Reusable Libraries for Safety-Critical Java

Juan Ricardo Rios
Department of Applied Mathematics and
Computer Science
Technical University of Denmark
Email: jrri@dtu.dk

Abstract—The large collection of Java class libraries is a main
factor of the success of Java. However, these libraries assume
that a garbage-collected heap is used. Safety-critical Java uses
scope-based memory areas instead of a garbage-collected heap.
Therefore, the Java class libraries are problematic to use in
safety-critical Java.

We have identified common programming patterns in the Java
class libraries that make them unsuitable for safety-critical Java.
We propose ways to improve the libraries to avoid the impact of
the identified problematic patterns. We illustrate these changes
by implementing a total of five scope-safe classes from commonly
used libraries.

Index Terms—Real-time systems, Java, Safety-critical systems,
Safety-critical Java

I. INTRODUCTION

As real-time systems grow in complexity, Java becomes
appealing for their development, resulting in the appearance of
real-time Java profiles. One of these profiles, the safety-critical
Java technology specification (SCJ) [18], has been developed
for certifiable safety-critical systems. SCJ is a specialization
of the Real-Time Specification for Java (RTSJ) [4] and it
has inherited the concept of scoped memories, i.e., regions
of memory that are not managed by a garbage collector (GC).

The scoped memory model of SCJ is one of its most im-
portant features and perhaps the most difficult to use correctly.
References between objects have to follow a strict set of rules.
This memory model complicates the use of standard Java
class libraries (JCL) in application development, because these
libraries were developed under the assumptions that they run
on a system with a GC and can have unrestricted references
between objects. Therefore, it is important to find ways to
modify standard libraries, so they work well within the SCJ
memory model.

This paper explores some of the most common program-
ming patterns and idioms present in OpenJDK6’s standard
JCL. We identify patterns and idioms that are problematic for
SCJ applications and we present different ways to mitigate the
impact of these patterns and idioms. In addition, we create
and test five scope-safe classes representative of three of the
most commonly used libraries: java.util, java.lang, and
java.io. Focus has been on minimizing the need for changes
and modifications with respect to the original implementation.

This paper is organized in eight sections. Section II intro-
duces the basic concepts and the programming model of SCJ.
Section III presents related work. Section IV presents a study

Martin Schoeberl
Department of Applied Mathematics and
Computer Science
Technical University of Denmark
Email: masca@dtu.dk

of problematic programming patterns and idioms in the JCL.
Section V analyses the issue of obtaining re-usable libraries by
modifying or rewriting portions of the JCL. Section VI gives
details on our implementation of scope-safe representative
classes of the util, lang and io packages. Section VII
discusses further observations based on our analysis and
implementation. Section VIII concludes the paper.

II. SAFETY-CRITICAL JAVA

The expert group for safety-critical Java develops the SCJ
specification [18] within the Java community process (JCP)
under specification request number JSR 302. The SCJ spec-
ification is a subset of the RTSJ [4]. To cover different
levels of complexity, SCJ defines three compliance levels:
level O is a single-threaded cyclic executive, level 1 a single
mission with a preemptive scheduler, and level 2 allows
nested missions and usage of an adapted version of RTSJ’s
NoHeapRealtimeThread. In SCJ, concurrent tasks are called
managed schedulables. With respect to memory areas, all three
levels support immortal memory, mission memory, and thread
private scopes. Level 2 allows nested mission memories.

A. Missions and Scheduling

SCJ defines the concept of a mission. A mission consists
of a set of managed schedulables and a mission memory.!
In a level 1 application, which is the focus of this work,
managed schedulables are called handlers. The number of
handlers for a mission is fixed. Handlers are either periodic or
event-triggered. Either an application or an interrupt handler
can trigger the event for an event-triggered handler.

Handlers use the mission memory to share data. A mission
has three phases: initialization, execution, and cleanup. The
SCJ implementation creates the mission memory before exe-
cuting the initialization phase. Within the initialization phase
the application allocates shared data in mission memory, and
creates and registers all handlers. The SCJ implementation
starts all handlers on the transition to the execution phase.
The application cannot create and register new handlers in
the execution phase. In the execution phase handlers allocate
temporary objects in handler-private memory. Allocation in
mission memory is not prohibited; however, it is strongly
discouraged. Objects allocated in immortal or mission memory

ISCTJ Level 2 also allows managed threads.

during the mission phase are not reclaimed within the mission
phase. If the lifetime of those objects is not the application or
mission lifetime then this is a memory leak and the application
may run out of memory. After the cleanup phase, the SCJ
implementation clears the mission memory and a new mission
can be started.

An SCJ application does not contain a main() method.
Instead, a class that implements the Safelet interface, one
or more classes that extend Mission, and at least one class
that extends the MissionSequencer represent the SCJ appli-
cation.

B. Memory Model

SCIJ defines three memory areas: immortal memory, mission
memory, and anonymous private scope memories. Immortal
memory is, like in the RTSJ, for objects that live for the
whole application, which might consist of several missions.
Mission memory represents a scoped memory that exists for
the lifetime of a mission and is the main memory for data
exchange between handlers. Each handler has an initial private
scope, that the infrastructure enters on each release and exits
at the end of each release. The handler can enter nested private
scopes. These private scopes are anonymous, as the application
code has no access to a ScopedMemory object that might
represent this private memory.

III. RELATED WORK

Because safety-critical Java is new, the efforts to develop
libraries for real-time Java profiles have focused on the RTSJ.
However, previous work on the RTSJ can be related to SCJ as
these studies have aimed at eliminating scoped-memory related
errors.

In [8], the authors describe some of the challenges faced
while implementing IBM’s WebSphere, a RTSJ-compliant
commercial Java virtual machine. One of the challenges here
is integration with the existing JCL. Integration is challenging
because objects are allocated in the memory area where
the current thread runs, thus making all classes in the JCL
potentially unsafe for shared use between different types
of threads.”> WebSphere provides a small subset of classes
that are safe for shared use between RTSJ threads. In the
context of the WebSphere JVM, “safe” means free of throwing
MemoryAccessError exceptions, i.e., errors that are thrown
when attempting to refer to an object in an inaccessible
memory area.

