into an equivalent C program. The HVM-SCJ is an
implementation of the SCJ specification [18] hosted by the
HVM. SCJ augments the Java programming language with
predictable scheduling of concurrently executing schedula-
bles and time-predictable memory management.

This paper describes how the Patmos processor, the HVM,
and the HVM-SCJ implementation can be combined to form
a WCET analyzable real-time Java system: The HVM Java-
to-C compiler translates SCJ based programs into a format
that can be executed on the Patmos processor. The Patmos
tools for reporting the temporal properties of C code, e.g.,
WCET analysis, can now be applied to the SCJ programs
hosted by the HVM. The combination of these facilities en-
sures the time-predictable execution of Java on the Patmos
hardware platform, thus adding Java as a language alterna-
tive.

Figure 1 illustrates the proposed three-layer execution stack
for time-predictable Java. It is made up of (1) the hardware
platform (Patmos) (2) the Java virtual machine (the HVM)
and (3) the OS (SCJ).



The contributions of this paper are:

• A describtion of how to execute the HVM + SCJ soft-
ware on the Patmos hardware platform.

• Combining the Java-to-C compilation facility of the
HVM with Patmos tools for performing WCET analy-
sis of the C code that results from the Java application.

• An evaluation of applying the HVM/SCJ/Patmos tools
to time critical software components from well-known
benchmarks.

This paper is organized in 8 Sections. Section 2 presents
related work. The following three sections describe each
of the 3 main components of the execution stack for time-
predictable Java programs: Section 3 describes the hardware
platform, Section 4 the Java Virtual Machine, and Section 5
the SCJ library implementation making up the software part
of the tool chain. Section 6 describes the offline tools used to
perform WCET analysis. Section 7 demonstrates how well-
known real-time benchmarks are analyzed for their WCET
and can be executed using HVM and Patmos. Measure-
ments are reported on the conservatism and efficiency of the
tools. These measurements are contrasted to previous re-
sults. Section 8 concludes and sums up the contribution
and results.

2. RELATED WORK
The Java processor JOP [29] was developed to be a time-

predictable processor. It has a simple pipeline where the ex-
ecution time of individual bytecodes are independent from
each other, which simplifies WCET analysis. Furthermore,
JOP contains a method cache [28] to simplify cache related
WCET analysis. JOP also provides a prototype implemen-
tation of SCJ [34]. The distribution of JOP contains the
WCET analysis tool WCA [33] that performs WCET anal-
ysis at bytecode level. To the best of our knowledge the JOP
processor and the included static WCET analysis tools was
the first real-time Java system that supports and includes
WCET analysis.

In contrast to JOP, we present in this paper a time-predictable
real-time Java system that executes on a RISC style proces-
sor that executes C code as well. To the best of our knowl-
edge this is then the second real-time Java infrastructure
that is supported by a WCET analysis tool.

A first approach to make the HVM time-predictable is the
HVMtp project [21]. The interpreter of the HVM has been
refactored to be WCET analyzable.

In contrast to HVMtp, we use the compilation mode of
HVM, which results in a system with higher performance.
Furthermore, model checking for WCET analysis can quickly
degrade to explicit path enumeration [16], which is known to
not scale for realistic problems [38]. WCET analysis of real-
istic Java benchmarks on HVMtp has not yet been shown.

The work on PERC Pico [22] was the starting grounds
for the early work on Java for real-time systems that later
became the Real-Time Specification for Java (RTSJ) [5].

Plsek et al. present one of the first implementations of
SCJ on an embedded platform [24]. They provide an im-
plementation of SCJ’s Level 0 running on the OVM vir-
tual machine [3]. The OVM is a framework that enables
alternate implementations of core VM functionality (e.g.,
different versions of priority inheritance monitors) in order

to build and test VMs with different features. OVM uses
an ahead-of-time compiler to translate Java code to C++
and then it uses the GCC compiler to obtain machine code.
SCJ’s implementation on OVM runs on an FPGA board ex-
ecuting the RTEMS real-time operating system on a LEON3
processor. As LEON3 is supported by the aiT WCET anal-
ysis tool, this runtime could be WCET analyzable as the one
we present here. The Fiji VM [23] also supports execution
of SCJ Level 0 on the LEON3 platform.

Experiments with the Jamaica ahead-of-time compiler lead
to programs where the aiT analyzer was not able find loop
bounds. Therefore, additional data-flow analysis at byte-
code level can provide those loop bounds [17]. In our current
implementation we use manual annotations for loop bounds.
Therefore, such a data-flow analysis at bytecode level would
be a useful enhancement for our presented platform.

3. PATMOS
Patmos is a dual-issue RISC processor designed to be a

time-predictable platform to simplify WCET analysis [35].
Patmos was developed within the T-CREST project [30],
which developed a time-predictable chip-multiprocessor with
a real-time network-on-chip and a real-time memory con-
troller. Furthermore, the LLVM compiler and the aiT WCET
analysis tool [11] were adapted to Patmos.

3.1 Pipeline and Instructions
Patmos is an in-order pipeline. To gain time-predictable

performance compared to out-of-order pipelines, Patmos can
execute up to two instructions per clock cycle. Patmos has
a fully predicated instruction set. Those predicates help
with if-conversion, an optimization to avoid branches. Fur-
thermore, predicates also support a similar technique that
is used to generate single-path code [25].

