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Abstract—In most embedded and general purpose archi-
tectures, stack data and non-stack data is cached together,
meaning that writing to or loading from the stack may expel
non-stack data from the data cache. Manipulation of the
stack has a different memory access pattern than that of
non-stack data, showing higher temporal and spatial locality.
We propose caching stack and non-stack data separately and
develop four different stack caches that allow this separation
without requiring compiler support. These are the simple,
window, and prefilling with and without tag stack caches. The
performance of the stack cache architectures was evaluated
using the SimpleScalar toolset where the window and prefilling
stack cache without tag resulted in an execution speedup of up
to 3.5% for the MiBench benchmarks, executed on an out-of-
order processor with the ARM instruction set.
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I. INTRODUCTION

Typical programs use a stack for allocating local variables,

passing parameters to procedures, and register spilling. In a

memory hierarchy, items stored on the stack benefit greatly

from the advantages of caches because memory accesses to

stack data exhibit both strong temporal and spatial locality,

as accesses are limited to relatively small stack frames.

Performance problems occur when stack data, heap, and/or

static data compete for the same space in the cache hierarchy.

This type of problem is normally solved by increasing

associativity, but this solution is costly in terms of power,

area, and speed [1].

In this paper we examine methods of separately caching

stack data in a so-called stack cache by exploiting the strong

spatial and temporal locality observed in stack data memory

accesses. The methods are designed with the requirement

that no compiler support should be necessary for an imple-

mentation to be successful. We describe four different types

of stack caches: (1) the simple stack cache, (2) the window

cache, and the prefilling cache without (3) and (4) with tag

bits.

The simple stack cache is a conventional data cache

placed in parallel with the L1 data cache in the memory

hierarchy, configured to handle all memory accesses directed

towards the stack. The window cache is placed between the

processor and the L1 data cache and handles only memory

accesses in a small address range, corresponding to its size,

offset from the stack pointer. The prefilling stack cache

without tag is obtained by adding a prefilling and spilling

strategy to the window cache and the prefilling stack cache

with tag is created by adding a prefilling or spilling strategy

to the simple stack cache. These caches all exclusively

contain stack data, thereby freeing this from occupying the

L1 data cache and disturbing the caching of more randomly

accessed non-stack data.

We evaluate their performance impact on an out-of-order

processor with the ARM instruction set by simulation in

the SimpleScalar [2] framework, with the criterion that they

should improve average execution time.

The contributions of this paper are: describing and evalu-

ating architectures of four types of stack caches suitable for

embedded and general purpose computing, of which two are

successful in reducing execution time.

This paper is organized in 7 sections: The following

section presents related work. Section III describes the

four different stack cache types. Section IV evaluates the

performance of the stack caches with embedded bench-

marks. Section V discusses further research opportunities.

Section VI concludes the paper.

II. RELATED WORK

Stack caching has been explored using several approaches.

Most of these use novel micro-architectures for stack

caching, and some pair a microarchitecture with static com-

piler optimizations to increase effectiveness.

Lu, Bai, and Shrivastava implemented scratch-pad mem-

ory (SPM) stack caching for software managed multicore

(SMM) architectures [3]. SMMs are multicore architectures

where each core has an SPM, but no conventional cache,

meaning all caching must be managed by software. Lu et

al. focused on caching stack data and developed a scheme

where stack frames, the size of the SPM, are swapped in

and out of the SPM so that loads and stores always hit.

To avoid thrashing that can occur when stack accesses are

made to addresses on both sides of an SPM frame boundary,

they developed a compiler heuristic named Smart Stack Data

Management which carefully chooses the locations of loads

and stores to the SPM in order to minimize thrashing and

SPM manager overhead. They compared SSDM with circu-

lar stack management which keeps the top few stack frames

in SPM, rotating bottom frames out to main memory when

new frames are pushed and loading them back when the

upper frames are popped. SSDM showed speedups between
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15% and 1% compared to circular stack management. A

similar approach optimized for recursive functions has also

been explored [4].