Automatic identification of no-heap safe classes is the
topic of [9]. Dibble presents a taxonomy to classify existing
classes according to the degree with which they can be shared
by all types of RTSJ threads. This taxonomy is based on
the existence of static or instance variables that can store
references to objects in heap and no-heap memory areas. A list
of potentially unsafe classes, obtained through static analysis,
is also presented. Dibble’s analysis identifies all classes that
have non-final static reference fields as unsafe.

2RTSJ defines RealtimeThread and NoHeapRealtimeThread in addition
to standard Java threads.

The Javolution project [7] is one of the first attempts to
produce an extended library of reusable, time deterministic,
no-heap safe classes. In that project, issues such as sharing
objects between scopes are eliminated. In addition, extra
steps, e.g., explicitly switching between memory areas, are
handled automatically. Javolution allows dynamic resizing of
collections and allocates the required extra storage from im-
mortal memory. Allocations in immortal memory can become
a memory leak when elements are removed from the col-
lection. Javolution’s dynamic memory allocation and reliance
on exception handling makes static program and worst-case
execution time analysis difficult.

In [13] the development of reusable libraries targeted for
real-time Java is presented. The authors present classes that
can be used as drop-in replacements for three types of col-
lection classes: List, Set, and Map. The authors’ approach is
based on recycling objects from a fixed-size pool of objects.
As a consequence, operations such as insertion or deletion
can be bounded and unpredictable resizing operations are
avoided. Nevertheless, because the elements of a collection
must be mutable, users have to provide their own way in
which elements can change state. This work focuses on known
execution times and memory consumption rather than on
ensuring scope-safety.

The focus of the mentioned studies has been on perfor-
mance; scope-safety is treated by avoiding assignments to
heap memory; or provide safe subsets of classes with non-
deterministic behavior. In contrast, our work concentrates on
scope-safety by analyzing design patterns and idioms. We also
explore deterministic behavior, both for execution time and
memory consumption.

IV. STANDARD JAVA LIBRARIES UNDER THE SCJ
MEMORY MODEL

The standard JCL was not developed to be used in the
SCJ memory model. The JCL is based on a system where
objects are allocated to the heap and are automatically de-
allocated by a GC. Furthermore, objects can refer to each
other unrestrictedly. These assumptions are no longer valid in
SCJ as its memory model eliminates the heap and the GC.
In addition, as objects may have different lifetimes, scope
allocations restrict how objects can refer to each other.

As a result, the different programming idioms and patterns
used in the JCL can lead to memory leaks and illegal reference
assignments. The remainder of this section presents a more
detailed study of programming idioms and patterns present in
three of the most commonly used JCL: java.io, java.lang
and java.util.

A. Lazy Initialization

This pattern delays the initialization of a field that contains
a reference to an object until the field is used for the first time.
This pattern is used for two purposes: 1) to save memory in
case the field is never needed, and 2) to break circularities in
class initialization [3]. The problem with this pattern is that the
object referred to by the lazily initialized field will be created

in the scope of the first handler that uses it. This scope and
the scope where the object with the lazy initialized field was
allocated may not be the same.

As an example, consider the keySet() and values()
methods in the AbstractMap class of the java.util pack-
age. These methods provide different views of the objects
contained in a particular map implementation such as HashMap
or TreeMap; they return a Set and a Collection object
respectively. To ensure referential integrity, a call to these
methods should be done from a scope that encloses the scope
of an AbstractMap subclass instance.

The singleton pattern is as well a version of lazy initial-
ization. The creation of singleton objects is prone to breaking
referential integrity in SCJ. The singleton pattern under the
scoped memory model of RTSJ has been analyzed in [5]. The
solution, which can also be applied to SCJ, consists of explic-
itly allocating the singleton instance in immortal memory by
using the available immortal memory API methods.

B. Dynamic Resizing

When a structure grows beyond its current capacity, it needs
a size adjustment to accommodate new elements. Resizing
involves creation of a new and larger array to accommodate
the previous elements and the new ones. The old array is de-
referenced leading to a memory leak. The new array, created
in the scope of the caller, may eventually be referenced from
an object in a different scope, thereby potentially creating an
illegal reference assignment. This situation is illustrated in
Figure 1a, where a method adds an object to a full collection.
The objects in the figure are annotated with the scope where
they are allocated: MM stands for the shared mission memory
and PM for a private memory.

This method is called from a private memory, PM, while the
object to be added lives in mission memory, MM. In Figure 1a,
the container array ends in a scope that will be inaccessible to
other handlers, even though it is perfectly legal for all handlers
to access the elements of the array. This is referred to as
polluted containers in [8].

An example of this situation is found in the Vector class.
When an element is added, the ensureCapacity method is
used to resize the collection if necessary. In case there is no
resizing, the element to be added must be allocated in the same
scope or in an outer nested scope from where the Vector
object is allocated.

A similar situation occurs with some of the methods in the
StringBuffer and StringBuilder classes. Concatenation
and append operations may need resizing while character re-
placement operations will always create new character arrays.

C. Objects Used in Mixed Contexts

Modification of JCL objects shared between handlers re-
quires special care because most of the methods may create
new objects in the scope of the caller. Consider for instance
the following two examples:

e The addElement (Object obj) method of the Vector
class. The already existing object to be added to the

Before adding new element After adding new element

|
|
Collection object M | | Collection object M
Container Array MM : Container Array PM
+ o le ARlEsaEax:
|
\ | —
]
MM|[MM MM : MM|[MM MM MM
obj || obj || obj | | Obj || obj || obj || obj
|
| MM
[[eTe]s
|
|

Original, now unreferenced, container array

(a) Polluted container

Collection object MM
Container Array MM
‘ ‘ . .
v v
MM MM PM
Object Object Object

(b) Polluted object

Fig. 1. Effects of using shared objects from different scopes. Scoped
memories from where objects are allocated are represented as MM for mission
memory and PM for private memory

collection should reside in the same or in an outer nested
scope as the Vector object. As long as the addition of
the new element does not exceed the capacity of the
collection, the method can be called from within any
scope.

e The add(E e) method of the LinkedList class. This
method will create a wrapper object. This wrapper object
is used to store book keeping information (e.g., references
to the next and previous elements in the list) and a
reference to the actual element to be added. There are
two requirements in this case: 1) call the method from
the same memory, or an outer nested scoped memory, as
the one in which the LinkedList object is allocated, and
2) to ensure the element is added in the same scope or
an outer nested scope from where the method is called.
Neglecting to do this may result in contamination of the
container array with an object allocated in a scope that is
inaccessible to other handlers. This situation is referred to
as polluted objects in [8] and is illustrated in Figure 1b.

