
A Profile for Safety Critical Java

Martin Schoeberl
Institute of Computer Engineering

Vienna University of Technology, Austria
mschoebe@mail.tuwien.ac.at

Hans Søndergaard
Vitus Bering Denmark University College

DK-8700 Horsens
hso@vitusbering.dk

Bent Thomsen, Anders P. Ravn
Department of Computer Science

Aalborg University DK-9220 Aalborg
bt, apr@cs.aau.dk

Abstract

We propose a new, minimal specification for real-time
Java for safety critical applications. The intention is to
provide a profile that supports programming of applications
that can be validated against safety critical standards such
as DO-178B [15]. The proposed profile is in line with the
Java specification request JSR-302: Safety Critical Java
Technology, which is still under discussion. In contrast to
the current direction of the expert group for the JSR-302
we do not subset the rather complex Real-Time Specifica-
tion for Java (RTSJ). Nevertheless, our profile can be im-
plemented on top of an RTSJ compliant JVM.

1 Introduction

Since the Real-Time Specification for Java (RTSJ) [4]
and its more recent revision [11] appeared, there has been
much discussion about whether its wide scope, incorporat-
ing many dynamic features and many parameters, would al-
low implementations that would be verifiable such that they
can be deployed in high integrity systems. A significant out-
come of this discussion is the Ravenscar-Java Profile (RJ)
[12], which is based on the Ravenscar profile for Ada [6]
and was first published in [14]. RJ is an extended subset of
RTSJ that removes features considered unsafe for high in-
tegrity systems. Currently another profile for safety critical
systems is under discussion in the HIJA forum. What these
profiles have in common is a bottom-up approach. Essen-
tially they [4]:

1. take the Java language and its associated virtual ma-
chine,

2. provide low level access to physical memory (and in-
terrupts),

3. add an interface to a scheduler which is some mech-
anism that gives predictability to thread execution,
and which implements some policy that is specified
through release and scheduling parameters,

4. add an interface to some memory areas controlled by
mechanisms that may give more predictable allocation
of objects,

5. add some mechanism to make synchronization more
predictable,

6. add new classes of asynchronous events and their han-
dlers, and internal event generators called timers re-
lated to clocks,

7. and try to come to terms with asynchronous transfer of
control and termination.

We claim that apart from 1 and 2, the remaining en-
hancements complicates life for a programmer, because the
source program for an application becomes a mixture of ap-
plication specific requirements (deadlines, periods, binding
of external events, and program logic), parameters for con-
trolling policies of the underlying middleware mechanisms
(cost, priority, importance, event queue sizes, memory area
sizes), and parameters for tuning or sidestepping the mech-
anisms (miss handlers, timers).

The resulting application programs become inherently
complex, and in order to be trustworthy, they must be an-
alyzed by tools before being fielded. It is unclear, whether
such tools are part of the profiles or the profiles are intended
to be used with standard development tools and validation
is seen as an entirely separate process.



The contribution of this paper is a profile that is devel-
oped with an entirely different approach. This profile is
intended to supply the concepts that support development
of small, embedded systems that use the standard patterns
advocated by, e.g. the HRT-HOOD methodology [7]. The
approach builds on the following:

• the Java language and machine supported by an exist-
ing RT profile giving the mechanisms and policies,

• low level access to hardware, since hardware abstrac-
tion layers are yet in the future,

• plus periodic and sporadic threads with application
specific parameters, including program logic.

The profile needs support from a compiler enhanced with
analysis and synthesis algorithms which for given middle-
ware can compute policy parameters and check their feasi-
bility. Such algorithms may either generate bytecode or be
based on macro expansion. The feasibility of the approach
is demonstrated by using RTSJ as a middleware.

We start from scratch to build a profile for hard real-time
Java for safety critical applications. The aim is:

• An easy to use framework

• Simplified program analysis

• Easy to implement on embedded systems

• Minimum implementation details

A Java programmer with background in real-time sys-
tems should be able to use the profile in less than a day.

It is assumed that real-time applications are statically an-
alyzed with respect to worst case execution time, schedu-
lability and memory consumption. The specification shall
simplify this essential process.

