
Java for Safety-Critical Applications

Thomas Henties1

Siemens AG

James J. Hunt

aicas

Doug Locke

Locke Consulting, LLC

Kelvin Nilsen

Aonix NA

Martin Schoeberl

Institute of Computer Engineering
Vienna University of Technology

Jan Vitek

Computer Science Dept.
Purdue University

Abstract

In recent years, various approaches to real-time execution of Java have proven their worth in numerous
commercial and defense applications. The Real-time Specification for Java has extended the Java platform
with a range of features needed for real-time computing. As the use of real-time Java has become more
widespread, the demand for Java in real-time applications with safety requirements has led to an effort to
define a new standard—JSR-302 Safety-Critical Java (SCJ). The goal of this standard is to facilitate the
creation of safety-critical Java applications capable of certification under standards such as DO 178B level
A or IEC61508 for SIL 4. JSR-302 is nearing completion and will soon be released for public review. This
paper introduces some of the primary goals, challenges, and proposed solutions for safety-critical Java and
its relationship with the Real-time Specification for Java.

Keywords: Real-Time, Java, Safety-Critical Systems

1 Email: thomas.henties@siemens.com

c©2009 Published by Elsevier Science B. V.

mailto:thomas.henties@siemens.com

Thomas Henties et al.

Kestrel Institute, September 2005

PCES Capstone Demo

Ovm was used for the DARPA PCES Capstone Demo

The RTSJ deployed in the ScanEagle UAV to implement
route computation, threat deconfliction algorithms

In collaboration between the Boeing Corporation,
Purdue University, DLTech, UCI, WUSTL 3 An Avionics Mission-critical DRE Middleware Stack

We propose to address issue of configuration and adaption of middleware architecture by focusing one

representative DRE application. The software in question implements flight control, threat assessment, and

route deconfliction algorithms for the SCANEAGLE Unmanned Aerial Vehicle (UAV)1. The SCANEAGLE

A is an UAV under joint development by The Boeing Company and The Insitu Group in an effort to meet

the demand for an affordable, fully autonomous vehicle with high endurance. Equipped with an onboard

inertially stabilized daylight video camera, SCANEAGLE A can stay aloft for 15 hours, traveling hundreds

of miles. Fig. 2 depicts the UAV and gives information about the hardware configuration used in flight.

Embedded Planet PowerPC 8260

Core at 300 MHz

256 Mb SDRAM

32 Mb FLASH

PC/104 mechanical sized

Embedded Linux

Figure 2: ScanEagle Unmanned Aerial Vehicle with a PowePC processor running Embedded Linux.

In the system we are considering in this project, which is a feature complete and flight-tested configura-

tion, the UAV is controlled by Prismj, an experimental DRE avionics controller designed to operate under

hard real-time constraints. Prismj is written in the Real-Time Specification for Java (RTSJ) by the Boeing

company. It is a realistic multi-rate cyclic avionics execution context with a number of components and

events that are typical in production avionics mission-critical computing systems. The application runs over

100 threads in three rate groups (20Hz, 5Hz, and 1Hz). These threads perform different tasks. There is a

single infrastructure thread which acts as a cyclic executive and pushes events to components in the physical

device layer. Based on those events, 5Hz and 20Hz threads perform computations on components dedi-

cated to the Global Positioning System (GPS), airframe, tactical steering, and navigation steering. The 1 Hz

thread is a pilot control component and periodically switches all components in the system between tactical

a navigation steering.

The ScanEagle DRE middleware stack, illustrated in Fig. 3, starts with the Prismj application. Prismj

can be configured to use different event channels, transport layers, virtual machines and operating systems.

In the following we consider only one static configuration. Prismj components communicate internally by

the means of an Event Channel. An event channel is a standard interface for decoupling event producers

and consumers. The FACET event channel is a customizable real-time Java event channel from Washington

University of St. Louis [16, 20]. A transport layer is needed for communication between the UAV and the

ground station. This is achieved by configuring FACET to use Zen. Zen is a CORBA object request broker

(ORB) designed to support distributed, real-time, and embedded applications. Zen is written in RTSJ by UC

Irvine [27]. Prismj relies on classpath, an open source implementation of the Java standard libraries from

GNU and Purdue’s open sourced Real-time Specification for Java libraries.