D. Iterators

It is common to use an iterator pattern in collection
classes to traverse and access elements of a container. This
pattern is used in base classes such as AbstractMap and
AbstractList. Iterator patterns require the allocation of
Iterator objects that may lead to memory leaks if used
within the shared memory areas (e.g., during initialization
phase) or if used repeatedly. Iterators also require additional
synchronization considerations by the application developer.

E. Loop Bounds

Although not related to scope-safety, the methods in soft-
ware libraries intended for real-time systems must have pre-
dictable execution times. Unbounded loops are a concern for
real-time systems as worst-case execution time (WCET) analy-
sis tools cannot automatically extract loop bounds. For correct
analysis, loops must be annotated manually with bounds.

F. Exceptions

Throwing exceptions may involve the creation of an excep-
tion object in the current allocation context. Even if the scope
has been sized to include the effects of any thrown exception
(that is, not only considering the normal execution path), there
is still the risk of ending up with illegal assignments if the
exception is thrown in an inner scope and propagated to be
handled in an outer scope. Furthermore, it is desirable to avoid
exception propagation as this may introduce program paths
that are complicated to analyze [18].

G. Use of java.lang.reflect

The use of the reflection API can be dangerous in real-time
systems. In addition to “loosing all the benefits of compile-
time type checking, including exception checking” [3], private
fields and methods can be accessed. In SCJ, the use of the
reflection API is severely restricted. However, in JCL a number
of methods, like toArray(), use the reflection APL

V. REUSABLE LIBRARIES IN SCJ

Real-time and safety-critical systems are typically less dy-
namic and more restricted than non real-time or non safety-
critical systems. Such characteristics allow for certain restric-
tions and modifications to be made in library code in order to
achieve the following characteristics:

« Maintain referential integrity. Referential integrity con-
cerns the avoidance of throwing illegal assignment excep-
tions. It is important that SCJ library classes are aware
of the scoped memory where method arguments, returned
results, and objects allocated in methods reside.

o Predictable memory consumption. The size of a scoped
memory area has to be provided when the area is created.
It is therefore important to know how much memory will
be allocated in the specific scoped memory. Libraries
with predictable memory consumption help to size scoped
memory areas in such a way that allocation demands can
be met at all times during the execution of a program.

« Predictable worst-case execution time. Predictable ex-
ecution time in library code is essential for calculating
the WCET of an application. In turn, WCET values are
used as input for the schedulability analysis.

The SCJ specification provides a list of class libraries for
safety-critical applications defined with respect to the JDK
1.6. This set of core libraries is kept as small as possible by
restricting the use of certain methods and fields. The goal is to
reduce size and complexity to decrease the certification costs
of applications. A summary of these classes is presented in
Table I and Table II.

TABLE I
JAVA.IO CLASSES ALLOWED BY SCJ. NOT SHOWING EXCEPTION CLASSES.

Class Name Relation to JDK 1.6 Reusability type

Closeable Same N/A

Datalnput Same N/A

DataOutput Same N/A

Flushable Same N/A

Serializable Same N/A

DatalnputStream Same Instance unsafe

DataOutputStream Same Instance unsafe

FilterOutputStream Same Instance safe

InputStream Same Instance safe

OutputStream Same Instance safe

PrintStream Same Instance unsafe
TABLE II

JAVA.LANG CLASSES ALLOWED BY SCJ. NOT SHOWING EXCEPTION

CLASSES.

Class Name Relation to JDK 1.6 Reusability type

Appendable Same N/A
CharSequence Same N/A
Comparable Same N/A

Runnable Same N/A

Boolean Same Instance safe
Byte Same Instance safe
Character Restricted Instance safe
Class Restricted Instance unsafe
Double Same Instance safe
Enum Restricted Instance safe
Float Same Instance safe
Integer Same Instance safe
Long Same Instance safe
Math Same Instance unsafe
Number Same Instance safe
Object Restricted Instance safe
Short Same Instance safe
StackTraceElement Same Instance safe
StrictMath Same Instance unsafe
String Restricted Instance safe
StringBuilder Restricted Instance unsafe
System Restricted Instance unsafe
Thread Restricted Instance unsafe
Thread.UncaughtEx- Same definition N/A
ceptionHandler

Throwable Restricted Instance unsafe
Void Same Instance safe

Table I lists classes from the java.io package and Table II,
from the java.lang package. In this work, the subset of
already defined classes is used as a starting point either
to modify or to create new safe classes, such as the ones
developed for the java.util package. For this package only
the Iterator interface is provided in the SCJ specification.

A. Analysis of Standard Java Class Libraries

An analysis of the classes defined in JSR-302, using the
OpenJDK’s (version 6) source code, was performed to:

o Classify a standard implementation of the classes allowed
by JSR-302 according to the taxonomy described in [9].
This classification is performed to provide an estimate of
the degree of reusability of unmodified classes.

o Locate the points where memory allocations take place.
In order to provide bounds on memory consumption it
is important to know how memory is being used and,
whenever possible, to provide rules, restrictions, or mod-
ifications that prevent unbounded memory allocations.

In [9], classes are cataloged according to whether or not
they can be considered as no-heap safe. No-heap safe means
that a particular class can be used concurrently by both heap
and no-heap threads without the risk of storing references to
heap-allocated objects.