Kannan, Shrivastava, Pabalkar, and Lee considered an

SPM stack cache manager swapping stack frames the size

of function frames instead of the entire size of the SPM [5].

This approach is more fine grained than the one of Lu et al.

but requires more management overhead since the SPM must

be managed on every function call. Kannan et al. developed a

static compile scheme for reserving space in the SPM based

on the estimated call tree, maximizing the amount of space

reserved at a time. They obtained significant speedup of over

40% using SPM caches of a size larger than the maximum

stack frame created during benchmark execution, compared

to a core with only a 1 KB normal cache. However, the SPM

cache does not work for programs that create stack frames

larger than the SPM.

Park, Park, and Ha explored caching stack data in SPM

acting as a cache that slides up and down in memory,

following the stack pointer [6]. This is done dynamically

without need for compiler support, using MMU faults to

detect when the SPM must allocate space for new data or

retrieve data from DRAM. Park et al. compared this form

of stack caching to a normal cache architecture, configured

to only cache stack data, and showed that the SPM stack

cache was both faster and more energy efficient.

Stack caching has also been implemented on stack ma-

chine architectures such as hardware implementations of the

Java virtual machine (JVM) [7] [8] [9]. In the JVM operands

are saved on the top of the stack while local variables are

stored deeper down. Schoeberl showed that the operands can

be cached in a two-entry register file containing the two top-

most elements of the stack, while single read port on-chip

memory contained the lower parts of the stack [10]. The

result was more efficient than approaches caching only in a

small register file [11] and approaches using only three-port

on-chip memory for caching [12] in both area and speed.

For real-time system it has been proposed to split the data

cach [13], [14]. The argument is that cache hits for heap

allocated data is unpredictable, but that cache hits and misses

for stack allocated data is relative easy to predict. Therefore,

a split of the data cache into several caches (e.g., for stack,

static, and heap allocated data) simplifies the worst-case

execution time analysis.

In the real-time domain Abbaspour, Brandner, and Schoe-

berl [15] implemented a stack cache for the Patmos pro-

cessor [16] which requires compiler support. Their scheme

uses three additional hardware instructions: reserve, free,

and ensure. These instructions are used by the compiler to

make sure that the stack frame belonging to a function is

cached. This allows entire stack frames to be kept in the

stack cache instead of entirely in main memory to ensure

time predictable access times. Abbaspour et al. showed that

this scheme provides a large execution speedup of many

benchmarks, even for small cache sizes (256 bytes). They

also identified that the cached stack frames do not need to

be held consistent with external memory, since data below

the stack pointer is by definition invalid and therefore has

no need of being written back to main memory. Tracking

the stack allocated data within worst-case execution time

analysis is simplified when the data cache is split [17].

Lee, Smelyanskiy, Newburn, and Tyson developed the

Stack Value File (SVF) microarchitecture [18]. The SVF is a

circular buffer to which all memory accesses offset from the

stack pointer are diverted. Since the stack is a contiguous

data structure in memory the SVF is more area efficient

than a comparable cache as it only requires one tag line for

every page it contains. It also reduces the memory traffic

since unnecessary loads and stores of invalid data on stack

allocation and dirtly replacements can be avoided. The SVF

microarchitecture requires no compiler support and produces

large speedups compared to a baseline architecture with only

a data cache, mostly because accesses are faster.

Olson, Eckert, Manne, and Hill examined the energy

efficiency of using implicit and explicit stack caches [19]. An

implicit stack cache constrains stack data items to be stored

in only part of the available L1 data cache by limiting the

available ways of associativity. While an explicit stack cache

is a separate cache that handles only stack data accesses.

Olson et al. identified that the separate stack cache need

not be large compared to the L1 data cache and showed

a reduction in dynamic cache energy consumption of 36%

using explicit stack caching without negatively affecting

performance. They also discussed making the explicit stack

cache virtually addressed, removing 40% of address transla-

tions which they found to be the average amount of memory

accesses directed to the stack.