Section 2 surveys the features of existing related pro-
files and discusses the distinctions we make between mech-
anisms, policies and application relevant concepts. Accord-
ing to our design principles, we remove the former two from
the API. Section 3 defines the resulting profile and illus-
trates it with small examples. Section 4 outlines an imple-
mentation. Section 5 concludes the paper with a discussion
of some features that might be nice to have or which may
be supported in other ways.

2 Selection of Features

In the following we discuss each of the areas where RTSJ
extends Java, and where Ravenscar-Java and Safety Critical
Java decide to restrict it. The discussion follows the struc-
ture of the RTSJ [4].

2.1 Standard Java Classes

As specified in RTSJ, some features of standard Java
classes dealing with priorities, thread groups, interrupted
exception and system properties have to be redefined, to the
extent that they remain in CDLC [21]. We agree with RTSJ
on these points.

2.2 Threads

A RealtimeThread is a fundamental concept; but in its
constructor we see the complexity of the policies and mech-
anisms of middleware. In RTSJ it is parameterized by:
Scheduling Parameters, Release Parameters, Memory Pa-
rameters, Memory Area, Processing Group, and finally a
Run Logic. According to our principles, we keep the ap-
plication specific Release Parameters and Run Logic, while
the mechanism and policy dependent parameters are elided.

The concept of a NoHeapRealtimeThread is a restriction
in both Ravenscar-Java and in Safety Critical Java. It is
clearly an attempt at supporting static analysis by prohibit-
ing general dynamic memory allocation. Our viewpoint is
that analysis of memory usage is better left to a tool, thus
the concept disappears. In the underlying platform there
might be a real-time garbage collection with guaranteed per-
formance, and that should not be a priori eliminated as an
implementation option.

Ravenscar-Java introduced an Initializer thread. How-
ever, since the assumption is that the system is initialized
once only, this might as well be done through the usual
main method of an ordinary static System class. The def-
inition of an Initialization thread that has the highest priority
to perform all the initialization is an implementation arte-
fact1 and should not be part of the specification. It makes
it unnecessary troublesome to find a place for implementa-
tion code that has to run just before the mission phase (e.g.,
generation of the PianoRoll on the aJile processor [20]).

The Run Logic should in both cases be a single method,
and the cleanest way of introducing them in an object-
oriented style, when they are fixed for the classes, is through
specialization of an abstract run method in the threads. The
waitForNextPeriod is eliminated, because it is redundant.
The logic should not be subdivided into phases (by wait-
ForNextPeriod), because it would hamper WCET analysis.

During the mission phase, an application has a fixed
number of sporadic or periodic threads. We thought quite
a lot about having several modes and the possibility of be-
ing able to re-initialize the system when changing from one
mode to another, but decided against it in the core defini-
tion. The parameters for these threads are discussed below.

1It is a result from RJ implementation experiments on top of RTSJ.
However, this trick can be used, but as part of the implementation.



2.3 Release Parameters

On an RTOS the importance of a task is usually assigned
by a priority. However, in real-time systems the only rel-
evant parameters are release times. A mapping of timing
requirements to priority may be done by rate-monotonic as-
signment [13] or more general by deadline-monotonic as-
signment [2] or any other policy that is compatible with the
scheduler of the middleware.

In the proposed specification the release parameters of
schedulable entities (periodic and sporadic threads) are time
and not priority. An implementation that uses a priority
based preemptive scheduler may map the time requirements
according to the deadline-monotonic order. As we do not al-
low dynamic creation of threads during mission phase this
mapping can easily be done on the transition from the ini-
tialization to the mission phase. Furthermore, it allows, e.g.
EDF scheduling in the middleware without changing the ap-
plication.

Common for application threads is a deadline, given as a
RelativeTime. For periodic threads, the period is also appli-
cation specific and it is a relative time; similarly for sporadic
threads, we have a minInterarrivalTime.

Cost is a derived property, the WCET of the run logic. It
is not a quantity that application programmers should code
up in a safety critical system. Either it can be computed,
i.e. checked by a tool or the logic needs to be simplified.
Thus we do not want cost as part of the profile. Absolute
time is usually not available in small systems, and absolute
start times seem hard to validate offline – when are they
invalid? The various miss- and overrun-handlers should not
occur, cf. Ravenscar-Java or the SC proposal. The most one
can do seems to be a static emergency stop that brings the
application to a safe state – hopefully.