The real-time virtual machine used to run Prismj is a configuration of the Ovm framework. The Ovm

project provides an open source framework for building language runtimes. Ovm is a toolkit with the basic

1The system was developed within the PCES program by Boeing, Purdue, UC Irvine and Washington University of St. Louis.

5

Fig. 1. A sample Real-time Java application: the first integrated real-time Java system on the ScanEagle
Unmanned Aerial Vehicle [9]. The flight hardware/software was an Embedded Planet PowerPC 8260 pro-
cessor running at 300MHz with 256 MB SDRAM and 32 MB FLASH. The operating system is Embedded
Linux.

1 Introduction

Most microprocessors are now used for real-time or embedded applications, and the
behavior of many of these applications is constrained by the physical world. Higher-
level programming languages and middleware are needed to robustly and produc-
tively design, implement, compose, integrate, validate, and enforce both real-time
constraints and conventional functional requirements, while assuring modularity and
composability of independently developed components. It is essential that the pro-
duction of real-time embedded systems can take advantage of languages, tools, and
methods that enable higher software productivity. The Java programming language
has become an attractive choice because of its safety, productivity, its relatively low
maintenance costs, and the availability of well trained developers.

Although it features good software engineering characteristics, Standard Edi-
tion Java is unsuitable for real-time embedded systems due to under specification
of thread scheduling, synchronization, and garbage collection. By imprecisely spec-
ifying the semantics of these JVM services, the designers of Standard Edition Java
made it possible to easily port Java to a broad diversity of platforms. At the same
time, the Java language specification does not preclude Java virtual machine ven-
dors from providing implementations that support more reliable compliance with
real-time constraints. The Real-Time Specification for Java (RTSJ) [12] represents
a standardized approach to enhancing the Java virtual machine by tightening the
semantics of thread scheduling and synchronization and providing mechanisms that
allow real-time Java programs to run without interference from garbage collection.
The RTSJ, along with various vendor-specific enhancements to the Java platform,
have enabled development of large-scale real-time embedded systems in the Java
language [28,15,20]. Real-time Java has established itself as a viable alternative for
developing large real-time systems as evidenced by the development of open source
and commercial virtual machines such as Mackinac [11], WebSphere Real Time [10],
PERC [7], and JamaicaVM [6]. Recently, Lockheed Martin teamed with Aonix to
modernize the Aegis cruiser fleet using the PERC virtual machine [4] while IBM and
Raytheon have teamed to do build the battleship computing environment software
for the new DDG-1000 warship using IBM’s WebSphere Real Time product [19].
Other notable applications include unmanned aircraft [8,1,3], audio processing [17],

2

Thomas Henties et al.

industrial automation [16], railway automation and supervision [25], and flight en-
tertainment systems [5].

Safety-critical systems are systems in which an incorrect response or an incor-
rectly timed response can result in significant loss to its users; in the most extreme
case, loss of life may result from such failures. A secure system, on the other hand,
is one in which mechanisms are in place that protect the information within the
system from theft or corruption. Secure systems often control access to the system
with security policies. The focus of the Safety Critical Specification for Java is
on safety-critical applications rather than system security, but many of the mech-
anisms needed for safety-critical systems are closely related to those needed for
system security.

For this reason, safety-critical applications require an exceedingly rigorous vali-
dation and certification process. Such certification processes are often required by
legal statute or by certification authorities. For example, in the United States, the
Federal Aviation Administration requires that safety-critical software be certified
using the Software Considerations in Airborne Systems and Equipment Certification
(DO-178B [22]). European aviation regulators require certification under essentially
identical ED-12B [23] standard. DO-178B and ED-12B where developed jointly un-
der the auspices of the Radio Technical Commission for Aeronautics (RTCA) and
the European Organisation for Civil Aviation Equipment (EUROCAE).