III. STACK CACHING

Stack caching aims to exploit access patterns to the

stack, a data structure that is typically used to hold local

variables, return addresses, arguments for function calls, and

spilled registers. Most higher-level languages use a stack

invisible to the programmer for these purposes, although

some languages, such as Forth, are based on the model of a

stack machine and require the programmer to manage it. The

stack occupies a contiguous area in memory starting at some

predefined address. For historical reasons, the stack usually

grows downwards. Today, this convention is completely

arbitrary and with virtual memory there is nothing inhibiting

growing the stack upwards.

When used for the purposes described above, the stack is

organized into stack frames. A stack frame is an area on the

stack containing variables relevant to a single function or

routine. When new functions are called, a new stack frame

is created on top of the stack. Since stack frames may not

inhabit the same memory location on every invocation of a
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name position window type prefilling

simple parallel no no
window elevated yes no

prefill w/o tag elevated yes yes
prefill w/ tag parallel no yes

Table I: Type overview of the four stack caches examined

in this paper.

function, variables are addressed relative to the stack pointer,

which always points to the topmost element on the stack.

A frame pointer, in addition to a stack pointer, supports

allocation of dynamic data structures on the stack. The frame

pointer points to the first element of the topmost stack frame

and is fixed for the function. The stack pointer changes as

data is allocated dynamically. In that case the frame pointer

is used to address the local variables, and all other stack

frame content, with a constant offset. Fig. 1 shows a possible

snapshot of a stack, holding subroutine arguments, return

address, the previous frame pointer as well as saved registers

and local variables.

Stack usage varies between architectures, depending on

the number of available general purpose and parameter

passing registers. For example, architectures like x86 need

to use the stack more than a MIPS-like architecture, in order

to spill registers and pass parameters to functions.

A. Stack Cache Types

We can classify a stack cache with three parameters: (1)

its position within the memory hierarchy, (2) whether or not

it employs a memory window, and (3) what prefill strategy

is used. The hierarchy position determines whether the stack

cache is parallel to the L1 data cache or elevated (between

the processor and the original L1 data cache). A parallel

stack cache sources misses from the L2 data cache, while

an elevated stack cache uses the L1 data cache as shown in

Fig. 2. A window type cache will only be accessed when the

requested memory address lies between two pointers named

bos and tos, meaning bottom and top of stack respectively.

Therefore, bos−tos determines the size of the memory area

cached in the stack cache at any point in time.

A non-window cache accepts all memory accesses di-

rected to the stack. This is done by redirecting all memory

accesses between the stack pointer and the starting address

of the stack, which is determined at compile time.

Beyond this the stack cache may also employ prefill-

ing/spilling according to a number of strategies of varying

complexity. This paper deals with four stack caches, a simple

stack cache, a window stack cache, a prefilling stack cache

without a tag, and a prefilling stack cache with a tag.

An overview of the attributes connected to the described

stack cache types is listed in Table I

...

Top frame

Top frame -1

Bottom frame
Stack base address

Stack pointer(sp)

Frame pointer (fp)
Growth direction

arg 1
arg 2

ret addr

previous fp
saved reg 1
local var 1
local var 2
undefined

...

Figure 1: The stack in operation, showing a possible or-

ganization of return addresses, saved registers, and local

variables.

B. Simple Stack Cache

Our base assumptions of the memory hierarchy are core-

local level 1 (L1) caches for instruction and data with a

single cycle access time. These caches are backed up by

a larger (and slower) level 2 (L2) cache. That L2 cache is

shared on a multicore processor. To this configuration we

add a cache for stack allocated data.

The simplest possible version of such a cache, is a

standard cache placed in parallel with the L1 data cache

and configured to handle all memory accesses directed to

the stack, ensuring that all loads and stores to the stack pass

through it. This eliminates conflicts between stack data and

non-stack data in the L1 data cache. Since the stack is a

contiguous block of memory, it makes sense to choose a

direct mapped cache for the stack cache.