To adapt this classification to SCJ, we abandon the concept
of heap threads, as SCJ does not allow the use of heap
memory. In addition, what is referred to as code executed by
no-heap threads in [9] translates into periodic or aperiodic
event handlers. Our classification is for scope safety (i.e.
without the risk of generating illegal references) and has the
following two categories:

« Instance safe: A class instance can be shared by different
event handlers or allocated in a handler’s private memory
and used in a nested private memory without the risk of
generating illegal references. Few classes are expected to
fall into this category, as they need to have only final
reference fields.

o Instance unsafe: Event handlers cannot safely share
instances of this class.

The results of this classification are shown in Table I and
Table II. The following rules were used for classification:

1) A class is instance safe if all of its reference fields are
declared as final.

2) A class with non-final reference fields assigned only at
class initialization (execution of its <clinit> method)
can be considered to be instance safe.

3) A class with non-final reference fields or with methods
that perform array reference assignments are instance
unsafe.

4) A class inherits its superclass classification. For exam-
ple, if class B extends class A and class A is instance
unsafe, then class B is also instance unsafe. An unsafe
class B can, however, have a safe class A as parent.

During the analysis of the JCL classes, we noted all allo-
cation places and reference assignments. Once a problematic
part in the code was located, we proceeded to implement our
solutions, which combine techniques such as restricting the
size of different structures, changing between scopes, running
specific code in nested scopes, and recycling of objects by
memory pooling.

B. Mitigating the Effects of Design Patterns and Programming
Idioms on Scoped Memory

This section presents a number of recommendations on how
to avoid the problems associated with the previously described
design patterns and programming idioms.

1) Lazy Initialization: 1llegal references can be avoided by
creating the lazy object either in immortal memory or in the
same scope as the object containing the lazy initialized field.

One possible solution is to execute the object creation code in
class initializers, which will execute in immortal memory, as
it is done in [2]. This approach works for objects that should
be accessed during the whole application lifetime, such as a
Properties object.

For objects that are only used by specific missions, another
approach is to create the lazy initialized object when the
instance of the class containing the field is created, i.e., as
part of the object’s constructor. This is the approach followed
in the implementation of our libraries.

Another solution would be to change the allocation context
to the memory area where the object with the lazy initialized
field is allocated. The lazy object can then be safely created.

2) Dynamic Resizing and Elimination of Unintended Ref-
erences: The fundamental problem here is that for every
expansion of a data structure, a new storage element (usually
an array of objects) is created in the context of the caller while
the previous storage element gets dereferenced, producing a
memory leak.

One option to avoid structures to dynamically resize is
to limit the maximum amount of elements the structure can
hold. This seems too restrictive, but it is likely that most data
structures for hard real-time systems are big enough to hold
all of the intended elements.

Another option is to change the allocation context before the
expansion to guarantee that the storage element is created in
the same memory area as the data structure. However, memory
leaks created by de-referencing the old storage element cannot
be avoided.

The approach we use in our libraries is to limit the maxi-
mum amount of elements a structure can hold and to recycle
objects from a pool of objects. Objects are allocated from the
pool when they are needed and returned to the pool when
removed from the data structure. In this way we avoid the
risk of creating the storage element in another region and the
memory leaks associated with removing or replacing elements.

3) Objects Used in Mixed Contexts: This is perhaps one
of the most difficult issues to address in library code since
there is no easy way to ensure that caller-allocated results or
arguments to methods reside in appropriate scopes.

Illegal references come from field or array stores, either to
new objects or to objects referenced by arguments passed to
methods. Arguments must reside in the same scope as the this
argument,3 or in an outer scope (e.g., for setter methods). One
option for ensuring that library code enforces this requirement
is to provide dynamic guards (see the memory annotations
appendix of [18]). A dynamic guard is a conditional statement
used to test that the parenting relationship of the scopes
in which arguments reside is appropriate to avoid illegal
references.

Another option is to change the allocation context to execute
a method (or part of it) in the scope of the this argument.
This is particularly useful if the method requires the creation
of auxiliary objects as in a HashMap or a LinkedList,

3this is a reference to the object whose method is being called.

where additional objects are created to store bookkeeping
information.

For our libraries we reuse objects from pools and require
that instances of library classes are created in the same or an
inner nested scope as the pool.

4) Iterators: One option for the use of this pattern is to pre-
allocate single iterator objects when collection objects are cre-
ated, as in [13]. However, we consider that not much is gained
by pre-allocating single iterator objects per collection, because
this solution only works on single-threaded applications. As
described by the authors of [13], if a handler requests use of
the iterator object after another handler has gained access to
the single iterator object, then the iterator object’s state is reset
causing runtime errors.

The use of iterators may become problematic if used mul-
tiple times. In this case, a better idea is to use iterators within
nested private memory areas.

5) Loop Bounds: Most of the programming idioms, used
for loops in the JCL, are not friendly for our current WCET
analysis tool, WCA [23]. The exit condition in loops may
depend on boolean flags or on a value that the data flow
analysis in the tool is not able to propagate (e.g., internal
manipulation of an array size). The most common case was
loops in which the stop condition is a boolean check for a
null element. In our libraries, loops are limited to a maximum
number specified as an argument in the instance constructor.
This argument can be propagated by the data flow analysis of
the WCA tool provided it is not modified inside the library
code. To enforce this restriction, such arguments are declared
final.

6) Exceptions: Safe exception handling in SCJ requires the
observation of the following rule:

o Propagation of exceptions to a scope different from
the one in which it was originally allocated causes a
ThrowBoundaryError exception. In this way, scoped
memory errors such as illegal reference assignments are
avoided [18].

According to SCJ’s specification, there are no special
requirements for the allocation of exception objects. These
objects can be created in the current scope with the new
keyword; in a different scope after a change of allocation
context; or they can be pre-allocated. Our libraries pre-
allocate exceptions in immortal memory and when necessary
and possible, library exceptions are created with a constant
string message describing the cause of the error. Unnecessary
memory allocations that come from concatenation of strings
are thus eliminated.

VI. IMPLEMENTATION

In this section we describe the implementation of five
representative classes of the standard Java libraries. The im-
plemented classes were adapted for use in safety-critical Java
in accordance with the solutions outlined in Section V-B. Of
the five classes, three are defined in the safety-critical Java
specification (AbstractStringBuilder, StringBuilder,
and DataInputStream) while the other two (Vector and

HashMap) are not part of the safety-critical Java specifica-
tion. Nevertheless, we consider them to be important in the
development of reusable software components.

