
Automatic Generation of Application–Specific Systems
Based on a Micro-programmed Java Core

F. Gruian, P. Andersson, K. Kuchcinski,
Dept. of Computer Science, Lund University

Box 118, S-221 00 Lund
Sweden

<flagr, pera, kris>@cs.lth.se

M. Schoeberl
JOP.Design

Strausseng. 2-10/2/55, A-1050 Vienna
Austria

martin@jopdesign.com

ABSTRACT
This paper describes a co-design based approach for auto-
matic generation of application specific systems, suitable for
FPGA-centric embedded applications. The approach aug-
ments a processor core with hardware accelerators extracted
automatically from a high-level specification (Java) of the
application, to obtain a custom system, optimised for the
target application. We advocate herein the use of a micro-
programmed core as the basis for system generation in order
to hide the hardware access operations in the micro-code,
while conserving the core data-path (and clock frequency).
To prove the feasibility of our approach, we also present
an implementation based on a modified version of the Java
Optimized Processor soft core on a Xilinx Virtex-II FPGA.

Categories and Subject Descriptors
C.3 [Special Systems and Application-Based Systems]:
real-time and embedded systems

Keywords
system-on-chip, co-design, FPGA, Java

1. INTRODUCTION
It is well known that hardware accelerators can give both
speed-up and reduced power consumption. An attractive
technology for implementing accelerators is reconfigurable
logic. Today it is even possible to build entire systems on
a single FPGA, leading to a dramatic decrease in design
time and cost compared to ASIC based systems, making
them increasingly useful in embedded systems. Single-chip
systems can be more tightly coupled, since the interconnects
are no longer limited by the pad amount, as in multi-chip
solutions.

The features just mentioned open new possibilities for
application-specific systems. Hardware accelerators and co-
processors can now be more deeply integrated with processor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

cores. Furthermore, accelerators may be automatically ex-
tracted from the software source code, grouped and merged
together depending on the space available on the device.
In addition, this process may also be made transparent to
the user, who, unlike with other approaches for application-
specific system design, involving application-specific proces-
sors and accelerators, does not have to be aware of the un-
derlying hardware, nor provide specific compilers or libraries
for accessing the accelerators.

In this paper, we propose a co-design flow for generat-
ing application-specific systems-on-chip, hosted on a FPGA.
The target architecture consists of a processor enhanced
with one or several accelerators. We also describe and dis-
cuss trade-offs at different steps in the design flow. Specifi-
cally we look at interconnection structures, communication
and synchronisation issues with respect to both the acceler-
ators and the modifications to the processor. In addition, we
illustrate the proposed design flow using our version of the
Java Optimized Processor (JOP, [10]), which is augmented
with accelerators. The accelerators are automatically ex-
tracted form the application Java source code, the same code
that can be run on JOP without accelerators.

In traditional methodology, the use of hardware accelera-
tors implied a considerable design effort. The function to be
accelerated had to be identified and then re-implemented,
by an expert, using a hardware description language. To
reduce the design overhead for using FPGA accelerators,
much work has been done to automate this process. In
[4], Gokhale et al. present the NAPA C compiler for the
NAPA1000, a hybrid RISC/FPGA processor. They extend
ANSI C with #pragmas, which steer whether variables and
expressions are to be mapped onto the RISC, or the FPGA.
Their hardware generation is however limited to scalar ex-
pressions (no memory accesses, conditions, or nested loops).

An approach for automatic accelerator generation in a
Java environment is presented in [2]. It uses the Java byte-
code as input for the accelerator generation. Data path gen-
eration is based on predefined and pre-synthesized macros,
and only the generated controllers need to pass through logic
synthesis. In contrast we generate RTL-level vhdl code for
both the data path and controllers, starting from source
code. We believe this is more flexible and increase the pos-
sibilities for optimizations. In [2], the Java Virtual Machine
(JVM) and the accelerators do not share a common mem-
ory, so data are copied between the JVM memory and the
accelerator local memory before and after the accelerated
computation. This leads to a significant difference in the

generated interface compared to our approach, where the
JVM and accelerator do share a common memory.

In [8] Kent et al. present a hardware/software co-design
of a JVM, on a general purpose processor connected to an
FPGA. Unlike, that approach which focuses on speeding
up a JVM in general, for any Java application, our ap-
proach targets application-specific systems-on-chip by au-
tomatic extraction of accelerators at compile time.

There have been many more approaches to accelerator
generation, most of them more or less automated. A survey
of such systems and tools can be found in [3], for example.

Recently, much work has been done on the topic of com-
piling traditional software languages directly into hardware
[1,5,11]. This makes a good foundation for fully automated
accelerator generation directly from a software description.

The remainder of the paper is organized as follows. Sec-
tion 2 gives an overview of our application specific system
design flow. Section 3 presents the architectural options for
implementing such systems, and motivates our choices. In
section 4, we give the implementation details specific for our
design flow and platform. Section 5 presents an experimen-
tal evaluation that validates our design methodology. The
paper concludes with a summary in section 6.