Adding the simple stack cache will show an increased

hit rate for stack data as well as overall hitrate for stack

and normal data combined, provided that the stack cache is

large enough to contain most stack frames. When the cache

becomes too small and items are written back to the L2 data

cache, performance will suffer when reloading these.

C. Window Type Stack Cache

To avoid the miss penalty incurred by the simple stack

cache, the cache can be placed such that it fetches from the

L1 data cache instead of the L2. Additionally, address range

boundaries can be imposed on the stack cache such that only

memory accesses within a specific range are handled by it.

This eliminates the problem of stack frames being too large

for the stack cache, since any reference to an item that would

not fit in the stack cache, simply bypasses it and is handled

by the L1 data cache.

These boundaries can be enforced using two pointers,

bottom-of-stack bos and top-of-stack tos. In the simple
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core

d$1 s$

d$2

core

s$

d$1

d$2

Figure 2: The two different hierarchal placement options for

the stack cache. The stack cache is either parallel to the

data cache, meaning misses are served by the L2 cache in

the hierarchy, or elevated above the data cache, meaning

misses are served by the L1 data cache.

window type stack cache, tos is locked to the stack pointer

and bos is below tos by the size of the stack cache. To avoid

coherency issues, the bypassing must be to the same cache

that the window type stack cache fetches misses from. For

a window type stack cache that is parallel to the L1 data

cache, all accesses to the stack, that do not fall within the

range between bos and tos, would need to bypass the stack

cache and go directly to the L2 data cache. This would have

a severe impact on performance. Fig. 3 shows the window

type stack cache.

The window type stack cache can be thought of as a

ring-buffer, overwriting the last elements when new data is

written at the address pointed to by the stack pointer.

D. Tagless Prefilling Stack Cache

By adding a prefill/spill mechanism to the window stack

cache we can remove the need for tag memory. This

mechanism controls the bos and tos pointers so that they

are not fixed to the stack pointer, but free to move around

according to a spill/fill policy. This policy must insure that

only addresses between bos and tos are represented in the

stack cache in order for it to be tagless.

The simplest possible prefill/spill mechanism acts as fol-

lows: When an item is pushed to the stack, the bottom

item in the stack cache is written back to the L1 data

cache automatically and bos is decremented by the block

size of the stack cache, while tos follows the value of the

stack pointer. When an item is popped from the stack, tos
will again follow the stack pointer, but bos must now be

incremented and the new memory item pointed to by bos
must be loaded from the L1 data cache.

If more than one item is popped from the stack in a single

operation, the prefill mechanism will attempt to fill all the

remaining slots in the stack cache. This potentially hurts

performance as items at the bottom of the stack cache may

be reloaded and written back to the L1 data cache several

times without being used, as the stack pointer moves up

d$1 s$

bos tos

address range

s$ miss
mem access

Figure 3: Window type stack cache. Only memory accesses

between the bos and tos pointers are directed to the stack

cache. The stack cache fetches misses from the L1 data

cache. Arrows signify memory accesses and bolded arrows

signify pointers.

and down near the top of the memory range contained in

the stack cache. We therefore move away from the simple

policy such that bos is only changed when the stack pointer

has moved upwards by a significant amount of addresses,

two block sizes in our implementation. Thereby limiting the

amount of necessary loads from the L1 data cache.

When large stack frames are popped or initialized, the tos
and bos pointers will need to traverse a large number of

addresses, possibly greater than the size of the stack cache.

In this case, we allow the cache to completely flush itself

and jump to the new location of the stack pointer. This is

done to prevent the stack cache from loading all stack items

between tos, or bos, and the stack pointer at the time of the

large change in the stack pointer value.

Additionally, when items are pushed to the stack, valid

data located at the bottom of the address range, covered by

the stack cache, must be written back to the L1 data cache.