A. AbstractStringBuilder and StringBuilder

Within these classes, memory consumption is related to the
size of the character array backing those types of objects.
To provide bounds on memory consumption, we limit the
maximum number of characters any of those classes can
hold. This maximum length can, e.g., be the size of log
messages or to the size of a text to be displayed. This decision
can further be supported by considering that safety-critical
programs typically do not incur in extensive text processing
or file manipulations [18].

Limiting the maximum number of characters also has the
following two benefits: 1) Resizing operations are not needed
and 2) we can have bounds on methods that iterate over the
character elements (through annotations, see Section V-B5).

B. DatalnputStream

The java.io package contains classes to perform input and
output operations in Java. We focus on the DataInputStream
class because the additional classes in this package defined in
JSR-302 (see Table I) are only wrapper classes.

Memory allocations within classes in this package come
from re-sizable arrays that are used for temporary processing
or to perform buffered reads and writes. Methods that perform
temporary processing can be executed inside nested scopes.
In this way, array resizing is allowed if needed and any
temporary array will be collected when leaving the nested
scope. As an example, Figure 2 shows our modified version of
the readUTF (DataInput in) method (lines 4-12) from the
DataInputStream class. This method reads a representation
of a character string encoded in modified UTF-8 format* and
uses two arrays of up to 65,535 bytes for temporary process-
ing. The readUtfHelper inner class encapsulates in its run()
method (lines 21-26) the code of the original readUTF method
and executes it in a nested private memory. The modified
version needs an additional parameter to set the size of the
nested scope because the memory consumption of objects is
implementation dependent. The run() method also handles
the additional scope change needed to return the resulting
string object into the context of the caller (lines 29-34). The
scope change is made using the SCJ’s executeInOuterArea
method, which moves the current allocation context one level
up in the scope stack.

Resizing operations can also be avoided by using working
arrays and buffers of size equal in size to the worst-case
expected length. The drawback of this approach is that arrays
that are only needed for a few methods will be created for
every instance and will most likely be poorly utilized.

4See http://docs.oracle.com/javase/6/docs/api/java/io/Datalnput. html#modified-

utf-8 for a description of the modified UTF-8 format

public class DatalnputStream ... {
/+ Other methods of DatalnputStream class +

1
2
3
4 public static final String readUTF(Datalnput in, long size)... {
5 ReadUtfHelper readUtfHelper = new ReadUtfHelper();
6 readUtfHelper.in = in;

7 ManagedMemory.enterPrivateMemory(size, readUtfHelper);

8

9 /+ Return String lives in the context of the caller +
10 return readUtfHelper.retString;

11}

12 }

13

14 class ReadUtfHelper implements Runnable {
15 String retString ;
16 Datalnputin;

18 @Override
19 public void run() {

20 try {

21 /+ Begin of original code of readUTF method +

22 int utflen = in.readUnsignedShort();

23 byte[] bytearr = new byte[utflen];

24 final char[] chararr = new char{utflen];

25

26 /+ End of original code of readUTF method +

27

28 /+ Return a String object in the scope of the caller +
29 ManagedMemory.executelnOuterArea(new Runnable() {
30 @Override

31 public void run() {

32 retString = new String(chararr, 0, count);

33

34 »:

35 } catch (IOException e) {...}

36

37 }

Fig. 2. Example of a method modified to run in a nested private scope.

C. Vector and HashMap

These two classes are representative for the java.util
package. The safety-critical Java specification only provides
the definition for the Iterator interface. However, as these
classes are useful for building reusable software components,
we decided to provide some implementation examples for this
package.

The modified Vector class, illustrated in Figure 3, shows
how, through the use of object pooling [17], a solution for most
of the problems mentioned in Section IV can be provided.

Our classes are restricted to store only elements belonging
to a pool of pre-allocated objects. When elements are removed
or replaced, they are returned to their corresponding pool, their
state is reset, and they are marked as available for reuse. To
add an element, one must first obtain a free object from the
pool of pre-allocated objects and then add it to the Vector.

An ObjectPool instance is created with a fixed number of
objects. The number of objects is passed as a parameter in the
constructor (if omitted, a default value is used). The elements
belonging to the pool are created when the ObjectPool is
instantiated and a PoolObjectFactory provides a strategy to
define how they will be created (through the createObject()
method). Retrieving a free object from the pool is done by
calling the getPoolObject() method which in turn will

<<Java Interface>>
3 PoolObjectFactory

<<Java Interface>>
3 PoolObject

@ createObject():PoolObject @ initialize():void

@ isFree():boolean
~factory | 0.1 @ reset():void
@ getPool():ObjectPool<?>
@ setPool(ObjectPool<PoolObject>):voi
~objects
0. #elementDataf 0..*
<<Java Class>>
(3 ObjectPool<E>

<<Java Class>>

% DEFAULT CAPACITY: int = 1i (® Vector<E>

+ MAX_OBJECTS: in
4 usedObjects: int

< elementCount: int
%FDEFAULT CAPACITY: int = 1t
& ObjectPool(PoolObjectFactory) <] 5,5
OcObjectPooI(int,PoolObjectFactory‘, % indexExc: IndexOutOfBoundsException
© usedObjects(yint SAFmaxCagExc: llegalStateExceptior

© maxObjeats():int SAFinitCagExc: llegalArgumentExceptior
@ getPoolObject()

@ releasePoolObject(PoolObject):void|

biggerThanElemCntExc: ArraylndexOutOfBoundsE..

Fig. 3. Class hierarchy of the modified Vector class.

call an initialization hook, the initiaize() pool object’s
method, from the returned free object. When returning an
object to the pool, the releasePoolObject() method calls
the termination hook method, reset(), of the object being
returned. It is important to note that the ObjectPool as well
as the Vector can only have elements of the PoolObject
type or subtype. This restriction is enforced through generics.
Method getPool() returns a reference to the pool an object
belongs to (it is possible that a Vector contains elements from
different pools).