Another speciality of Patmos are typed load and store
instructions. The types are used to e.g., redirect memory
accesses to a special cache, to bypass the cache, or to access
local memory (scratchpad memory). Therefore, a WCET
analysis tool has more information on which memory area a
load or store instruction will access without needing to know
the concrete memory address.

3.2 Caches
A dominant factor of execution time and also WCET are

cache misses. A lot of research effort has been spent to
analyze instruction caches and data caches for their contri-
bution to the WCET. With Patmos we developed special
caches with the intention to make the WCET analysis sim-
pler and the WCET bound lower.

For instructions Patmos contains the so called method
cache [6] that caches complete functions. The cache is called
method cache as it has been originally implemented for the
Java processor JOP to cache whole methods [28]. The method
cache may be filled on a function call or a function return.
Fetching of all other instructions are guaranteed cache hits.
Therefore, WCET analysis has only to consider function call
and return instructions.

One common and efficient compiler optimization is func-
tion inlining. This optimization, and original large func-
tions, can result in functions that are too large for the method
cache. Therefore, the Patmos compiler contains a pass to
split functions [12]. Function splitting is also used as an
optimization to avoid loading unused code into the method



cache. Function splitting is supported by low overhead in-
structions in Patmos.

The method cache can be integrated into WCET analysis
by a scope based analysis [13]. This analysis searches large
scopes in the global control flow graphs with functions that
fit together into the method cache. Within this program
scope these functions can only miss once and all other calls
are hits. This information is added as ILP constraints to the
ILP for the WCET.

Data caches usually cache data that belong to different
data areas, such as static data, heap allocated data, and
stack allocated data. For standard cache analysis the ad-
dress of data accesses needs to be known statically. Knowing
the address for static data is easy, for stack allocated data
possible, and for heap allocated data impossible.

To avoid intermixing of these data types Patmos contains
a stack cache [1]. The stack is, especially in a Java runtime,
heavily used and therefore deserves special support in the
processor. This stack cache is supported by the compiler
that generates instructions for stack frame manipulation. A
reserve instruction reserves space in the stack cache and
might spill data to the main memory to make space. A free
instruction just marks space in the stack cache as unused.
An ensure instruction ensures that the callers stack frame
is in the stack cache after a return from the callee. This
instruction might fill former spilled data from main memory
to the stack cache. Only the reserve and ensure instructions
might access main memory. All other accesses to stack allo-
cated data are guaranteed hits. This mechanism simplifies
the WCET analysis for stack allocated data [19].

3.3 Composable WCET Analysis for Patmos
In general, the architecture of Patmos is designed that

there are no timing anomalies and intended to support com-
posable WCET analysis. That means that no two instruc-
tions timing depend on each other. Cache misses happen
all in the same (memory) pipeline stage. Therefore, only a
single instruction at any clock cycle might trigger a cache
miss. These features allow to decouple the pipeline analysis
from the analyses of different caches.

4. HVM-AOT
Java applications hosted by the HVM can be compiled

into a mix of interpreted and AOT compiled code. The
interpreted part consists of a sequence of Java bytecodes
that is interpreted by a standard interpreter loop. The Java
bytecodes are embedded into the C program as a C array
of bytes. The interpreter loop is basically a large switch
statement enclosed in a loop. The AOT compiled part is a
sequence of auto-generated C functions, one for each orig-
inal Java method. The name of the C function is derived
from the Java method name, the name of the enclosing Java
class and the name of the Java package containing the en-
closing class. Control can flow from interpreted to AOT
compiled parts and back again. Both methods of execu-
tion are supported since they both have their strengths and
weaknesses: interpretation yields slower execution but takes
up less code memory resources, AOT compiled code yields
faster execution, but requires more code memory resources.
The developer can configure which methods are compiled
and which methods are interpreted. The resulting C source
(containing the interpreter) is compiled by a C cross com-
piler and linked with the HVM runtime system to produce

the final executable for the target in question. If the Java
source contains native methods, an implementation of those
methods in C must be provided as well.

The HVM tools are careful to generate portable C code
that can be compiled readily by any compliant C compiler.

In this paper we focus on the Java-to-C translation facility
of the HVM. A previous paper has looked at the interpreter
and how the interpreter can be made time-predictable as
well [21].

To reduce the code memory footprint of the resulting ap-
plication, the HVM tools perform an analysis of the appli-
cation to find a conservative, but tight, estimate of the set
of methods and classes that may be executed at run time.
This set is called the dependency extent of the main entry
point. The HVM tools support that Java methods can be
excluded from the dependency extent and implemented in
native C in a similar manner to normal native methods.

The dependency extent is calculated by visiting all possi-
ble traces of the program execution starting from the main
method of the program. For if-statements the dependency
extents of all branches are conservatively added. For vir-
tual method invocations a similar simple choice cannot be
made. Indeed, for a virtual method invocation the question
of which method(s) could be the target of the invocation,
and thus needs to be included in the extent, can only be
answered if it is known which classes might have been in-
stantiated along all possible execution traces leading up to
the method invocation. The analysis tool keeps track of
which classes might have been instantiated. If analysis ar-
rives at a virtual method invocation and the set of possibly
instantiated classes is larger than or different from when the
method invocation was previously visited, the analysis con-
tinues until a fixed point is reached. This method excludes
dynamic classloading, which is consequently not supported
by the HVM runtime.

class Polygon {
abstract int area();

}
class Square extends Polygon { ... }

class Rectangle extends Square { ... }

class Circle extends Polygon { ... }

...