The Safety-Critical Java (SCJ) specification is designed to enable the creation
of safety-critical applications using a safety-critical Java infrastructure and using
safety-critical libraries that are amenable to certification under DO-178B, Level A
and other safety-critical standards. In the context of Java technology, this means
a much tighter and smaller set of Java virtual machines and libraries, and much
more precise performance requirements on the virtual machines and libraries. Ad-
ditionally, the applications must exhibit freedom from exceptions that cannot be
successfully handled. This requires, for example, that there be no memory access
errors at runtime.

The specification is being developed within the framework of the Java Commu-
nity Process (JCP) which allows individuals and organizations to evolve definition
of the Java platform. Besides a specification, a Reference Implementation (RI) is
being developed to provide a proof of feasibility. Furthermore a test suite, referred
to as a Technology Compatibility Kit (TCK) will ensure that independent imple-
mentations of the specification are compatible. The TCK and RI complement the
specification and are mandatory under the JCP rules. The final specification will
require approval by the JCP’s Executive Committee.

2 Definitions and Background

In a real-time system, beside the calculation of correct results, it is crucial that
these result are calculated within well defined time bounds; neither too early nor
too late. Depending on the consequences of missing a deadline, real time systems
can be classified into two categories.

• Soft real-time when missing a deadline will lead to a loss of quality. Examples
are: decoding of a video stream or a telephone exchange.

3

Thomas Henties et al.

• Hard real-time if missing a deadline will lead to system failure. Examples include
the control of vital vehicle functions such as brakes, aileron control, and robot
control.

It is important to recognize that classifying a system as hard real-time does not
imply that every operation in the system is a hard real-time operation, but rather
it means that some operations must be handled as hard real-time.

Safety-critical systems are systems in which incorrect behavior may cause loss of
human life or a severe injury. Often, a safety-critical system’s behavior includes not
only its functionality, but also its timeliness. In other words, many safety-critical
systems are also hard real-time systems. Examples can be found in the fields of
aviation, military, medicine, and power plant controls.

There are presently a number of tools that statically analyze several key proper-
ties of Java programs or class files respectively. The SCJ standard assumes that such
tools will be provided by SCJ implementations, so they are intentionally not part
of SCJ. The standard is intended to encourage further development, enhancements
and innovation. Data flow analysis, model checking, and deductive verification are
potential approaches to guarantee key safety properties such as post conditions,
reachability, or worst-case execution time. A simple example for such a static anal-
ysis is a proof that the initialization sequence for a set of classes contains no cycle. It
is explicitly stated, that neither all applications written in SCJ are inherently certi-
fiable nor that all desirable static analysis can be applied to every SCJ-application.
In fact, SCJ facilitates both as far as possible and it is expected that vendors will
provide appropriate tools. Remark that the analysis of SCJ is far more easy than
a language like C. If necessary, tools may use Java annotations to allow users to
provide additional information to easy analysis.

2.1 Real-time Specification For Java

The Real-Time Specification for Java (RTSJ) was developed within the Java Com-
munity Process as the first Java Specification Request (JSR-1). Its goal was to
“provide an Application Programming Interface that will enable the creation, ver-
ification, analysis, execution, and management of Java threads whose correctness
conditions include timeliness constraints” [12] through a combination of additional
class libraries, strengthened constraints on the behavior of the JVM, and additional
semantics for some language features, but without requiring special source code
compilation tools. The RTSJ covers five main areas related to real-time program-
ming.

• Scheduling: Priority based scheduling guarantees that the highest-priority schedu-
lable object is always the one that is running (in a single processor application).
The scheduler must also support the periodic release of real-time threads, and
the sporadic release of asynchronous event handlers that can be attached to
asynchronous event objects that themselves are triggered by actual events in
the execution environment.

• Admission control and cost enforcement: Schedulable objects can be assigned
parameter objects that characterize their temporal requirements in terms of start
times, deadlines, periods, and cost. This information can be used to prevent the

4

Thomas Henties et al.

admission of a schedulable object if the resulting system would not be feasible
from a scheduling perspective. Schedulable objects can also have handlers that
are released in the event of a deadline miss.

• Synchronization: Priority inversion through the use of Java’s synchronization
mechanism (monitors) are controlled by using the priority inheritance protocol
(PIP), or optionally, the priority ceiling emulation protocol (PCEP). This applies
to both application code and the virtual machine itself.