2.4 Memory Management

The very detailed classification of memory and its han-
dling reminds at least one of the authors of the sophisticated
language features that in the middle of last century were
added to languages like PL/I and COBOL to allow program-
mers to specify overlays. They were probably never used,
because virtual memory very soon provided adequate solu-
tions. We boldly suggest that such analysis is better done
by tools, such as region analysis for functional languages
[22], adapted for real-time java in [5] or by Scoped Types
recently proposed in [23] and further elaborated in [1].

RawMemoryAccess remains unavoidable, as long as no
standardized hardware abstraction layers exist. It is a very
unsafe feature as evidenced by the many efforts to analyze
driver code for anomalies in standard operating systems.
Perhaps it should be restricted to library modules for most
applications.

2.5 Synchronization

In order to keep scheduling predictable, synchronization
around protected regions must implement a suitable proto-
col. We see this as a product of the analysis and synthesis,
not as a task for the programmer.

2.6 Asynchronous Events and their Handlers

Software interrupts is a programming paradigm that
makes systems very hard to analyze, because they entail
some sort of buffering mechanism; thus we suggest that
Asynchronous Events are restricted along with their han-
dlers. The remaining use for events is to connect sporadic
threads to the external interrupts that they handle. We pro-
pose that this is done directly during initialization through
the standard uninterpreted happening token.

2.7 Remaining Details and Summary

The profile is summarized below and a prototype imple-
mentation has been developed to support it. However, it
would be misleading to claim that it is fully worked out,
because for high integrity systems, the code must also be
checked for potential uncaught exceptions. This is not part
of the syntactic extensions; but a matter for analysis tools.

3 The SCJ Proposal

This section describes our Safety Critical Java Profile
proposal.

3.1 Overview of the SC Java Profile

As discussed in Section 2, the profile should be small
and simple to use when modeling an application, but still
at least as powerful as the Ravenscar-Java profile. In the
javax.safetycritical package you first and foremost find the
thread classes for the periodic time-triggered activities, and
for the event-triggered sporadic activities.

The RealtimeSystem class is the representation of the
real-time runtime system. Time is represented by the Rela-
tiveTime class, and we also have classes for access to phys-
ical memory. They are a very simpleminded hardware ab-
straction layer.

The rest is hidden for the programmer or included in
analysis tools that are specific for given middleware poli-
cies and mechanisms, so that the platform independence of
the application is fulfilled.



#run() : boolean
#cleanup() : boolean

RealtimeThread <<abstract>>

PeriodicThread <<abstract>>

+fire()

SporadicThread <<abstract>>

MyPeriodicThread MySporadicThread

Figure 1. Class structure of the profile with
application threads

3.2 Schedulable Entities

All schedulable entities (periodic and sporadic) are rep-
resented by threads. The structure of real-time threads is
shown in Figure 1. The abstract class RealtimeThread has
two methods:

• run() the run logic to be executed every time the thread
is activated

• cleanup() a clean-up method to be executed if the sys-
tem should be shut down or stopped

We have considered two different design patterns for
specializing it: through subclassing or through delegation
to a Runnable via a parameter in the constructor. If sub-
classing is used, the run method with the run logic is im-
plemented in a subclass of PeriodicThread or Sporadic-
Thread classes. This supports the static architectural pat-
terns that we envisage for applications. In contrast, delega-
tion through a parameter gives an illusion that the run logic
might be changed dynamically during execution. As a result
of the arguments in Section 2.2, we have in this profile cho-
sen to introduce the run logic through subclassing. This also
means that the PeriodicThread and SporadicThread classes
are declared abstract, see Figure 1.

For sporadic events we bind each event to a single thread.
The event/thread relation is a 1:1 relation (same as in the
original Ravenscar-Java, different to the RTSJ). Therefore,
periodic threads and sporadic event threads are very similar.
Both contain program logic that gets released by an event.
For a periodic thread this event is generated by the elapsing
time, for a sporadic thread either by an hardware event (in-
terrupt) or an software event (invocation of fire()). Figure 1
shows the simple class hierarchy.

package javax.safetycritical;

public abstract class RealtimeThread {

protected RealtimeThread(RelativeTime period,
RelativeTime deadline,
RelativeTime offset, int memSize)

protected RealtimeThread(String event,
RelativeTime minInterval,
RelativeTime deadline, int memSize)

abstract protected boolean run();

protected boolean cleanup() {
return true;

}
}

Figure 2. The base class for all schedulable
entities

We use a single class (RealtimeThread) to express
all schedulable entities (periodic time-triggered, software
event-triggered, and hardware event-triggered). Figure 2
shows the definition of RealtimeThread.