ArrayList<Polygon> figures = new ArrayList<Polygon>();
figures.add(new Square(2));
figures.add(new Rectangle(2, 3));
figures.add(new Circle(3));

int sum = 0;
for (Polygon polygon : figures) {
sum += polygon.area();

}

Figure 2: Translating virtual method invocations
(Java Source).

Figure 2 shows a Java source method with a virtual method
invocation (sum += polygon.area()). The target method
(area()) can be any of three methods. The HVM will trans-
late this into the C code included in Figure 3, i.e., a switch



statement. In each case the target method is called through
a direct function invocation.

switch (classIndex) {
case 18:
rval_m_85 = test_Circle_area(sp, i_val3);
break;

case 30:
rval_m_85 = test_Rectangle_area(sp, i_val3);
break;

case 5:
rval_m_85 = test_Square_area(sp, i_val3);
break;

}

Figure 3: Translating virtual method invocations (C
source).

The JVM is a stack-based virtual machine. Each Java
method uses a stack of a known size to perform all calcu-
lations done by the byte codes making up the application.
Figure 4 is an example of a piece of code adding two num-
bers.

ICONST_1
ISTORE_0
ICONST_2
ISTORE_1
ILOAD_0
ILOAD_1
IADD
ISTORE_0

Figure 4: Adding two numbers in bytecode.

To avoid simulating each stack access - which would be
inefficient - the HVM assigns a C variable to each stack cell.
The resulting generated code is listed in Figure 5.

LV2 = 1;
LV0 = LV2;
LV2 = 2;
LV1 = LV2;
LV2 = LV0;
LV3 = LV1;
LV3 = LV2 + LV3;
LV0 = LV3;

Figure 5: Adding two numbers in C.

It may seem inefficient to use so many variables for such a
simple calculation, but fortunately the C compiler that even-
tually translates this into machine code will be able to op-
timize this into a very efficient format. Enabling the proper
optimization levels is important when using a C compiler to
generate the final executable.

Loops in Java sources are implemented using the goto
Java bytecode. This gets translated into C goto statements
in the generated C source code.

Using these and other techniques the HVM tools translate
the dependency of the Java main method into portable C
code. This code will then in turn be analyzed by the Patmos
WCET analysis tools as described in Section 6.

4.1 Porting to Patmos
The HVM has previously been ported to a variety of plat-

forms, both 8/16/32 and 64 bit platforms running Linux/Win-
dows/Cygwin and bare-bone platforms. The major chal-
lenge with the Patmos platform was that it does not allow
unaligned memory access. In its default configuration the
HVM generates code that may result in unaligned access
to heap memory locations. This is because object headers
and object fields are accessed by casting them to byte ar-
rays and fields are packed tightly in the objects in order
to save space. When porting the HVM to the Lego NXT
platform, which runs on an ARM7 processor that also does
not allow unaligned memory access, another mode of object
layout and access has been introduced. In this mode the
HVM generates a C struct for each Java class, where the
struct members are the Java object fields. Figure 6 shows
an example of a Java class Sub and Figure 7 shows the C
struct being generated from it.

class Super {
int x;

}

class Sub extends Super {
int a, b, c;

}

Figure 6: An example Java class.

typedef struct PACKED _test_TestPutGetField_Sub_c {
Object header;
uint32 x_f;
uint32 a_f;
uint32 b_f;
uint32 c_f;

} test_TestPutGetField_Sub_c;

Figure 7: Java class to C struct mapping.

Now AOT compiled code will access field members by
casting the object in the heap to the struct type. E.g a
putfield bytecode to the field x in an instance of class Sub
becomes:

(struct _test_TestPutGetField_Sub_c *)(cobj)
-> x_f = lsb_int32;

This is done in a similar manner in other Java-to-C com-
pilers (e.g., KESO [37]). When using the Patmos C compiler
the field access no longer crosses alignment boundaries if the
PACKED macro is left undefined.

5. HVM-SCJ
The Java programming language has a built-in thread con-

cept to support concurrent execution of Java methods. Yet,
the scheduling model is not specified in sufficient detail to en-
sure an acceptable degree of time-predictability of standard
Java execution environments. Furthermore the garbage col-
lection facilities specified for standard Java can make it hard
to find a sufficiently tight WCET bound for software that



accesses heap memory, since garbage collecting may be acti-
vated at any allocation, and take an amount of time that is
hard to predict. The latter issue with garbage collection has
been solved in Java execution environments such as Perc [4]
and JamaicaVM [2] which offer real-time garbage collection.
The former issue has been recognized and attacked by defin-
ing new profiles for Java such as the Real-Time Specification
for Java (RTSJ) [5] and safety-critical Java (SCJ). Both of
these profiles define detailed scheduling policies and put re-
strictions on memory management by offering scoped mem-
ory allocation. Memory scopes are a compromise between
the malloc/free type of manual memory allocation offered
by e.g., the C programming language and full automatic
memory allocation which is offered by standard Java execu-
tion environments. The advantage of memory scopes is that
they support a more structured approach to memory allo-
cation than malloc/free while still being time-predictable
as scopes are allocated and deallocated in a simple time-
predictable manner.