• Memory Management: Time-critical threads must not be subject to delays caused
by garbage collection. To facilitate this, a NoHeapRealtimeThread is prohibited from
touching heap allocated objects, and so can preempt garbage collection at any
time. Instead of using heap memory, these threads can use special, limited-lifetime
memory areas known as scoped memory areas, or an immortal memory area from
which objects need never be reclaimed.

• Asynchronous Transfer of Control: It is sometimes desirable to terminate a com-
putation at an arbitrary point. The RTSJ allows for the asynchronous inter-
ruption of methods that are marked as allowing asynchronous interruption [13].
This facilitates early termination while preserving the safety of code that does
not expect such interruptions.

2.2 Limitations of SCJ with respect to the RTSJ

The main topic of JSR-302 is to facilitate a certification (e.g. DO 178B level A)
of Java programs as far as possible. For this purpose, radical subsetting of the full
Java environment has been required.

First of all, because garbage collection is not supported, heap memory is not
available, so some convenient methods of the java.lang package can not be supported.
Emphasis is placed on using periodic event handlers instead of threads. Concerning
threads, only NoHeapRealtimeThread can be used, and then only under stringent condi-
tions. Both event handlers and threads use preemptive, priority based scheduling.
SCJ supports the priority ceiling emulation protocol for avoiding priority inversion,
but not the priority inheritance protocol.

The object oriented programming style forced by the Java programming lan-
guage requires dynamic allocation of temporary objects. This is facilitated by stack
based scoped memory. Thus garbage collection is not needed and tools can prove
that there are no dangling pointers to released objects.

3 Safety Critical Java

The RTSJ imposes few limitations on how a developer structures an application,
and supports a wide variety of software models in terms of concurrency, packaging,
synchronization, memory, etc. Because safety-critical applications must generally
conform to rigorous certification requirements, they generally use much simpler pro-
gramming models that are amenable to certification. SCJ defines a more limited
programming model. This is accomplished by defining concepts such as missions,
limited startup procedures, and levels of compliance. In addition, special annota-
tions are defined that are intended for use by vendor-supplied and/or third-party

5

Thomas Henties et al.

tools to perform static off-line analysis that can ensure many critical correctness
properties for the safety-critical application.

3.1 The Mission Concept

An SCJ compliant application will consist of one or more missions. A mission con-
sists of a bounded set of periodic event handlers and possibly some instances of
NoHeapRealtimeThread, known collectively as Schedulable Objects, a term defined by the
RTSJ. For each mission, a dedicated block of memory is identified as the mission
memory. Objects created in mission memory persist until the mission is termi-
nated, and their resources will not be reclaimed until the mission is terminated. All
classes are loaded into immortal memory when the system starts up. Conforming
implementations are not required to support dynamic class loading. There is no
requirement that classes, once loaded, must ever be removed, nor that their re-
sources be reclaimed. Each mission starts in an initialization mode during which
objects may be allocated in mission memory. When a mission’s initialization has
completed, mission mode is entered. During mission mode, objects must not be
created in immortal memory or mission memory, but mutable objects residing in
mission or immortal memory may be modified as needed. All application processing
for a mission occurs in one or more schedulable objects. When a schedulable object
is started, its initial memory area is a scoped memory area that is entered when the
schedulable object is released and is exited (and the memory area cleared) when the
release terminates. During mission mode, objects cannot be created in immortal
memory or mission memory, but mutable objects residing in these memory areas
may be modified as needed. Objects allocated during mission execution will be
allocated in scoped memory. This scoped memory area is not shared with other
schedulable objects. If an application tries to create a new instance in a forbidden
area an InacessibleAreaException will be thrown. (However, in a safety critical appli-
cation it is desirable that the absence of such an exception can be proved a priori -
but this is out of the scope of the language specification.) The mission framework
provides a mechanism for orderly termination. Once termination is requested, all
schedulable objects in the mission are notified to cease operating. Once they have
all stopped computation, the mission can run cleanup code before it terminates.
This provides a clean restart or transition to a new mission.