The run() method has to be overwritten for the appli-
cation logic – that is the same abstraction as in standard
java.lang.Thread. The difference to j.l.Thread is that the
method is abstract and it has to return a boolean result.
Declaring it abstract forces the programmer to implement
run(). The return value is used for the shutdown as described
in Section 3.3.1. The method cleanup() is invoked during
the shutdown phase.

For a periodic real-time entity the run() method is peri-
odically invoked, for a sporadic entity when the software or
hardware event happens. We are not using the loop con-
struct with waitForNextPeriod() as in the RTSJ.

The class is abstract and extended by PeriodicThread
and SporadicThread. Figure 3 shows the two class def-
initions. PeriodicThread is just a wrapper for a periodic
RealtimeThread. SporadicThread has an additional method
fire() to implement software events. After invoking fire() on
a SporadicThread, the thread gets released by the scheduler.

3.2.1 Release Parameters

All time values are specified by the class RelativeTime
which is similar to the same class in the RTSJ. However, we
remove all methods that can change the time value. The re-
sulting objects are immutable. Immutable time values guar-
antee that the release parameters cannot be changed during
the mission phase.



package javax.safetycritical;

public abstract class PeriodicThread
extends RealtimeThread {

public PeriodicThread(RelativeTime period,
RelativeTime deadline,
RelativeTime offset, int memSize)

public PeriodicThread(RelativeTime period)
}

public abstract class SporadicThread
extends RealtimeThread {

public SporadicThread(String event,
RelativeTime minInterval,
RelativeTime deadline, int memSize)

public SporadicThread(String event,
RelativeTime minInterarrival)

public void fire()
}

Figure 3. The wrapper classes for periodic
and sporadic real-time events

The parameters period and deadline represent the period
and the deadline for periodic threads. The start time relative
to the mission start is given with offset.

Parameter event (the happening token) describes the
source for a hardware event (e.g., “INT1” for an interrupt
handler of interrupt 1). The value of the event string is of
course system specific. Parameter minInterarrival is the al-
lowed minimum inter-arrival time for an event. For a soft-
ware event, the runtime system can enforce this limit. How-
ever, for hardware generated event this is usually not pos-
sible on a common microcontroller. We can restrict the re-
lease of the sporadic thread, but not the invocation of the
scheduler. Therefore, an interrupt burst can disturb the real-
time schedule. We plan to add a special interrupt controller
to JOP [17] to enforce this minimum inter-arrival time at the
hardware level.

Note that these time quantities correspond to natural re-
quirements of an application. They are not parameters for
tuning or controlling scheduling mechanisms.

3.2.2 Memory Model

Each thread has an associated scoped memory for dynamic
data. The parameter memSize in the constructor determines
the size of the scoped memory for a thread. This scoped

package javax.safetycritical;

public class RealtimeSystem {

private RealtimeSystem()

public static void start()
public static void stop()
public boolean shutdownPending()
public static int currentTimeMicros()

}

Figure 4. The representation of the real-time
system

memory is similar to the scoped memory in the RTSJ, but
it cannot be shared between threads. It is entered before the
invocation of run() and exited after the return from run().
The whole scoped memory is cleared on exit. That means
that all memory allocation requests can be performed in
constant time.

However, this single scope for a thread and the size as a
parameter for the thread constructor is an intermediate so-
lution. In future work we will provide compiler generated
scopes.

3.3 Initialization, Mission, and Stop

Figure 4 shows the class definition of RealtimeSystem,
our representation of the real-time runtime system. Real-
timeSystem is similar to java.lang.System and cannot be
instantiated. Using only static methods is the simplest re-
alization of a singleton.

During the lifetime of an RT Java application, it will be
in one of the three distinct states (as shown in Figure 5),
with well-defined rules that define the transitions between
the states:

Initialized: An RT application is in the Initialized state un-
til the initialization code of the RealTimeSystem has
run to completion and its start method has not been
invoked. Application threads and passive objects are
created and initialized here. Threads are not started.