5.1 Profiles of the SCJ Specification
The SCJ specification defines three profiles, which are

known as Level 0, Level 1 and Level 2 respectively. Level 1
and Level 2 support multicore. The HVM-SCJ implemen-
tation supports all three levels:

Level 0 Here a sequence of missions is executed. A mission
consists of periodic handlers only, and in the active
phase they are scheduled statically by a cyclic execu-
tive.

Level 1 Here a sequence of missions is executed. However,
a mission may include aperiodic handlers, and in the
active phase fixed priority preemptive scheduling is
used. Thus interrupt driven handlers are admitted.
The preemptive scheduling means that a priority ceil-
ing protocol has to be used for objects shared among
handlers.

Level 2 This allows missions to be nested, so they can be
run concurrently. Also, at this level, real-time threads
are admitted.

Level 0 and level 1 were implemented first [36], because
these levels target applications running on resource con-
strained embedded platforms. As a step towards support-
ing more resourceful platforms, level 2 has recently been
added [39]. This introduces the following concepts,

• Managed threads, scheduled by the priority scheduler

• Wait, notify, and notifyAll for managed schedulable
objects

• Nested mission sequencers

Finally multicore support has been added, which is de-
scribed in another JTRES’15 paper.

5.2 SCJ Memory Management
Since time- and space-predictable approaches to dynamic

memory allocation is still considered with some caution by
standards for safety-critical applications, the SCJ uses a re-
stricted version of the RTSJ scoped memory concept. Ob-
jects are allocated in a memory area with a defined lifetime.

The immortal memory is used for allocating objects that
live for the entire lifetime of the allocation. The mission
memory is used for objects that live for the duration of a
single mission only. Each schedulable object, e.g., a thread
(level 2) or a periodic handler (level 0) has its own private
memory—this area gets cleared after each invocation of the
application logic of the schedulable objects. E.g., the pri-
vate memory area of a periodic handler is reused for each
invocation of the handler. Temporary private memory areas
can always be allocated and entered for a period of time and
afterwards be deallocated in one single operation. Each of
these areas are also referred to as scopes. Allocation and
deallocation of memory scopes is a time-predictable oper-
ation. Still, using scopes has some of the same disadvan-
tages as other manual memory management strategies like
the malloc/free strategy for the C programming language.
An important area of research within real-time Java deals
with tools aiding the developer in avoiding memory errors
and ensuring error free scope allocation and deallocation

The HVM-SCJ implementation offers the OS functionality
of the architecture illustrated in Figure 1 through its well
defined scheduling policies at all levels and through its time-
predictable memory allocation facilities.

6. WCET ANALYSIS
WCET analysis for Patmos is provided by a combination

of three tools: (1) the LLVM compiler adapted for Pat-
mos [27], (2) the platin tool, and (3) the industry standard
static WCET analysis tool aiT [11].

6.1 Compiling for Patmos
Within the T-CREST project LLVM [20] has been adapted

for Patmos [26]. The compiler supports all special features
of Patmos, i.e., it emits instructions for the stack cache and
optimizes programs for the usage of the method cache.

Furthermore, the Patmos compiler can optimize for the
WCET by getting feedback from the WCET analysis tool.
The compiler also supports _Pragma based flow facts as they
have been defined for the WCC compiler [7].

The compiler solves the problem of transforming flow facts
during optimization by using control-flow relation graphs for
the WCET analysis at bitcode and machine code level [14].

6.2 WCET Analysis with aiT
For WCET analysis we use aiT [11], the WCET analy-

sis tool from AbsInt. aiT produces safe upper bounds for
the WCET of non-interrupted tasks. aiT supports several
processors used in embedded real-time systems. Within the
T-CREST project aiT has been extended to support the
Patmos instructions set, with support for VLIW architec-
tures, fully predicated instruction set, and analysis for the
stack cache and the method cache.

aiT takes as input binary executable and additional in-
formation in an AIS file. The additional information in the
AIS file contains e.g., memory access times, configuration
for caches, and flow facts that might not be detected auto-
matically by the tool.

aiT reconstructs from the binary the control flow graph
and performs loop bound analysis and value analysis for to
determine approximations for values in registers and mem-
ory. These values are used for loop bounds and to determine
addresses for the data cache analysis.



Analysis of basic block execution time uses abstract inter-
pretation and simulation of the processor pipeline. Those
results at basic block level are then used in search for the
longest path with implicit path enumeration. This path is
then a safe upper bound of the WCET.

6.3 Tool Integration with platin
platin is intended to be a swiss army knife for com-

piler and analysis integration. The work on platin started
with an approach to an open timing analysis platform [15].
It is argued that research in the WCET analysis commu-
nity needs more integration of open-source tools. The work
started with an example integration of the LLVM compiler [20],
the open source processor LEON [8], the SWEET tool (SWEdish
Execution Time tool) [9], and the WCET analysis tool aiT [11].
SWEET was used for program analysis (e.g., generating flow
facts) and aiT was used for the WCET analysis, i.e., calcu-
lation of the WCET bound. Later, within the T-CREST
project, the work in the compiler shifted the focus towards
the open-source processor Patmos.
platin is a collection of tools to exchange information

between the compiler and WCET analysis tools. platin is
bundled with the Patmos compiler and tightly integrated
with it.