Memory allocations in this class are a result of resizing
the storage element, throwing new exceptions, and from the
use of iterators. Resizing is avoided by fixing the size of
the internal storage element. The fixed-sized storage element
together with the fixed-size pool of objects implies that the
maximum number of elements that the collection can store
must be known in advance. Creating new exception objects
is avoided by pre-allocating them in immortal memory during
class initialization.

The HashMap class presents additional complexity due to a
double object-pool management, one for the objects represent-
ing entries in the bucket list (implementations of Map.Entry)
and one for the Map objects that are to be added to the hash
map.

D. Comparison with JCL

Table IIT shows a comparison between our modified classes
and the original JDK 6 implementation. We compare the
lines of code (LoC), number of fields (NoF), methods (NoM),
modified methods (NoMM) and constructors (NoC). For the
number of methods, numbers in parenthesis represents the
number of methods belonging to the public API. For the
number of modified methods, the two numbers represent
respectively the total number of modified methods and the
number of new methods needed for extra functionality. The
number in parenthesis indicates the modified methods of the
public APL

TABLE III
COMPARISON OF THE IMPLEMENTED CLASSES WITH JDK’S IMPLEMENTATION. LOC = LINES OF CODE, NOF = NUMBER OF
FIELDS, NOM = NUMBER OF METHODS, NOMM = NUMBER OF MODIFIED METHODS, AND NOC = NUMBER OF
CONSTRUCTORS. NUMBER OF PUBLIC METHODS IS IN PARENTHESIS. FOR THE NOMM IN THE IMPLEMENTED CLASSES, THE
NUMBERS REPRESENT MODIFIED METHODS AND ADDITIONAL METHODS RESPECTIVELY.

Class Name JDK 1.6 Implemented Classes

LoC NoF NoM NoC! LoC NoF NoM NoMM NoC!
java.lang.AbstractStringBuilder 447 2 52(50) 2 237 6 29(26) 11(11)/0 2
java.lang.StringBuilder 189 1 38395 4 119 1 19(18) 10)/0 4
java.io.DatalnputStream 212 4 18 (18) 1 108 5 17(17) 1(1)/0 1
java.io.DataInputStream$ReadUtfHelper? - - - - 77 2 1 0/1 1
java.io.DatalnputStream$ 13 - - - - 6 0 1 0/1 0
java.util. Vector 322 4 48 (45) 4 228 7 3635 16015/1 2
java.util. Vector$ 1* 14 1 2 0 14 1 2 0/0 0
java.util. Vector$Itr 33 3 4 0 33 3 4 0/0 0
java.util. Vector$Listltr 43 0 6 1 43 0 6 0/0 1
java.util. HashMap 356 10 36 (13) 4 269 22 24 (11 113)/1 2
java.util. HashMap$Entry 48 4 8 1 57 5 9 0/1 1
java.util. HashMap$Entrylterator 5 0 1 0 5 0 1 0/0 0
java.util. HashMap$EntrySet 21 0 5 0 24 0 5 1/0 0
java.util. HashMap$HashlIterator 41 4 3 1 43 4 3 0/1 1
java.util. HashMap$Keylterator 5 0 1 0 5 0 1 0/0 0
java.util. HashMap$KeySet 17 0 5 0 27 0 5 1/0 0
java.util. HashMap$ Valuelterator 5 0 1 0 5 0 1 0/0 0
java.util. HashMap$ Values 14 0 4 0 14 0 4 0/0 0

! Zero means only the default implicit constructor.
3 Not in JDK6. Anonymous Runnable class.

None of the original interfaces implemented by the modified
classes were changed to keep compatibility as close to standard
Java applications as possible. However, a number of interfaces
implemented by the original JDK 6 classes are not allowed
by SCJ. For example, the Cloneable interface is not al-
lowed because of its weak definition. Therefore, the clone ()
method will throw a CloneNotSupportedException. The
Serializable interface is left as part of the implemented
classes for compatibility with standard Java, but its inclusion
or exclusion has no effects on a SCJ application.

Some of the constructors had to be eliminated
due to their underlying algorithm. For example, the
Vector(Collection<? extends E> c) is omitted as the
size of the final array element created cannot be guaranteed.
This is because the constructor relies on the size of the
Collection parameter, which can be modified while the
constructor is still executing. As a result of modifying the
collection, array objects of varying size can be created and
it is not known which one will be returned to be used as
the storage element for the Vector. Therefore, methods
operating on collections are committed. Constructors that
require parameters for resizing, and methods for resizing and
ensuring capacity are also omitted. Similar restrictions for
constructors and resizing methods applies for HashMap.

The reduction in the number of methods and lines of code
is a consequence of: (1) the elimination of methods that are
no longer needed (e.g., resizing methods) and (2) the reduced
number of methods allowed by the SCIJ profile. The increase
in the number of fields in the implemented classes is because
pre-allocated exceptions are included as class variables.

2 Not in JDK®, encapsulates SCJ functionality.
4 Anonymous Enumeration class.

E. Testing

To check that the implemented classes are functionally
correct, a set of test cases were developed using the standard
JUnit Java framework. The test cases allow checking of the
majority of methods, except for those that involve parts of the
SCJ APIL. For methods including parts of the SCJ API, the Java
processor JOP [22] was used. JOP provides an implementation
of Level 0 and Level 1 of the safety-critical Java profile [24].

To test that there are no reference assignment errors, we
used the private memory analyzer tool described in [6] together
with the reference assignment check facility of JOP. Memory
consumption is checked by measuring the amount of mem-
ory used by the different methods in the libraries. Memory
measurements are only carried out on methods that have
memory allocations identified by the analysis in Section V-A.
Our synthetic test-bench for this part of the testing is a SCJ
application with shared data structures in mission memory that
are accessed from a set of PeriodicEventHandlers (PEH).

As a final step, two additional, more complex applications
were tested. First, the new java.util collection classes were
used as drop-in replacements for the shared data structures in
the parallel miniCDj benchmark [25]. The miniCDj benchmark
is a SCJ version of the benchmark described in [16]. miniCDj
implements an air traffic controller simulator that generates ar-
tificial radar frames containing airplane positions. The frames
are processed to detect possible collisions. For the parallel
version, one PEH generates the radar frames and a selectable
number of AperiodicEventHandlers process them.