Mission: An RT application is in the Mission state when
it has returned from its start method which starts all
threads.

Stop: An RT application is in the Stop state when it has
returned from the stop method which waits for threads
to perform their optional cleanup.



 

Figure 5. Application states

Those three states are inspired by the states in a MIDlet,
but they are also based on industrial experiences from real-
time systems which need to shut down in a controlled way.

3.3.1 Shutdown

In contrast to RJ we provide an additional phase for the real-
time application: Shutdown. This phase is intended to pro-
vide a safe termination of the real-time system; e. g. threads
have a chance to bring actuators into a safe position. The
shutdown phase is initiated similar to the start of the mis-
sion phase, by invoking stop() from RealtimeSystem.

However, we can not simply stop all threads, but need a
form of cooperation. All real-time threads return a boolean
value from the run() method. This value indicates: I’m
ready for a shutdown. When a thread is in a critical op-
eration, where a shutdown is not allowed, the thread just
return false to delay the shutdown process. In the first sub-
phase the runtime system waits for all threads to be ready
for shutdown before actually switching to cleanup.

In the second sub-phase, all tasks are notified through
calls to the cleanup() method that clean up is in progress.
During the shutdown the cleanup() method is invoked peri-
odically2 instead of the run() method. The cleanup method
returns true to signal that its task has safely completed
its shutdown responsibilities. If the return value is false,
cleanup() will be called again; if the return value is true,
the thread is terminated. The possibility of several cleanup
invocations allow threads to resolve mutual dependencies
during shutdown and spread the cleanup work so that all
tasks can still meet their deadlines. Shutdown terminates
when all threads are terminated.

3.4 An Example

Figure 6 shows a short example how to write a real-time
application with the proposed profile. One periodic thread
prints a message each second and fires the software event
on every second iteration. The sporadic thread handles the
software event and prints a message. After 10 iterations
the periodic thread requests a shutdown from the runtime
systems. On behalf of this shutdown the method cleanup()
gets invoked once.

2at the same period as the former run() method

public class PeriodicSporadic {

public static void main(String[] args) {

final SporadicThread rte =
new SporadicThread("SWEVENT",

new RelativeTime(2000, 0)) {

protected boolean run() {
System.out.println("SW event fired");
return true;

}
};

new PeriodicThread(
new RelativeTime(1000, 0)) {
int counter = 0;
protected boolean run() {

System.out.println("P1");
++counter;
if (counter%2==1)

rte.fire();
if (counter==10)

RealtimeSystem.stop();
return true;

}

protected boolean cleanup() {
System.out.println("cleanup!");
return true;

}
};

RealtimeSystem.start();
}

}

Figure 6. An example of a real-time applica-
tion

4 Implementation

It is mandatory to provide a reference implementation for
the specification and evaluate it with some application test
cases. An implementation of a first draft of the proposed
specification is available on the Java processor JOP [17], as
well as on the aJ100. The implementations are light-weight
and use the already available real-time thread implemen-
tations [16, 20]. In [16] it has been shown that the JOP
scheduler performs quite will. Tasks with periods down to
100 µs can be scheduled on a 100 MHz version of JOP. The
scheduling code base is industry proven as it is in produc-
tion in three applications.

Furthermore, we are currently also working on an imple-



Figure 7. Thread and Handler classes: RJ
(left), our SCJ proposal (right)

mentation on top of the RTSJ [4]. We use the Sun version
(Mackinac [3]) on top of Solaris for a standard PC. So far
we have not found any issues that make it impossible to im-
plement the proposed specification on top of the RTSJ.

4.1 Structuring the API

To obtain compatibility with the RTSJ a safety critical
API can be structured in at least three ways:

• as a subset of RTSJ at the method level

• as a new API with an RTSJ-compliant binding

• mirroring the RTSJ class structure

Ravenscar-Java has chosen the first approach. We have
chosen the second approach in our profile.

The two different approaches mirror two of the most
common techniques for reusing functionality in object-
oriented systems [9]: class inheritance, also called white-
box reuse and object composition, also called black-box
reuse.