For exploration, platin supports extraction if flow facts
from test runs with the Patmos simulator. This feature
comes handy when the research work is on a different topic
than generating exact flow facts, e.g., cache analysis.
platin also includes a WCET analysis backend using stan-

dard implicit path enumeration techniques by translating
the WCET analysis problem to an integer linear program,
which is then solved with lp_solve. Within this WCET
tool, the scope based analysis of the method cache of Pat-
mos is [13] and analysis of the stack cache [19] have been
integrated.

However, in the evaluation section we use the industry
strength aiT tool as it has support for data cache analysis.

7. EVALUATION
To evaluate the analyzability of the HVM on Patmos,

we use a set of Java benchmarks that are based on the
Mälardalen WCET benchmarks [10]. Additionally, we use
two benchmarks from the JemBench suite [32] that are de-
rived from industrial applications. We use the ahead-of-time
compilation mode of HVM and compile the code with LLVM
for Patmos. For the WCET analysis, we use the WCET
analysis tool aiT by AbsInt [30]. We configure the WCET
analysis tool to assume a 4 KB method cache with eight
blocks, a 2 KB direct-mapped data cache, and a memory
access latency of 21 cycles for a burst of 4 words. The mem-
ory access time corresponds to the memory access time of
Patmos on its default target platform, the Altera DE2-115
development board.

7.1 Annotations
To bound the execution time of a program, it is necessary

to bound the number of iterations for all loops. While a
WCET analysis tool often can find loop bounds and other
flow facts by analyzing the program, this is not always pos-
sible. In these cases, annotations have to be provided, either
in source code or in a separate file. On the one hand, loops
in the application must be bounded; on the other hand, also
loops in the HVM-internal code must be bounded.

Ideally, annotations present in the Java source code should
be propagated automatically to the generated C code and
the WCET analysis tool. The C code generated by the HVM
implements loops through goto statements rather than for-
or while-loops. However, the loop bound annotations sup-
ported by the C compiler (e.g., _Pragma("loopbound min
2 max 99")) can only be applied to loops and not to goto
statements. Extending the C compiler to support more gen-
eral flow-fact annotations is future work. Consequently, the
annotations provided in the source code of the benchmarks
currently cannot be propagated automatically.

As automatic propagation of annotations is not possible,
we annotated loop bounds where necessary with the help of
aiT. As the Java compiler and the HVM retain the structure
of the program during compilation, the program structure
at the C level closely matches the structure at the Java level.
Unfortunately, optimizations by the C compiler sometimes
modify the program structure. In particular inlining can
make it difficult to correctly match loops at the Java level
and the binary level. However, after disabling inlining in the
C compiler, entering annotations corresponding to loops in
the benchmark code was straightforward.

Of the HVM-internal loops, only one loop in function
addStackElement could not be bounded automatically for
the benchmarks used in the evaluation. However, the nec-
essary information to specify the respective loop bound is
present in a generated header file methods.h that contain
several attributes of the generated application code. For the
function addStackElement the NUMBEROFMETHODS was the
correct loop bound. The HVM-AOT compiler also generates
another header file tinfo.h with additional loop bounds:

• MAX_APP_STACK This constant holds the max stack depth
(in frames) of the application. This is only accurate
for non-recursive applications. Can be used to bound
exception handling

• MAX_CLASS_HEIRARCHY This constant holds the depth
of the deepest class heirarchy.

• MAX_LOOKUPTABLE_SWITCH_SIZE This constant holds the
size of the biggest lookup table (for the lookupswitch
and tableswitch bytecodes)

• MAX_INVOKE_TABLE_SIZE A loop is used to handle the
invokevirtual bytecode in the interpreter. This con-
stant is an upper bound for that loop

These additional loop bounds may be relevant for other
applications than the benchmarks used here.

Apart from loops, the WCET analysis tool also needs an-
notations for indirect jumps that may occur for example
for switch statements. Annotations for these flow facts are
generated by platin, such that no manual inspection of the
code is necessary.

7.2 Exceptions
On the one hand, exceptions may contribute to the exe-

cution time and as such should be included in the WCET
calculation. On the other hand, a safety-critical application
should be free from exceptions to operate correctly. To cater
to both points of view, we calculate each WCET under two
distinct sets of assumptions: first that the code may throw
an exception and second, that it won’t. In many safety-
critical applications, static analysis of the software proves



Benchmark Function WCET Analysis Measurements

Cycles with Exceptions Cycles without Exceptions Cycles Pessimism

BinarySearch binarySearch 36505 1212 711 1.70
BubbleSort bubbleSort 1628409 1592461 400555 3.98
DCT fdct 50939 13957 8011 1.74
ExpIntegral expint 1338987 1338987 6578 203.56
Fibonacci fib 898 898 306 2.93
InsertionSort sort 49891 13743 3404 4.04
JanneComplex complex 2097 2097 406 5.17
MatrixCount count 55555 20223 8168 2.48
MatrixMult multiplyTest 1764128 1728739 499616 3.46
NestedSearch foo 123402 88115 22031 4.00
PetriNet run 164659 129427 100014 1.29
Quicksort sort 564964 141521 6061 23.35
SelectSmallest select 314030 67178 3931 17.09
SLE ludcmp 89363 54140 5985 9.05

Kfl Mast.loop 529940 67894 15657 4.34
Lift loop 210311 18309 8768 2.09

Table 1: Evaluation results

that exceptions will not be thrown. When it is known that
exception handling will not occur, the WCET bounds can
be much tighter. Doing so also gives us an insight into the
worst-case overhead for exception handling.