The second test uses a SCJ version of a watchdog applica-
tion running on top of the Cubesat space protocol (CSP) [1].

CSP is a network-layer protocol designed at Aalborg Uni-
versity that is used by small space-research satellites called
Cubesats. The watchdog application has one PEH that sends
packets to a set of nodes and one PEH functions as a
router. An interrupt service routine adds incoming packets
into the router’s queue. For our experiments, one of the CSP
nodes was an on-board satellite computer used in commercial
Cubesats. The application has three main data structures
that handle packets, connections and sockets. We replaced
the data structure used to handle packets with our Vector
implementation. Functionality was not affected nor were any
scope-related issues introduced. An interesting result was a
reduction of almost 7% of the use in immortal memory; in
the original implementation, the router PEH needs additional
packet-managing structures.

VII. DISCUSSION
A. Loop Bounds for Library Code
To automatically find loop bounds with our WCET tool,
some loop exit conditions had to be changed. For exam-
ple, a loop like: for(Entry e = tab[i]; e != null; e
= e.next) was modified as:

Entry e = tab[i];

for (int i = 0; i < entries.length; i++){
if(e == null) break;
e = e.next;}

The worst-case iteration count, i.e. entries.length, can
be propagated in the data flow analysis. The break statement
avoids iterations being performed when they are not necessary.

A different approach that can be adopted is the use of
standard Java annotations to pass symbolic information about
loop bounds, as proposed in [12], where loops can be bounded
with annotations of the form:

@LoopBound (max=elementCount)
for (int i = 0; i < elementCount; i++){...}

where the maximum number of iterations (elementCount in the
example code above) is obtained from an annotation attached
to the declaration of the class instance implementing the
method with the loop. However, such non-standard annotations
require the use of a modified Java compiler.

Annotations for loop bounds in String and
StringBuilder objects are more difficult to handle in
the same way. These objects can be created explicitly (with
the new keyword) or when calling the toString() method,
when declaring constant strings, as a result of concatenation
with the “4” operator, etc. In these cases there is no easy
way to propagate information about the internal character
array size to the internal methods containing loops.

B. Programming Idioms and Patterns for WCET Analysis

Another issue found when performing WCET analysis of
library code was the use of overridden implementations of
Object.equals(). The problem here is that the call graph

generated during the analysis contains cycles, and the WCA
tool is not able to handle this type of recursion. Cycles
in the call graph were observed in classes that use the
java.util.Map.Entry inner class. Testing for equality be-
tween two entries requires testing for equality between the
pair of key-value mappings contained in the entry. The key
and value objects will call their own implementation of the
equals () method. One possible solution could be to restrict
the types of objects that can be stored as key-value mappings,
and to implement a different form of equality that avoids
the use of an overridden form of Object.equals. This is,
however, too restrictive on the types of key-value objects that
can be used in a map.

The delegation pattern also generates cycles in
the call graphs. For example, the methods of the
AbstractList.Sublist inner class make calls to the
“real” implementation of a List passed as argument to the
constructor. To avoid cycles, the annotation system proposed
in [14] can be used to tighten the number of possible receiver
types of a method invocation.

C. Application Developer Considerations

Many of the problems outlined in Section IV can be
solved by modifications of the Java class libraries source
code. Such modifications can minimize, but cannot completely
eliminate, the occurrence of scoped memory protocol errors
in a complete application. For example, it is the responsibility
of the application developer to use caller allocated results or
arguments to methods correctly, so as to avoid illegal assign-
ments. We presented patterns for SCJ memory usage in [20].
Furthermore, a typing system based on annotations, such as the
one described in [19], can be useful in this case. This typing
system adds extra information about the scope of the different
elements of an application, which can later be retrieved to
perform static analysis. In addition, which restrictions exist
for passed arguments and returned results should be considered
when overriding library method implementations.

D. Certification Issues in Library Code

As a final remark, it is important to note that the use
of reusable components and libraries for the development
of safety-critical systems presents additional challenges, e.g.,
unused code from a library introduces code that is not traceable
to requirements (dead and/or deactivated code). Certification
standards, such as DO-178C [21], expect that code not associ-
ated to requirements is either eliminated or that requirements
for the code are developed [11], [10]. Therefore, the benefits of
re-usability should overcome the increased certification effort
and associated costs.

Another type of issue is the encapsulation of data, as this
complicates robustness testing [11], i.e., “the degree to which
a system or component can function correctly in the presence
of invalid inputs or stressful environmental conditions” [15].
Robustness tests will not be able to access library-private data.

E. Stability Between Releases of the JDK

By comparing the source code between JDK6 and JDK7 of
the modified classes in this work, we found very few changes.
The changes concentrate in methods to ensure capacity, the use
of the enhanced for-loop and generics. Those minimal changes
made our libraries relatively stable between JDK’s releases.

VIII. CONCLUSION

Standard Java class libraries were not developed to be used
under the scoped memory model of safety-critical Java. They
rely on automatic memory deallocation by a GC and objects
that can reference to each other in an unrestricted manner.
These assumptions are no longer valid in SCJ as its memory
model eliminates the heap and the GC, and restricts the way
in which objects can refer to each other.

We have analyzed and identified common problematic
patterns present in three of the most used Java libraries:
java.lang, java.util, and java.io. We have also pro-
vided modifications to the mentioned libraries that mitigate
the problems introduced by the identified patterns.

Safety-critical systems are more restricted and less dynamic
than non safety-critical systems. These characteristics allows
for restrictions to be made for the implementation of reusable
libraries for SCJ. We have adapted representative sample
classes as a first step to developing reusable libraries for SCJ.
The provided classes have predictable memory consumption,
are WCET analyzable, and maintain referential integrity be-
tween objects created and used internally by the classes.

ACKNOWLEDGMENTS

We thank Anders P. Ravn and Wolfgang Puffitsch for their
insights and comments on this work.