At the definition of real-time threads in RTSJ (and con-
sequently in Ravenscar-Java) the class inheritance pattern
has been used. This approach has shown to be a problem-
atic design choice, resulting in inheritance of all the pub-
lic methods from the java.lang.Thread class. In contrast to
this, using the object composition pattern results in small
and clean thread classes with precisely those methods you
want to specify.

Asynchronous events and their handlers were in RTSJ
introduced almost totally separated from the real-time
threads. However, over time a better classification of events
in periodic events (time-triggered) and sporadic events
(event-triggered) has evolved. Yet, structuring a profile as a
subset of RTSJ using the class inheritance pattern compli-
cates the design of a new profile, see Figure 7. Also here
the object composition pattern gives a cleaner solution.

4.2 Verification and Tools

A real-time application has to be verified, at minimum
the WCET and a schedulability analysis. For usage of dy-
namic memory we propose automatic/compiler generation
of scoped memory. The worst-case memory consumption
(WCMC) has to be analyzed.

For the implementation on JOP we can use the available
WCET analyzer [18]. However, a tighter integration with
the profile (e.g., automatic selection of the run() method to
be analyzed) and a schedulability analyzer is still missing.

4.3 Standard Library

The RTSJ assumes the standard JDK or at minimum a
J2ME verison of the JDK (CLDC or CDC). However, the
specification is very silent about how and if those library
functions can be used within a real-time application. We
need following information for the library:

1. Dynamic memory allocation

2. Worst-case execution time

3. Blocking time

There is not much work available how to solve those issues.
The Javolution project [8] provides substitutes for the col-
lection classes where elements are recycled. In that case we
do not need a garbage collector for collections.

In [10] the Java Modeling Language (JML) is used to
describe pre- and post-conditions for methods to describe
loop bounds. The descriptions are than proven by KeY, a
semi-automated prover. Data flow analysis propagates the
bound information to all call sites and the results can be
integrated into an ILP based WCET analyzer (e.g., [18]).

Exceptions need dynamic memory and are an issue e.g.,
for the implementation of an RTSJ compliant JVM. A prag-
matic, but not correct, approach is to pre-allocate the data
structures for all possible exceptions in immortal memory
and reuse them. Besides need for dynamic memory excep-
tions are also problematic with respect to WCET. A bet-
ter approach is to avoid exceptions by a defensive program-
ming style. The absence of runtime exceptions can then be
proved formally [19].

5 Conclusion

In this paper we have presented a simple real-time Java
profile for safety critical systems. Instead of building on
top of RTSJ using the class inheritance pattern, we have de-
signed our profile by using the object composition pattern.

Simultaneously, we have gone through RTSJ, Ravenscar-
Java, and the SC Java proposal to find the points where these



become very policy and mechanism dependent, hereby sep-
arating the features for the profiles in application specific
requirements (periods, etc.), policies for the middleware
mechanisms (priorities, etc.), and tuning mechanisms (miss
handlers, etc.).

By this we have been able to specify a simple safety crit-
ical Java profile with very clean classes which only include
the application specific requirements. The check whether
the specified application is feasible for a platform with spe-
cific middleware should be statically analyzed by appropri-
ate analysis tools.

Our profile will without problems be able to run on top
of existing RTSJ or Ravenscar-Java implementations. The
next steps will be to specify and implement the profile in
all details; especially development of the tools which are
part of the profile. Furthermore, we will evaluate different
provisions for application mode changes as an extension to
the profile.

Acknowledgment

The first author would like to thank Franz Josef Jappel
for discussions on a usable API for real-time systems and
various suggestions.

References

[1] C. Andreae, Y. Coady, C. Gibbs, J. Nobble, J. Vitek, and

T. Zhao. Scoped types and aspects for real-time java. In Pro-
ceedings of the European Conference on Object Oriented
Programming (ECOOP’9), volume 4067 of LNCS, pages

124–147. Springer-Verlag, July 2006.
[2] N. C. Audsley, A. Burns, M. F. Richardson, and A. J.

Wellings. Hard real-time scheduling: The deadline mono-

tonic approach. In Proceedings 8th IEEE Workshop on Real-
Time Operating Systems and Software, Atalanta, 1991.

[3] G. Bollella, B. Delsart, R. Guider, C. Lizzi, and F. Parain.