We can avoid this by setting a target fill percentage of less

than one hundred percent. The prefill/spill mechanism will

then spill cache lines, moving bos towards tos if the current

fill percentage is too high. Inversely, it will fill cache lines,

moving bos away from tos, if the current fill percentage is

too low. This will free space in the stack cache where new

stack data can be written without the need for writing back

old data to the L1 data cache. We use a fill percentage of

50%. The described prefill/spill policy is the one that will

be evaluated in this paper. However, we will continue to

elaborate on optimizations that may increase performance.

In a conventional cache, data items located between the

heap and stack are written back through the cache hierarchy,

because the data cache cannot distinguish between stack and

non-stack data. This data is by definition invalid and does

not need to be written back. The stack cache allows us to

make the distinction between stack and non-stack data, and

thereby avoid the writeback of invalid data when items are

popped from the stack. Likewise, when the processor issues

a write to an address in a new cache line at the top of the

stack, this cache line does not need to be fetched from a
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Figure 4: Percentage of memory accesses, excluding instruction fetch, directed towards the stack for each benchmark. The

benchmark vary considerable in their stack use, some producing hardly any stack accesses and some more than 80 percent.

lower hierarchy level. The data can simply be written into

the stack cache.

This write might move the tos pointer. If the stack cache

becomes full it will also move bos, and some cache lines will

need to be written into the next hierarchy level. In the other

case, where tos moves in the other direction, the line will

not be written back for the reasons explained above. Thus,

some data may only ever inhabit the stack cache, further

reducing the pressure on the L1 data cache. We do not

implement these optimizations as we have found that stack

data is sometimes written to addresses not in the current

stack frame when executing the MiBench benchmarks on

the SimpleScalar ARM out-of-order processor.

When operating under optimal conditions, the prefill-

ing/spilling cache has an adequate amount of non-occupied

space that allows the top of stack pointer to track the stack

pointer unhindered. When new items are written to the stack

near the stack pointer they will then be placed in the stack

cache. When the stack pointer rises below this point on a

function return, the data will be invalidated and overwritten

without write-back to the L1 cache. It is unfortunately not

always possible to operate under optimal conditions. When

stack frames become too large for the cache, the stack

pointer will grow far beyond the bos pointer. This causes

the stack cache to flush itself and reset the bottom and top

of stack pointers to the stack pointer. Afterwards it will

begin filling towards the specified fill percentage. The cache

controller operates in parallel with the core and only issues

spills and fills to/from the L1 data cache on cycles where the

memory bus between the L1 and L2 data cache is unused

in an attempt to minimize interference with L1 data cache

misses that would stall the core.

The described policy has the added benefit of not requiring

tag memory in the cache as the memory position of entries

can be inferred from the bos and tos pointers.

E. Prefilling Stack Cache with Tag Memory

We can also configure the prefilling cache to be parallel to

the L1 data cache instead of elevated above it by changing

the previously described tagless prefilling cache such that

it sources misses from the L2 data cache. The access and

fill policy must also be changed to prevent coherency issues

that may arise if the same block is present in both the L1

data cache and a parallel window stack cache. Writing to

the block in the parallel window stack cache before moving

the window would invalidate the block in the L1 data cache.

Instead of only accepting accesses between bos and tos, the

prefilling stack cache with tag memory therefore accepts all

accesses to the stack, like the simple stack cache. However,

it still maintains bos and tos for prefilling purposes. Unlike

the tagless design, this cache does not require flushing of

the cache before jumping to a far-away stack pointer since

it does not rely on the bos and tos pointer for determining

tag bits.

IV. EVALUATION

We have implemented the stack caches on the out-of-

order architecture of SimpleScalar using the SimpleScalar

ARM ISA and in this section we will examine their effect

on execution time.