2. CO-DESIGN FLOW OVERVIEW
Our view on the co-design flow for generating an application-
specific system is detailed in Figure 1. The input to the
whole process is a high-level specification of the application
(in our case in Java), including all the necessary sources,
preferably together with libraries and packages. The appli-
cation is profiled in order to obtain essential data for select-
ing code regions suitable for hardware acceleration. Time
consuming loops, frequently called short functions, and I/O
operations are good candidates for hardware implementa-
tion. The application is then partitioned into software and
hardware, taking into account a number of requirements
such as performance, device utilization, micro-code mem-
ory size, etc. Although this step could be fully automated,
we believe a tight interaction between the designer and the
partitioning tool is beneficial at this point. For example, an
experienced designer might directly recognize reusable code
regions, only slightly different, that could share the same
hardware. At this point, the application is described by a
software part, further handled by the software flow, and a
number of hardware functions (still described in Java in our
implementation) that will undergo the hardware flow.

2.1 Software Flow
After partitioning, the software part includes, besides the
actual code (bytecode), also specific hardware calls that re-
place the code to be implemented by the hardware accel-
erators. In fact hardware calls are new instructions, im-
plemented at the micro-program level. To make the soft-
ware flow more generic and keep a unique micro-code for
all applications, we adopted in principle three new instruc-
tions (hardware calls): hwWrite to write a word to a cer-
tain hardware accelerator, hwSynch to synchronize (wait
for results) with a certain accelerator, and finally hwRead
to read a word from a given accelerator. In our implemen-
tation, these hardware calls are specific functions, replaced
by dedicated bytecodes using a custom JavaCodeCompactor
(jcc). Otherwise the software flow involves the classic com-
pilation and static linking steps, to get the executable image.

Hardware Flow

Custom JOP version

Software Flow

Source
(JAVA)

Profile
Hw/Sw Partitioning

Hardware Functions
(JAVA)

Compile & Link
(JavaCodeCompact)

ROM
(JAVA Bytecode)

High-Level Synthesis
(JAVA2RTL)

Hw Accelerator 1
Hw Accelerator 1Hw Accelerator 1
(VHDL)

microROM Core Base
(JOP)

Synthesize and Generate Netlist/Bitmap
(XPS)

Configuration
(FPGA programming file)

IP Library

Source +
Hw Calls

(JAVA, native)

Hw Merge &
System Generation

System Specification
(VHDL)

Libraries
(JAVA

packages)

ROM/RAM

Figure 1: Our co-design flow for generating
application–specific systems.

2.2 Hardware Flow
Once the hardware functions are decided, each of the corre-
sponding Java code regions will be translated into a register
transfer level specification rtl (a vhdl component in our
case).

Our translator supports the semantic overlap of Java and
C, i.e. loops, arrays and object references. We do not sup-
port yet recursion, inheritance, or the dynamic aspects of
Java, i.e. object creation or dynamic class loading. The fo-
cus of our translator is on the memory accesses. We analyse
the memory accesses looking for data reuse and patterns, al-
lowing memory accesses trough bus bursts. To exploit data
reuse we introduce local memories, drastically reducing the
number of accesses over the shared bus [1]. The translator
is intended for small loops and therefore we do not consider
resource sharing. However, if large portions of code are to
be translated, high-level synthesis employing resource shar-
ing should be considered [5]. The translated entities will be
later on connected to the initial base core (in our case JOP)
and possibly the system bus, according to one of the choices
described in section 3. All the components are then glued to-
gether during a hardware merge and system generation step.
The system based on the micro-programmed processor, in-
cluding the hardware accelerators and necessary peripherals
is the result of this process (specified as vhdl, micro-code
memory contents, and possible third party IPs).

Finally, this specification is synthesized, producing a con-
figuration file for the desired FPGA (at this point our flow
makes use of the Xilinx Platform Studio, CoreGenerator,
and Xilinx ISE).

3. ARCHITECTURAL CHOICES
The specific hardware functionality extracted during the
partitioning step can be incorporated into the system in a
number of different ways, each of these having certain advan-
tages and drawbacks. Next we review briefly three architec-
tural options, pointing out our choices and the motivation
behind them.

A first, straightforward option is to simply connect all
the hardware accelerators as slaves (or master/slaves) to
the common system bus (see Fig. 2, Pheripheral 1). All
accesses occur exclusively through the bus, with the excep-
tion perhaps of optional interrupt requests to the processor.
Note that the accelerators have to be accessible through nor-
mal bus read/write operations. The advantage of such an
architecture is that, in principle, any processor core can be
accelerated this way. No special instructions for accessing
the hardware registers are required. From the software part,
hardware calls can be simply implemented as read/writes to
the memory addresses associated with the accelerators. Fur-
thermore, the accelerators can run in parallel with the pro-
cessor. However, because of using the common system bus
as a point of access, each read/write operation to a hardware
register takes a rather long time and competes with other
bus transfers. For these reasons, this architecture is suitable
only for complex/coarse-grain hardware operations.