3.2 Compliance Levels

The complexity of safety-critical software varies greatly. At one end of the spec-
trum, safety-critical applications contain only a single thread and support only a
single function, with only simple timing constraints. At the other end, there ex-
ist highly complex multi-modal safety-critical systems. The cost of certification of
both the application and the infrastructure is highly sensitive to their complexity,
so enabling the construction of simpler applications and infrastructures is highly
desirable. Therefore, SCJ defines three compliance levels to which both implemen-
tations and applications may conform. The SCJ refers to the distinct compliance
configurations as Level 0, Level 1, and Level 2. Level 0 refers to the simplest appli-
cations and Level 2 refers to the more complex applications. The use of a sequence

6

Thomas Henties et al.

Scheduler

private
memory

PEH

private
memory

PEH PEH

Major frame

private
memory

PEH

Timer
event

Timer
event

Timer
event

Mission memory

Shared by all Periodic Event Handlers

Shared by all Periodic Event Handlers

Immortal memory

Time

p1 p2 p3 p4

PM
PM

Fig. 2. Timeline of a Level 0 application.

of numbers to denote these levels is intended to reinforce the idea that these compli-
ance levels can be considered nested. For example, it is required that applications
written to run at each level must be upward compatible to higher levels.

3.2.1 Level 0
A Level 0 application’s programming model is a familiar model often described
as a timeline model, a frame-based model, or a cyclic executive model. In this
model, the mission can be thought of as a set of computations, each of which is
executed periodically in a precise, clock-driven timeline, and processed repetitively
throughout the mission. Figure 2 illustrates a simple Level 0 application.

A Level 0 application’s schedulable objects shall consist only of a set of Periodic
Event Handlers (PEHs). Each PEH has a period, priority, and start time relative
to the beginning of a major cycle. A schedule of all PEHs is constructed by either
the application designer or by an offline tool provided with the implementation.

All PEHs execute under control of a single underlying thread. This enforces the
sequentiality of every PEH, so the implementation can safely ignore synchronization
in the application. The application developer, however, is strongly encouraged to
include the synchronization required to safely support its shared objects so the
application can run correctly on a Level 1 or Level 2 implementation as well. The
use of a single thread to run all PEHs without synchronization implies that a Level
0 application runs only on a single CPU. If more than one CPU is present, it
is necessary that the state managed by a Level 0 application not be shared by
any application running on another CPU. The operations wait and notify are
not available at Level 0. Each PEH has a private scoped memory area created
for it before invocation that will be entered and exited at each invocation. It is
important to note that an operation which blocks, whether inside a synchronized
method or otherwise, will be blocking the entire application if it is running on a
Level 0 implementation.

7

Thomas Henties et al.

3.2.2 Level 1
A Level 1 application uses a familiar programming model consisting of a single
mission with a set of concurrent computations, each with a priority, running under
control of a fixed-priority preemptive scheduler. The computation is performed in
a set of PEHs and/or Aperiodic Event Handlers (APEHs). A Level 1 application
shares objects in mission memory among its PEHs and Aperiodic Event Handlers
(APEHs), using synchronized methods to maintain the integrity of its shared ob-
jects. Each Level 1 PEH or APEH has a private scoped memory area created for
it before invocation that will be entered and exited at each invocation. During
execution, the PEH or APEH may create, enter, and exit one or more other scoped
memory areas, but these scoped memory areas must not be shared among PEHs or
APEHs. The operations wait and notify are not available at Level 1.

3.2.3 Level 2
A Level 2 application starts with a single mission, but may create and execute
additional missions concurrently with the initial mission. Computation in a Level
2 mission is performed in a set of PEHs, APEHs, and/or NoHeapRealtimeThread. Each
child mission has its own mission sequencer, its own mission memory, and may also
create and execute other child missions. Each Level 2 PEH, APEH, or NoHeapReal-

timeThread has a private scoped memory area created by the runtime system for it
before invocation. For PEHs and APEHs, the private scoped memory area will be
entered and exited at each invocation. For a NoHeapRealtimeThread, the private scoped
memory area will be entered when it starts its run method and exited when the run
method terminates. During execution, each PEH, APEH, or NoHeapRealtimeThread may
create, enter, and/or exit one or more other scoped memory areas, but these scoped
memory areas must not be shared among PEHs or APEHs. A Level 2 application
may use wait and notify operations.