The benchmarks used for evaluation are all part of the

MiBench benchmark suite [20]. These benchmarks target

embedded systems and have a wide range of instruction dis-

tributions. The amount of memory operations varies between

10-65%, ALU operations vary between 25-80% and branch

instructions vary between 6-20%. Program sizes vary with

text segment sizes between 150-300 KB for the vast majority

of the benchmarks, while data segments vary between a few

kilobytes and 500 KB. Only a few benchmarks lie outside

these numbers, most notably the lame benchmark, having

a text segment size of 1.6 MB and a data segment size of

3.9 MB.

All simulations shown are performed with a 4 KB L1 data

cache with 32 byte blocks and 4 way associativity unless

explicitly stated otherwise. The 4 KB size was chosen to

mimic the size of L1 data caches on small embedded systems

with limited resources. This is fitting since the MiBench

suite targets these systems.
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Figure 5: Speedup obtained by adding a 1 KB parallel simple stack cache compared to having no stack cache. Some

benchmarks show improved execution time, but this is outweighed by the massive increase in execution time for the blowfish

benchmarks. The parallel prefilling cache shows approximately the same result and is therefore not shown.
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Figure 6: Speedup of an 8 KB L1 data cache compared to speedup obtained by adding a 4 KB simple stack cache to a 4

KB L1 data cache. Having a stack cache size equal to the data cache is inefficient compared to doubling the data cache size.

When the stack and data cache are in a parallel config-

uration, they share a bus to the L2 data cache which has

a size of 256 KB, associativity level 4, block size of 64 B

and access time of 6 cycles for all measurements. In the

case of an elevated configuration, the stack cache has a 1

cycle access time to the L1 data cache which is the same as

the latency from the core to the L1 data cache. The stack

cache access time is 1 cycle in both the elevated and parallel

configurations. The main memory uses burst transfer, taking

32 cycles to transfer one L2 cache block.

For the stack cache to be effective, there must be some

competition between stack data and other data in the case

where the system only has a data cache. This is most likely

to happen if a program has a balanced mix of stack and

non-stack memory accesses. It is reasonable to assume that

each stack access miss corresponds to a previous eviction of

non-stack data caused by a stack access and therefore also

to a data miss that could have been avoided if stack data

was cached separately.

Fig. 4 shows the stack usage as a percentage of the

total number of data memory accesses for a selection of

benchmarks. Some benchmarks show a surprisingly high

ratio of stack accesses to non-stack accesses, which can

happen for two reasons. Either, the benchmarks makes many

references to a narrow range in memory, reusing many of

the same data items. For example most of the execution time

could be spent in a tight loop manipulating mostly control

variables. Otherwise, the amount of stack data items relative

to the amount of non-stack data items is genuinely large.

Stack caching is more effective in the latter case, as stack

data would not take up much space in the L1 data cache in

the prior case. Most programs lie between the two extremes

in their stack access pattern. Therefore, the percentage of

memory accesses directed towards the stack is not a good

predictor of stack cache performance.

A. Parallel Stack Caches
Speedup obtained by adding a 1 KB simple stack cache

is show in Fig. 5. With a size of 1024 bytes, the cache

is not large enough to contain a majority of the stack

data which causes many conflict misses, reducing execution

time for some of the benchmarks. Since it is in a parallel

configuration, the L1 data cache cannot hold the extra data

items and misses in the stack cache are forced to go to the

L2 data cache, thereby incurring a large miss penalty.
The parallel configuration is therefore a bad choice unless

the cache size is increased further. However, this will make
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Figure 7: Speedup obtained by adding an elevated prefilling stack cache (top) and an elevated window stack cache (bottom)

with the size specified in the legend.

the stack cache closer in size to the L1 data cache and at that

point it is more effective to just enlarge the L1 data cache. If

the two caches are of equal size, removing the stack cache

and doubling the size of the data cache is vastly superior

to employing the stack cache because this will also affect

other than just stack data. This is shown in Fig. 6 where an

8 KB L1 data cache is compared to a 4 KB L1 data cache

with a 4 KB simple stack cache.