7.3 Results
Table 1 shows the results of the evaluation. The columns

under the heading “WCET Analysis” report the results of
the WCET analysis, while the columns under the head-
ing “Measurements” display the measurement results. Aside
from showing worst-case cycle counts, the results demon-
strate that it is feasible to calculate WCETs for the code
generated by the HVM.

The column labeled “Cycles with Excexptions” shows the
WCET including exception handling, while the column la-
beled “Cycles without Exceptions” shows the WCET under
the assumption that exception handling code infeasible. For
most benchmarks, exception handling contributes around
35000 cycles or does not contribute at all. The outliers here
are the Quicksort, SelectSmallest, Kfl, and Lift benchmarks,
where exception handling contributes several hundred thou-
sand cycles.

WCET analysis results for the same benchmarks are also
available for JOP [33]. Due to the different hardware setup
(in particular memory access times), we refrain from doing a
direct comparison. However, the results for both platforms
are consistent in the sense that relative times between slow
and fast benchmarks are comparable.

The measurement results in Table 1 were obtained with
the cycle-accurate simulator for Patmos. The pessimism ra-
tio compares the measurement results with the WCET com-
puted under the assumption that there are no exceptions.
The pessimism in our setup is in general higher than the
pessimism reported for JOP [33]. The high pessimism for
QuickSort and SelectSmallest is also found in the results
for JOP, where a pessimism factor of around 10 is reported
for these benchmarks. The extremely high pessimism for
the ExpIntegral benchmark is caused by a software division
routine, which in measurements performs much faster than
has to be assumed for the worst case.

8. CONCLUSION
Real-Time systems need a complete time-predictable plat-

form, starting from the processor, to the compiler, the run-
time system, and the application code. In this paper we pre-
sented a time-predictable processor that is supported by the
WCET analysis tool aiT. On top of this processor we pro-
vide the real-time Java virtual machine HVM that supports
safety-critical Java. On this combination we are able to
compile and analyze for the WCET standard WCET bench-
marks. This solution is the first real-time Java system on a
RISC type processor that is WCET analyzable.

Acknowledgment
We would like to thank the Patmos compiler team: Flo-
rian Brandner, Stefan Hepp, Alexander Jordan, and Daniel
Prokesch for providing the LLVM adaption for Patmos and
the integration with the aiT WCET analysis tool. We are
especially thankful to Benedikt Huber for doing it again (af-
ter WCA for JOP): implementing the WCET analysis tool
platin from scratch for the T-CREST project. We would like
to thank Christoph Cullmann and Gernot Gebhard for the
adaption of aiT for Patmos and thank AbsInt for providing
us their WCET analysis tool.

The work presented in this paper was partially funded by
the Danish Council for Independent Research | Technology
and Production Sciences under the project RTEMP, con-
tract no. 12-127600.

Source Access
The work described in this paper is available in open source
and both projects are hosted at GitHub. The Patmos pro-
cessor and the adapted LLVM compiler are available at https:
//github.com/t-crest. The HVM and the SCJ implemen-
tation are available at https://github.com/scj-devel.

9. REFERENCES
[1] S. Abbaspour, F. Brandner, and M. Schoeberl. A

time-predictable stack cache. In Proceedings of the 9th
Workshop on Software Technologies for Embedded and
Ubiquitous Systems, 2013.

https://github.com/t-crest
https://github.com/t-crest
https://github.com/scj-devel


[2] aicas. http://www.aicas.com/jamaica.html. Visited
June 2012.

[3] A. Armbruster, J. Baker, A. Cunei, C. Flack,
D. Holmes, F. Pizlo, E. Pla, M. Prochazka, and
J. Vitek. A real-time Java virtual machine with
applications in avionics. Trans. on Embedded
Computing Sys., 7(1):1–49, 2007.

[4] Atego. Aonix Perc Pico. Available at:
http://www.atego.com/products/aonix-perc-pico/.

[5] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr,
and M. Turnbull. The Real-Time Specification for
Java. Java Series. Addison-Wesley, June 2000.

[6] P. Degasperi, S. Hepp, W. Puffitsch, and
M. Schoeberl. A method cache for Patmos. In
Proceedings of the 17th IEEE Symposium on
Object/Component/Service-oriented Real-time
Distributed Computing (ISORC 2014), pages 100–108,
Reno, Nevada, USA, June 2014. IEEE.

[7] H. Falk and P. Lokuciejewski. A compiler framework
for the reduction of worst-case execution times.
Real-Time Systems, pages 1–50, 2010.

[8] J. Gaisler. A portable and fault-tolerant
microprocessor based on the SPARC v8 architecture.
In DSN ’02: Proceedings of the 2002 International
Conference on Dependable Systems and Networks,
page 409, Washington, DC, USA, 2002. IEEE
Computer Society.

[9] J. Gustafsson, A. Ermedahl, C. Sandberg, and
B. Lisper. Automatic derivation of loop bounds and
infeasible paths for WCET analysis using abstract
execution. In Real-Time Systems Symposium (RTSS
2006), IEEE International, volume 0, pages 57–66, Los
Alamitos, CA, USA, 2006. IEEE Computer Society.