3.3 Use of Asynchronous Event Handlers

The RTSJ defines two mechanisms for real-time execution: the RealtimeThread class,
which uses a style similar to java.lang.Thread for concurrent programming, and the
AsynchEventHandler class, which is event based. To facilitate analyzability, this speci-
fication provides only AsynchEventHandler at Levels 0 and 1, permitting NoHeapRealtime-

Thread only at Level 2.

4 Implementations

Although the specification is in the draft phase, James Hunt has implemented an
initial version of the Reference Implementation (RI) to verify that the specification
is suitable for the safety-critical domain. The RI is intended to run on top of a
standard RTSJ implementation. The RI with the underlying RTSJ is not intended
to be used in a product that will be safety certified. The intention of the RI
is to provide a reference for future implementations. The RI and the TCK will
be provided under an open-source license. Therefore, it is expected that several
commercial and academic implementations of SCJ will follow.

8

Thomas Henties et al.

The product PERC Pico from Aonix [7], already in use for hard real-time Java
systems, is expected to be adapted to conform to the SCJ. Some of the library
annotations of SCJ are based on the annotations from PERC Pico.

A different approach to real-time Java is taken by JOP [26], a time predictable
Java processor. The processor is designed to simplify worst-case execution time
analysis and executes Java bytecodes as native language. The current runtime
environment for JOP consists of a real-time thread definition that is similar to SCJ
level 1. A layer to map the SCJ API to that layer is currently under development.
When the SCJ specification is finalized, SCJ will be the primary API for real-time
Java applications on JOP. SCJ running on JOP is used as a platform for real-time
Java development on multicore processors within the EU project Jeopard [29].

5 Related Work

The SCJ builds upon a broad research base on using Java (and Ada) for hard real-
time systems, sometimes also called high integrity systems. The Ravenscar profile
defines a subset of Ada to support development of safety-critical systems [14]. Based
on the concepts of Ravenscar Ada a restriction of the RTSJ was first proposed in
[21]. These restrictions are similar to SCJ level 1 without the mission concept. The
idea was further extended in [18] and named the Ravenscar Java profile (RJ). RJ
is an extended subset of RTSJ that removes features considered unsafe for high
integrity systems. Another profile for safety-critical systems was proposed within
the EU project HIJA [2].

PERC Pico from Aonix [7] defines a Java environment for hard real-time systems.
PERC Pico defines its own class hierarchy for real-time Java classes which are based
on the RTSJ libraries, but are not a strict subset thereof. PERC Pico introduces
stack-allocated scopes, an elaborate annotation system, and an integrated static
analysis system to verify scope safety and analyze memory and CPU time resource
requirements for hard real-time software components. Some of the annotations used
to describe the libraries of the SCJ are derived indirectly from the annotation system
used in PERC Pico.

Another definition of a profile for safety-critical Java was published in [27]. In
contrast to RJ the authors of that profile argue for new classes instead of reusing
RTSJ based classes to avoid inheriting unsafe RTSJ features and to simplify the
class hierarchy. A proposal for mission modes within the former profile [24] permits
recycling CPU time budgets for different phases of the application. Compared to
the mission concept of SCJ that proposal allows periodic threads to vote against the
shutdown of a mission. The concept of mission memory is not part of that proposal.

6 Conclusion

Java, as a strongly typed, object oriented language, detects common programming
errors at compile time. Exception handling, threads and synchronization are part
of the language. Together with runtime checks of array bounds, reference errors
that can lead to a crash of the program are avoided in Java. Therefore, Java is an
interesting language for building safety-critical application.

9

Thomas Henties et al.

However, standard Java and the RTSJ are too large and complex for safety-
critical certification. Therefore, the SCJ defines a subset of the RTSJ intended for
safety-critical applications. The scoped memory model of the RTSJ is restricted to
allow static analysis of the memory usage. The thread model is largely restricted
to periodic and asynchronous event handlers to simplify the schedulability analysis.
The concept of missions and sub-missions at higher levels reintroduces dynamic
features of the RTSJ in a safer form.