B. Elevated Stack Caches

The two elevated stack caches are more likely to produce

positive results since they do not have the same miss penalty

as the parallel stack caches. Fig. 7 shows speedup over a

processor with no stack cache for both the basic window

cache and tagless prefilling cache with sizes of 256 B, 512

B and 1024 KB. The blowfish and rijndael benchmarks both

show significantly decreased execution times of up to 3.5%

using the 1 KB window stack cache, while the rest of the

benchmarks are somewhat unaffected. Only the stringsearch

benchmark shows a very small increase in execution time.

The small responses to the addition of a stack cache can

be explained by the small size of many of the MiBench

benchmarks. They are suited for embedded applications, and

emphasize a somewhat low memory pressure.

The window type stack cache performs markedly better

than the tagless prefilling cache. This is likely due to a

suboptimal fill/spill strategy as well as the lack of the write

back optimization. The implemented prefill/spill strategy

aiming for a 50% filled cache jams the memory bus between

the L1 and L2 data cache enough to cause some stalls and

an increase in execution time. A more elaborate prefill/spill

scheme, perhaps tracking the history of the stack or frame

pointer, might provide better performance for stack access

patterns close to the bottom of the call tree where leaf

procedures may be called many times in a row, in addition

to solving the problem of the jammed L1 to L2 memory

bus.

Elevated prefilling and window stack caches are thus

positive additions to a either an embedded or general purpose

architecture, even for small sizes (1024 B), decreasing

execution time by up to 3.5%.

V. FUTURE WORK

We have tested different stack caches on an out-of-

order processor implementing the ARM ISA. It would be

interesting to see how the stack cache performs on the x86

ISA where there are fewer general purpose registers, and

on the MIPS ISA where there are more general purpose

registers. We predict that the stack cache will be more

effective on x86 since the larger stack frames will take up

more space if placed only in the L1 data cache. Also of

interest is the performance of stack caches on processors that

do not employ out-of-order execution, such as Patmos [16].

While the goal of this paper was to explore stack cache

architectures that do not need compiler support, it could also

be interesting to examine what could be done with compiler

support in the general purpose domain since the approach

yielded very positive results for Abbaspour et al. [15].

The described stack caches also need to be implemented

in actual hardware to provide real data on the area and power

cost, although the cache controller is rather small for simple

spill/fill strategies.
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VI. CONCLUSION

Typical programs use a stack for storing the return ad-

dress, argument passing, local variable storage, and register

spilling. Access patterns to the stack data structure exhibit

both high spatial and temporal locality. We have imple-

mented four so-called stack caches that attempt to exploit

these patterns without requiring explicit compiler support:

the simple, window, prefilling with tag and prefilling without

tag stack caches. These caches do not require compiler

support and for the set of benchmarks used in evaluation,

adding the window and tagless prefilling stack cache results

in an execution time reduction of up to 3.5%, for a cache

size of just 1 KB.

ACKNOWLEDGMENT

The work presented in this paper was partially funded by

the Danish Council for Independent Research | Technology

and Production Sciences under the project RTEMP, contract

no. 12-127600.

REFERENCES

[1] R. K. Megalingam, K. Deepu, I. P. Joseph, and V. Vikram,
“Phased set associative cache design for reduced power
consumption,” in 2009 2nd IEEE International Conference
on Computer Science and Information Technology. IEEE,
2009, pp. 551–556.

[9] M. Zabel, T. B. Preusser, P. Reichel, and R. G. Spallek,
“Secure, real-time and multi-threaded general-purpose em-
bedded Java microarchitecture,” DSD 2007: 10Th Euromicro
Conference on Digital System Design Architectures, Methods
and Tools, Proceedings, pp. 59 – 62, 2007.

[2] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an
infrastructure for computer system modeling,” Computer,
vol. 35, no. 2, pp. 59–67, 2002.

[3] J. Lu, K. Bai, and S. Aviral, “SSDM: Smart Stack Data Man-
agement for software managed multicores (SMMs),” DAC, pp.
1 – 8, 2013.

[4] A. Dominguez, N. Nguyen, and R. K. Barua, “Recursive
function data allocation to scratch-pad memory,” in
Proceedings of the 2007 international conference on
Compilers, architecture, and synthesis for embedded systems
- CASES ’07. New York, New York, USA: ACM Press,
2007, p. 65.