[10] T. Harmon, M. Schoeberl, R. Kirner, and R. Klefstad.
A modular worst-case execution time analysis tool for
Java processors. In Proceedings of the 14th IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS 2008), pages 47–57, St. Louis, MO,
United States, April 2008. IEEE Computer Society.

[11] R. Heckmann and C. Ferdinand. Worst-case execution
time prediction by static program analysis. Technical
report, AbsInt Angewandte Informatik GmbH.
[Online, last accessed November 2013].

[12] S. Hepp and F. Brandner. Splitting functions into
single-entry regions. In Proceedings of the 2014
International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, CASES ’14,
pages 17:1–17:10, New York, NY, USA, 2014. ACM.

[13] B. Huber, S. Hepp, and M. Schoeberl. Scope-based
method cache analysis. In Proceedings of the 14th
International Workshop on Worst-Case Execution
Time Analysis (WCET 2014), pages 73–82, Madrid,
Spain, July 2014.

[14] B. Huber, D. Prokesch, and P. Puschner. Combined
WCET analysis of bitcode and machine code using
control-flow relation graphs. In Proceedings of the 14th
ACM SIGPLAN/SIGBED conference on Languages,
compilers and tools for embedded systems (LCTES
2013), pages 163–172. The Association for Computing
Machinery, 2013.

[15] B. Huber, W. Puffitsch, and P. Puschner. Towards an
open timing analysis platform. In Proceedings of the

11th International Workshop on Worst-Case
Execution Time (WCET) Analysis, pages 6–15, 2011.
talk: 11th International Workshop on Worst-Case
Execution Time Analysis, Porto; 2011-07-05.

[16] B. Huber and M. Schoeberl. Comparison of ILP and
model checking based WCET analysis. Technical
Report 72/2008, Institute of Computer Engineering,
Vienna University of Technology, December 2008.

[17] J. J. Hunt, I. Tonin, and F. Siebert. Using global data
flow analysis on bytecode to aid worst case execution
time analysis for real-time java programs. In
G. Bollella and C. D. Locke, editors, Proceedings of
the 6th International Workshop on Java Technologies
for Real-time and Embedded Systems, (JTRES 2008),
volume 343 of ACM International Conference
Proceeding Series, pages 97–105. ACM, 2008.

[18] Java Expert Group. Java specification request JSR
302: Safety critical java technology. Available at
http://jcp.org/en/jsr/detail?id=302.

[19] A. Jordan, F. Brandner, and M. Schoeberl. Static
analysis of worst-case stack cache behavior. In
Proceedings of the 21st International Conference on
Real-Time Networks and Systems (RTNS 2013), pages
55–64, New York, NY, USA, 2013. ACM.

[20] C. Lattner and V. S. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. In International Symposium on Code
Generation and Optimization (CGO’04), pages 75–88.
IEEE Computer Society, 2004.

[21] K. S. Luckow, B. Thomsen, and S. E. Korsholm.
Hvmtp: A time predictable and portable Java virtual
machine for hard real-time embedded systems. In
Proceedings of the 12th International Workshop on
Java Technologies for Real-time and Embedded
Systems, JTRES ’14, pages 107:107–107:116, New
York, NY, USA, 2014. ACM.

[22] K. Nilsen and S. Lee. Perc real-time api (draft 1.3).
newmonics, July 1998.

[23] F. Pizlo, L. Ziarek, and J. Vitek. Real time Java on
resource-constrained platforms with Fiji VM. In
Proceedings of the 7th International Workshop on
Java Technologies for Real-Time and Embedded
Systems (JTRES 2009), pages 110–119, New York,
NY, USA, 2009. ACM.

[24] A. Plsek, L. Zhao, V. H. Sahin, D. Tang, T. Kalibera,
and J. Vitek. Developing safety critical Java
applications with oSCJ/L0. In Proceedings of the 8th
International Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES 2010),
pages 95–101, New York, NY, USA, 2010. ACM.

[25] D. Prokesch, S. Hepp, and P. Puschner. A generator
for time-predictable code. In Proceedings of the 17th
IEEE Symposium on Real-time Distributed Computing
(ISORC 2015), Aukland, New Zealand, April 2015.
IEEE.

[26] P. Puschner, R. Kirner, B. Huber, and D. Prokesch.
Compiling for time predictability. In F. Ortmeier and
P. Daniel, editors, Computer Safety, Reliability, and
Security, volume 7613 of Lecture Notes in Computer
Science, pages 382–391. Springer Berlin / Heidelberg,
2012.

http://www.aicas.com/jamaica.html
http://www.atego.com/products/aonix-perc-pico/
http://jcp.org/en/jsr/detail?id=302


[27] P. Puschner, D. Prokesch, B. Huber, J. Knoop,
S. Hepp, and G. Gebhard. The T-CREST approach of
compiler and WCET-analysis integration. In 9th
Workshop on Software Technologies for Future
Embedded and Ubiquitious Systems (SEUS 2013),
pages 33–40, 2013.

[28] M. Schoeberl. A time predictable instruction cache for
a Java processor. In On the Move to Meaningful
Internet Systems 2004: Workshop on Java
Technologies for Real-Time and Embedded Systems
(JTRES 2004), volume 3292 of LNCS, pages 371–382,
Agia Napa, Cyprus, October 2004. Springer.

[29] M. Schoeberl. A Java processor architecture for
embedded real-time systems. Journal of Systems
Architecture, 54/1–2:265–286, 2008.