The potential for tools to prove properties is much higher than for C or C++,
because the language semantics are defined with higher precision and with less
ambiguity. Java applications can be analyzed at the bytecode level that is the stan-
dardized intermediate representation of Java applications. As soon as the certifying
authorities accept JVMs that implement SCJ, the use of Java will lead to higher
productivity in the development of safety-critical applications. Beside the already
mentioned advantages of Java, the demanded software quality can be verified more
easily.

Acknowledgement

The SCJ specification is a collaborative work of the Expert Group for SCJ. The
authors thank the active members of the expert group: B. Scott Andersen, Ben
Brosgol, Mike Fulton, Johan Nielsen, Joyce Tokar, and Andy Wellings.

References

[1] Boeing selects software for j-ucas x-45c, Defense Industry Daily (2005).
URL http://www.defenseindustrydail.com/boeing-selects-software-for-jucas-x45c-01413/

[2] Hija safety critical java proposal, available at http://www.aicas.com/papers/scj.pdf (2006).

[3] The jamaicavm brings java technology to mission software in an unmanned aircraft by eads, Military
Embedded Systems (2006).
URL http://www.mil-embedded.com/news/db/?3302

[4] Lockheed martin selects aonix perc virtual machine for aegis weapon system, Military Embedded
Systems (2006).
URL http://www.mil-embedded.com/news/db/?4224

[5] Aonix perc selected for inflight entertainment system, Embedded Computing Design (2007).
URL http://www.embedded-computing.com/news/db/?8205

[6] aicas, The Jamaica Virtual Machine homepage, http://www.aicas.com (2005).

[7] Aonix, Perc pico 1.1 user manual, http://research.aonix.com/jsc/pico-manual.4-19-08.pdf (2008).

[8] Armbruster, A., J. Baker, A. Cunei, C. Flack, D. Holmes, F. Pizlo, E. Pla, M. Prochazka and J. Vitek,
A real-time java virtual machine with applications in avionics, ACM Transactions on Embedded
Computing Systems (TECS) 7 (2007).

[9] Armbuster, A., J. Baker, A. Cunei, D. Holmes, C. Flack, F. Pizlo, E. Pla, M. Prochazka and J. Vitek,
A Real-time Java virtual machine with applications in avionics, ACM Transactions in Embedded
Computing Systems (TECS) (2006).

[10] Auerbach, J., D. F. Bacon, B. Blainey, P. Cheng, M. Dawson, M. Fulton, D. Grove, D. Hart and
M. Stoodley, Design and implementation of a comprehensive real-time Java virtual machine, in:
Proceedings of the 7th ACM & IEEE international conference on Embedded software (EMSOFT),
2007, pp. 249–258.

[11] Bollella, G., B. Delsart, R. Guider, C. Lizzi and F. Parain, Mackinac: Making hotspot real-time, in:
Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC’05), 2005, pp. 45–54.

10

http://www.defenseindustrydail.com/boeing-selects-software-for-jucas-x45c-01413/
http://www.mil-embedded.com/news/db/?3302
http://www.mil-embedded.com/news/db/?4224
http://www.embedded-computing.com/news/db/?8205

Thomas Henties et al.

[12] Bollella, G., J. Gosling, B. Brosgol, P. Dibble, S. Furr and M. Turnbull, “The Real-Time Specification
for Java,” Addison-Wesley, 2000.

[13] Brosgol, B., S. Robbins and R. Hassan II, Asynchronous transfer of control in the Real-Time
Specification for Java, in: Proceedings of the Fifth International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC), 2002.

[14] Dobbing, B. and A. Burns, The ravenscar tasking profile for high integrity real-time programs, in:
Proceedings of the 1998 annual ACM SIGAda international conference on Ada (1998), pp. 1–6.

[15] Dvorak, D., G. Bollella, T. Canham, V. Carson, V. Champlin, B. Giovannoni, M. Indictor, K. Meyer,
A. Murray and K. Reinholtz, Project Golden Gate: Towards Real-Time Java in Space Missions,
in: Proceedings of the 7th IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC), 12-14 May 2004, Vienna, Austria (2004), pp. 15–22.