[5] A. Kannan, A. Shrivastava, A. Pabalkar, and J.-e. Lee,
“A software solution for dynamic stack management on
scratch pad memory,” in 2009 Asia and South Pacific Design
Automation Conference. IEEE, Jan. 2009, pp. 612–617.

[6] S. Park, H.-w. Park, and S. Ha, “A Novel Technique
to Use Scratch-pad Memory for Stack Management,” in
2007 Design, Automation & Test in Europe Conference &
Exhibition. IEEE, Apr. 2007, pp. 1–6.

[7] M. Schoeberl, “A Java processor architecture for embedded
real-time systems,” Journal of Systems Architecture, vol. 54,
no. 1-2, pp. 265–286, Jan. 2008.

[8] S. Uhrig and J. Wiese, “jamuth: an IP processor core for
embedded Java real-time systems,” in Proceedings of the 5th
international workshop on Java technologies for real-time
and embedded systems - JTRES ’07. New York, New York,
USA: ACM Press, 2007, p. 230.

[10] M. Schoeberl, “Design and implementation of an efficient
stack machine,” in Proceedings of the 12th IEEE
Reconfigurable Architecture Workshop (RAW2005). Denver,
Colorado, USA: IEEE, April 2005.

[11] D. Hardin, “Real-time objects on the bare metal: An efficient
hardware realization of the Java (TM) Virtual Machine,”
Fourth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, Proceedings, pp. 53 – 59,
2001.

[12] S. Ito, L. Carro, and R. Jacobi, “Making Java work
for microcontroller applications,” IEEE Design & Test of
Computers, vol. 18, no. 5, pp. 100–110, 2001.

[13] M. Schoeberl, “Time-predictable cache organization,” in
Proceedings of the First International Workshop on Software
Technologies for Future Dependable Distributed Systems
(STFSSD 2009). Tokyo, Japan: IEEE Computer Society,
March 2009, pp. 11–16.

[14] M. Schoeberl, W. Puffitsch, and B. Huber, “Towards
time-predictable data caches for chip-multiprocessors,” in
Proceedings of the Seventh IFIP Workshop on Software
Technologies for Future Embedded and Ubiquitous Systems
(SEUS 2009), ser. LNCS, no. 5860. Springer, November
2009, pp. 180–191.

[15] S. Abbaspour, F. Brandner, and M. Schoeberl, “A time-
predictable stack cache,” in Proceedings of the 9th Workshop
on Software Technologies for Embedded and Ubiquitous
Systems, 2013.

[16] M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner,
C. W. Probst, S. Karlsson, and T. Thorn, “Towards a time-
predictable dual-issue microprocessor: The patmos approach,”
in First Workshop on Bringing Theory to Practice: Pre-
dictability and Performance in Embedded Systems, 2011, pp.
11–20.

[17] A. Jordan, F. Brandner, and M. Schoeberl, “Static analysis
of worst-case stack cache behavior,” in Proceedings of the
21st International Conference on Real-Time Networks and
Systems (RTNS 2013). New York, NY, USA: ACM, 2013,
pp. 55–64.

[18] H. Lee, M. Smelyanskiy, C. Newburn, and G. Tyson, “Stack
value file: Custom microarchitecture for the stack,” HPCA:
Seventh International Symposium on High-Performance Com-
puting Architecture, Proceedings, pp. 5 – 14, 2001.

[19] L. E. Olson, Y. Eckert, S. Manne, and M. D. Hill, “Revisiting
stack caches for energy efficiency.”

[20] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin,
T. Mudge, and R. Brown, “MiBench: A free, commercially
representative embedded benchmark suite,” in Proceedings
of the Fourth Annual IEEE International Workshop on
Workload Characterization. WWC-4 (Cat. No.01EX538).

IEEE, 2001, pp. 3–14.

3384343