This work is part of the project “Certifiable Java for Embed-
ded Systems” (CJ4ES) and has received partial funding from
the Danish Research Council for Technology and Production
Sciences under contract 10-083159.

SOURCE ACCESS

The modified classes presented in this work are part of
the JOP distribution and implementation of SCJ. They can
be downloaded from https://github.com/jop-devel/jop and are
located in the java/target/src/paper/libs/ directory.

REFERENCES

[1] J. L. Andersen, M. Todberg, A. E. Dalsgaard, and R. R. Hansen. Worst-
case memory consumption analysis for SCJ. In Proceedings of the
11th International Workshop on Java Technologies for Real-time and
Embedded Systems, JTRES ’13, pages 2-10, New York, NY, USA, 2013.
ACM.

[2] J. Auerbach, D. F. Bacon, B. Blainey, P. Cheng, M. Dawson, M. Fulton,
D. Grove, D. Hart, and M. Stoodley. Design and implementation of
a comprehensive real-time Java virtual machine.
the 7th ACM & IEEE international conference on Embedded software,
EMSOFT 07, pages 249-258, New York, NY, USA, 2007. ACM.

[3] J. Bloch. Effective Java. Addison-Wesley, Upper Saddle River, NIJ,
2008.

[4] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M. Turnbull.
The Real-Time Specification for Java. Java Series. Addison-Wesley, June
2000.

In Proceedings of

[5]

[6]

[7]
[8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Corsaro and C. Santoro. Design Patterns for RTSJ Application
Development. In R. Meersman, Z. Tari, and A. Corsaro, editors, On
the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops,
volume 3292 of Lecture Notes in Computer Science, pages 394-405.
Springer Berlin / Heidelberg, 2004.

A. E. Dalsgaard, R. R. Hansen, and M. Schoeberl. Private memory
allocation analysis for safety-critical Java. In Proceedings of the
10th International Workshop on Java Technologies for Real-time and
Embedded Systems, page 917, 2012.

J.-M. Dautelle. Javolution. http://javolution.org/, September 2012.

M. Dawson. Challenges in Implementing the Real-Time Specification
for Java (RTSJ) in a Commercial Real-Time Java Virtual Machine. In
Object Oriented Real-Time Distributed Computing (ISORC), 2008 11th
IEEE International Symposium on, pages 241-247, may 2008.

P. Dibble. No-Heap Safe Classes. http://www.rtsj.org/docs/noheapSafel/
Noheapsafeclasses4.html, August 2004. Retrieved on April 11, 2013.
M. R. Elliott and P. Heller. Object-oriented software considerations in
airborne systems and equipment certification. In Proceedings of the ACM
international conference companion on Object oriented programming
systems languages and applications companion, SPLASH ’10, pages
85-96, New York, NY, USA, 2010. ACM.

Federal Aviation Administration. Handbook for Object-Oriented Tech-
nology in Aviation (OOTiA). Federal Aviation Administration (FAA),
Washington, D.C., USA, October 2004.

T. Harmon, M. Schoeberl, R. Kirner, and R. Klefstad. A modular worst-
case execution time analysis tool for Java processors. In Proceedings of
the 14th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2008), pages 47-57, St. Louis, MO, United States,
April 2008. IEEE Computer Society.

T. Harmon, M. Schoeberl, R. Kirner, and R. Klefstad. Toward Libraries
for Real-Time Java. In Object Oriented Real-Time Distributed Com-
puting (ISORC), 2008 11th IEEE International Symposium on, pages
458-462, may 2008.

E.-S. Hu, G. Bernat, and A. Wellings. Addressing dynamic dispatching
issues in WCET analysis for object-oriented hard real-time systems.
In Object-Oriented Real-Time Distributed Computing, 2002. (ISORC
2002). Proceedings. Fifth IEEE International Symposium on, pages 109—
116, 2002.

IEEE. IEEE-STD-610 ANSI/IEEE Std 610.12-1990. IEEE Standard
Glossary of Software Engineering Terminology. 1EEE, Feb. 1991.

T. Kalibera, J. Hagelberg, P. Maj, F. Pizlo, B. Titzer, and J. Vitek. A
family of real-time Java benchmarks. Concurrency and Computation:
Practice and Experience, 23(14):1679-1700, Sept. 2011.

M. Kircher and P. Jain. Pattern-Oriented Software Architecture, Patterns
for Resource Management. Wiley Software Patterns Series. Wiley, 2005.
D. Locke, B. S. Andersen, B. Brosgol, M. Fulton, T. Henties, J. J.
Hunt, J. O. Nielsen, K. Nilsen, M. Schoeberl, J. Tokar, J. Vitek, and
A. Wellings. Safety-Critical Java Technology Specification, Public draft,
2013.

K. Nilsen. A type system to assure scope safety within safety-critical
Java modules. In Proceedings of the 4th international workshop on Java
technologies for real-time and embedded systems, JTRES 06, pages 97—
106, New York, NY, USA, 2006. ACM.

J. R. Rios, K. Nilsen, and M. Schoeberl. Patterns for safety-critical Java
memory usage. In Proceedings of the 10th International Workshop on
Java Technologies for Real-Time and Embedded Systems (JTRES 2012),
pages 1-8, Copenhagen, DK, October 2012. ACM.

RTCA. DO-178C/ED-12C, Software Considerations in Airborne Sys-
tems and Equipment Certification, 2011.

M. Schoeberl. A Java processor architecture for embedded real-time
systems. Journal of Systems Architecture, 54/1-2:265-286, 2008.

M. Schoeberl, W. Puffitsch, R. U. Pedersen, and B. Huber. Worst-case
execution time analysis for a Java processor. Software: Practice and
Experience, 40(6):507-542, May 2010.

M. Schoeberl and J. R. Rios. Safety-critical Java on a Java processor. In
Proceedings of the 10th International Workshop on Java Technologies
for Real-Time and Embedded Systems (JTRES 2012), pages 54-61,
Copenhagen, DK, October 2012. ACM.

F. Zeyda, A. Cavalcanti, A. Wellings, J. Woodcock, and K. Wei.
Refinement of the Parallel CDx. Technical report, University of York,
Department of Computer Science, York, UK, 2012.