[16] Gestegard Robertz, S., R. Henriksson, K. Nilsson, A. Blomdell and I. Tarasov, Using real-time Java
for industrial robot control, in: Proceedings of the 5th international workshop on Java technologies for
real-time and embedded systems (JTRES), 2007, pp. 104–110.

[17] Juillerat, N., S. Müller Arisona and S. Schubiger-Banz, Real-time, low latency audio processing in java,
in: Proceedings of the International Computer Music Conference, Copenhagen, Denmark, 2007.

[18] Kwon, J., A. Wellings and S. King, Ravenscar-Java: A high integrity profile for real-time Java, in:
Proceedings of the 2002 joint ACM-ISCOPE conference on Java Grande (2002), pp. 131–140.

[19] McCloskey, B., D. Bacon, P. Cheng and D. Grove, Staccato: A parallel and concurrent real-time
compacting garbage collector for multiprocessors (2008).
URL http://www.eecs.berkeley.edu/~billm/rc24504.pdf

[20] Nilsen, K., Using java for reusable embedded real-time component libraries, CrossTalk: The Journal of
Defense Software Engineering 17 (2004), pp. 13–18.

[21] Puschner, P. and A. Wellings, A profile for high integrity real-time Java programs, in: 4th IEEE
International Symposium on Object-oriented Real-time distributed Computing (ISORC), 2001.
URL http://ieeexplore.ieee.org/iel5/7351/19938/00922813.pdf

[22] RTCA, Software considerations in airborne systems and equipment certification, DO-178B, RTCA
(1992).

[23] RTCA European Organisation for Civil Aviation Equipment, “ED12B. Software Considerations in
Airborne Systems and Equipment Certification,” (1992).

[24] Schoeberl, M., Mission modes for safety critical java, in: Software Technologies for Embedded and
Ubiquitous Systems, 5th IFIP WG 10.2 International Workshop (SEUS 2007), Lecture Notes in
Computer Science 4761 (2007), pp. 105–113.
URL http://www.jopdesign.com/doc/scjava_modes.pdf

[25] Schoeberl, M., Application experiences with a real-time Java processor, in: Proceedings of the 17th
IFAC World Congress, Seoul, Korea, 2008.
URL http://www.jopdesign.com/doc/jop_app.pdf

[26] Schoeberl, M., A Java processor architecture for embedded real-time systems, Journal of Systems
Architecture 54/1–2 (2008), pp. 265–286.
URL http://www.jopdesign.com/doc/rtarch.pdf

[27] Schoeberl, M., H. Sondergaard, B. Thomsen and A. P. Ravn, A profile for safety critical Java, in: 10th
IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
(ISORC’07) (2007), pp. 94–101.
URL http://www.jopdesign.com/doc/scjava_isorc2007.pdf

[28] Sharp, D. C., Real-time distributed object computing: Ready for mission-critical embedded system
applications, in: Proceeding of the 3rd International Symposium on Distributed Objects and
Applications, DOA 2001, 17-20 September 2001, Rome, Italy (2001), pp. 3–4.

[29] Siebert, F., JEOPARD: Java environment for parallel real-time development, in: Proceedings of the 6th
International Workshop on Java Technologies for Real-time and Embedded Systems (JTRES 2008)
(2008), pp. 87–93.

11

http://www.eecs.berkeley.edu/~billm/rc24504.pdf
http://ieeexplore.ieee.org/iel5/7351/19938/00922813.pdf
http://www.jopdesign.com/doc/scjava_modes.pdf
http://www.jopdesign.com/doc/jop_app.pdf
http://www.jopdesign.com/doc/rtarch.pdf
http://www.jopdesign.com/doc/scjava_isorc2007.pdf

	Introduction
	Definitions and Background
	Real-time Specification For Java
	Limitations of SCJ with respect to the RTSJ

	Safety Critical Java
	The Mission Concept
	Compliance Levels
	Use of Asynchronous Event Handlers

	Implementations
	Related Work
	Conclusion
	References