[30] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley,
R. Capasso, J. Garside, K. Goossens, S. Goossens,
S. Hansen, R. Heckmann, S. Hepp, B. Huber,
A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch,
W. Puffitsch, P. Puschner, A. Rocha, C. Silva,
J. Sparsø, and A. Tocchi. T-CREST: Time-predictable
multi-core architecture for embedded systems. Journal
of Systems Architecture, (0):accepted for publication,
2015.

[31] M. Schoeberl, F. Brandner, S. Hepp, W. Puffitsch,
and D. Prokesch. Patmos reference handbook.
Technical report, 2014.

[32] M. Schoeberl, T. B. Preusser, and S. Uhrig. The
embedded Java benchmark suite JemBench. In
Proceedings of the 8th International Workshop on
Java Technologies for Real-Time and Embedded
Systems (JTRES 2010), pages 120–127, New York,
NY, USA, August 2010. ACM.

[33] M. Schoeberl, W. Puffitsch, R. U. Pedersen, and
B. Huber. Worst-case execution time analysis for a
Java processor. Software: Practice and Experience,
40/6:507–542, 2010.

[34] M. Schoeberl and J. R. Rios. Safety-critical Java on a
Java processor. In Proceedings of the 10th
International Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES 2012),
pages 54–61, Copenhagen, DK, October 2012. ACM.

[35] M. Schoeberl, P. Schleuniger, W. Puffitsch,
F. Brandner, C. W. Probst, S. Karlsson, and
T. Thorn. Towards a time-predictable dual-issue
microprocessor: The Patmos approach. In First
Workshop on Bringing Theory to Practice:
Predictability and Performance in Embedded Systems
(PPES 2011), pages 11–20, Grenoble, France, March
2011.

[36] H. Søndergaard, S. E. Korsholm, and A. P. Ravn.
Safety-Critical Java for low-end embedded platforms.
In Proceedings of the 10th International Workshop on
Java Technologies for Real-time and Embedded
Systems, JTRES ’12, pages 44–53, New York, NY,
USA, 2012. ACM.

[37] I. Thomm, M. Stilkerich, C. Wawersich, and
W. Schröder-Preikschat. KESO: an open-source
multi-JVM for deeply embedded systems. In
JTRES’10, pages 109–119. ACM, 2010.

[38] R. von Hanxleden, N. Holsti, B. Lisper,
E. Ploedereder, R. Wilhelm, A. Bonenfant, H. Casse,

S. Bünte, W. Fellger, S. Gepperth, J. Gustafsson,
B. Huber, N. M. Islam, D. Kästner, R. Kirner,
L. Kovacs, F. Krause, M. de Michiel, M. C. Olesen,
A. Prantl, W. Puffitsch, C. Rochange, M. Schoeberl,
S. Wegener, M. Zolda, and J. Zwirchmayr. WCET
tool challenge 2011: Report. In Proceedings of the 11th
International Workshop on Worst-Case Execution
Time (WCET) Analysis, Porto, Portugal, July 2011.

[39] S. Zhao. Implementing level 2 of Safety-Critical Java,
2014.

Build Instructions
As all the technologies presented here are open source we
provide build and run instructions for the examples in the
paper. Building Patmos and the compiler are briefly de-
scribed at https://github.com/t-crest/patmos and in more
detail in the Patmos reference handbook [31] in Chapter 6.
Here we describe how to run the JemBench benchmarks us-
ing the HVM-AOT and the Patmos simulator.

1. Download the JemBench benchmark suite from
http://sourceforge.net/projects/jembench/

2. In the JemBench main entry point in jembench.Main
add a line setting the args parameter to null

3. Disable the parallel and stream benchmarks

4. Use Git to clone the icecaptools, icecaptoolstest, ice-
capvm and icecapSDK modules from github (https:
//github.com/scj-devel/hvm-scj)

5. Import them into Eclipse as existing projects

6. Open the file hvm.properties and fix the properties
to match your environment. This file is used as input
to the compilation process and points the HVM-AOT
compiler to its input. Comments have been left in the
official version to point to the JemBench main entry
point

7. Run the class main.CompilationManager as a normal
Java application from inside eclipse. This class is lo-
cated in the icecaptoolstest project

8. In a prompt (e.g. xterm or cygwin) go into the folder
.../hvm-scj/icecapvm/src (the path must be adapted)

9. Execute the command:

cp ../../icecaptoolstest/*.[ch] .

10. Compile with (Makefile)

all:
patmos-clang -target patmos-unknown-unknown-elf \
-mpatmos-method-cache-size=0x1000 \
-mpatmos-preferred-subfunction-size=0 \
-mpatmos-stack-base=0x200000 \
-mpatmos-shadow-stack-base=0x1f8000 \
-DPACKED= -Wall -pedantic -O3 -DPC32 \
-DPRINTFSUPPORT -DUSEGETTIMEOFDAY \
-DJAVA_HEAP_SIZE=1310720 \
classes.c icecapvm.c methodinterpreter.c methods.c \
gc.c natives_allOS.c natives_i86.c rom_heap.c \
allocation_point.c rom_access.c native_scj.c \
print.c -lrt

11. Execute the command: pasim a.out

https://github.com/t-crest/patmos
http://sourceforge.net/projects/jembench/
https://github.com/scj-devel/hvm-scj
https://github.com/scj-devel/hvm-scj