Mackinac: Making HotSpotT M real-time. In ISORC, pages

45–54. IEEE Computer Society, 2005.
[4] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and

M. Turnbull. The Real-Time Specification for Java. Java

Series. Addison-Wesley, June 2000.
[5] C. Boyapati, A. Salcianu, J. William Beebee, and M. Ri-

nard. Ownership types for safe region-based memory man-

agement in real-time java. In PLDI ’03: Proceedings of the
ACM SIGPLAN 2003 conference on Programming language
design and implementation, pages 324–337, New York, NY,

USA, 2003. ACM Press.
[6] A. Burns, B. Dobbing, and G. Romanski. The ravenscar

tasking profile for high integrity real-time programs. In

Proceedings of the 1998 Ada-Europe International Confer-
ence on Reliable Software Technologies, pages 263–275.

Springer-Verlag, 1998.
[7] A. Burns and A. J. Wellings. Hrt-hood: a structured de-

sign method for hard real-time systems. Real-Time Syst.,
6(1):73–114, 1994.

[8] J.-M. Dautelle. Validating java for safety-critical applica-

tions. In AIAA Space 2005 Conference, 2005.
[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns. Addison Wesley Professional Computing Series.

Addison-Wesley, 1995.
[10] J. J. Hunt, F. B. Siebert, P. H. Schmitt, and I. Tonin. Prov-

ably correct loops bounds for realtime java programs. In

Proceedings of the 4th international workshop on Java tech-
nologies for real-time and embedded systems (JTRES 2006),
pages 162–169, New York, NY, USA, 2006. ACM Press.

[11] Java Expert Group. Java specification request 282: RTSJ

version 1.1, September 2005.
[12] J. Kwon, A. Wellings, and S. King. Ravenscar-Java: A high

integrity profile for real-time Java. In Proceedings of the
2002 joint ACM-ISCOPE conference on Java Grande, pages

131–140. ACM Press, 2002.
[13] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-

tiprogramming in a hard-real-time environment. J. ACM,

20(1):46–61, 1973.
[14] P. Puschner and A. J. Wellings. A profile for high integrity

real-time Java programs. In 4th IEEE International Sym-
posium on Object-oriented Real-time distributed Computing
(ISORC), 2001.

[15] RTCA/DO-178B. Software considerations in airborne sys-

tems and equipment certification. December 1992.
[16] M. Schoeberl. Restrictions of Java for embedded real-time

systems. In Proceedings of the 7th IEEE International Sym-
posium on Object-Oriented Real-Time Distributed Comput-
ing (ISORC 2004), pages 93–100, Vienna, Austria, May

2004.
[17] M. Schoeberl. JOP: A Java Optimized Processor for Em-

bedded Real-Time Systems. PhD thesis, Vienna University

of Technology, 2005.
[18] M. Schoeberl and R. Pedersen. WCET analysis for a Java

processor. In Proceedings of the 4th international workshop
on Java technologies for real-time and embedded systems
(JTRES 2006), pages 202–211, New York, NY, USA, 2006.

ACM Press.
[19] F. Siebert. Proving the absence of RTSJ related runtime er-

rors through data flow analysis. In Proceedings of the 4th
international workshop on Java technologies for real-time
and embedded systems (JTRES 2006), pages 152–161, New

York, NY, USA, 2006. ACM Press.
[20] H. Sondergaard, B. Thomsen, and A. P. Ravn. A ravenscar-

java profile implementation. In Proceedings of the 4th in-
ternational workshop on Java technologies for real-time
and embedded systems (JTRES 2006), pages 38–47, Paris,

France, October 2006. ACM Press.
[21] Sun. Java 2 platform, micro edition (J2ME). Available at:

http://java.sun.com/j2me/docs/.
[22] M. Tofte, L. Birkedal, M. Elsman, and N. Hallenberg. A ret-

rospective on region-based memory management. Higher-
Order and Symbolic Computation, 17(3):245–265, 2004.

[23] T. Zhao, J. Noble, and J. Vitek. Scoped types for real-time

Java. In Proceedings of the 25th IEEE International Real-
Time Systems Symposium (RTSS’04), pages 241–251, Wash-

ington, DC, USA, 2004. IEEE Computer Society.