A second, more tightly coupled architecture implies the
use of a local access structure and special micro-instructions
for reading/writing hardware registers (see Fig. 2, Hw1).
The advantages over the previous method are the follow-
ing. The hardware accelerators are not mapped over com-
mon addresses and cannot be accessed from outside except
through dedicated micro-code. Malicious or badly designed
Java code cannot therefore directly affect the hardware ac-
celerators. In addition, the read/write operations can be
constructed to be very simple and fast, since they do not
have to abide the system bus protocol. As a consequence,
even the hardware may become less complex, since the bus
interfaces are not necessary. These features make this archi-
tecture better suited for finer grain operations. However, if
the accelerators must access data from the memory, they can
only do this through the core fetch unit, using micro-code
operations. For large amounts and constant flow of data,
this becomes an issue. This problem can be simply solved
by combining the two approaches just presented. In partic-
ular, the accelerators can be connected as masters on the
system bus, fetching the required data themselves instead
of using the core fetch unit (see Fig. 2, Hw2). This way the
hardware accelerators are still unaccessible (unless through
the dedicated hardware calls) from the Java code, yet they
can freely use the (shared) memory and peripherals while
the core carries out other tasks. In our implementation, we
decided to use both the pure local access structure and the
combined local–bus master access choice, as in Fig. 2.

Finally, a third possibility would be to integrate the hard-
ware functions with the core execution unit. This would
allow for the new hardware operations to access the core reg-
isters and also share functional units among themselves and
the core. However, this approach (designing an Application-
Specific Instruction-set Processor) would drastically alter
the data-path of the processor. In addition, the micro-
decoder unit would have to accommodate specific instruc-
tions for each hardware function. These changes would im-
pact the processor clock frequency to an extent that could

Core
(JOP)

System Bus (OPB)

RAM Peripheral
1

Peripheral
N

HWA
Ctrl

HWA Local Bus

Hw 1 Hw 2

Figure 2: Our architectural choice.

need a detailed examination and re-design by an experienced
hardware designer. Furthermore, the parallelism existing in
the other architectures is lost, as the execution stage can
carry out only one operation at one time. Although this
approach might be useful for very fine grained operations
(such as the dsp multiply-accumulate), we considered it to
be unsuitable for fast and automatic system generation.

4. IMPLEMENTATION DETAILS
The current section describes some of the implementation
details specific to the design flow introduced above. In par-
ticular, we present the basic system organisation, the way of
rewriting the Java code using hardware calls for the acceler-
ated sections, the associated micro-code for these hardware
calls, and the method of accessing the hardware accelera-
tors. A brief description of some trade-offs and optimisation
possibilities concludes this section.

4.1 Basic System Architecture
As support we use the mb1000 hardware platform [7], which
is a Virtex-II evaluation board. The system used for evalu-
ating our methodology is based on a Java Optimised Proces-
sor (JOP, [10]) core augmented with an On-chip Peripheral
(OPB, [6]) master interface.

The JOP version used in our systems is a three stage
pipeline, stack oriented architecture. The first stage fetches
bytecodes from a method cache and translates them to ad-
dresses in the micro-program memory. The method cache is
updated on invokes and returns from an external memory
(through the system bus). The second stage fetches the right
micro-instruction and executes micro-code branches. The
third decodes micro-instructions, fetches necessary operands
from the internal stack, and executes ALU operations, loads,
stores and associated stack spills or fills. The internal stack
consists both of a dual port RAM and two registers holding
the tos and tos-1. Due to its organisation, JOP can execute
certain Java bytecodes as single micro-instructions, while
more the complex ones as sequences of micro-instructions
or even Java methods.

In addition, our version of JOP uses memory mapped I/O,
with all external access made synchronous (the processor is
stalled until data becomes available) to accommodate dif-
ferent latencies for the different peripherals. Furthermore,
the processor was extended with a Hardware Accelerators
Local Bus (HWALB) consisting of 32 bit-wide address, data

in and out signals, plus a select and a read-not-write control
signals. The HWALB protocol is trivial, each access having
a latency of one clock cycle. Currently the accelerators are
selected through both the global select and dedicated bits
from the address bus, limiting1 the number of connected
accelerators to thirty-two.

Besides the JOP and the OPB themselves, the system
contains a RAM (on-chip block RAM, or on-board mem-
ory), an UART (for loading applications), a Timer (the real-
time clock), all connected to the OPB. However, any system
configuration making use of the OPB is possible. The non-
custom cores are those shipped with the Xilinx EDK 6.2.

4.2 Hardware Calls Structure
The decision of which parts to select for hardware implemen-
tation is currently taken exclusively by the designer. Once
the code sections to be accelerated are selected, these are
replaced by very specific function calls. Each such section
of code is given an identifier, which will be the address of
the hardware accelerator hwID. This identifier is one of the
parameters to be passed on to the hardware calls2. The se-
lected section is then replaced by a sequence of function calls
as follows. The parameters required by the hardware are
passed on using one hwWrite(N, hwID) for each parame-
ter. On the hardware side, once all the necessary parameters
are received, the hardware starts executing. If the accelera-
tor is read via HWALB during execution, a non-zero number
is output. When the execution is completed, the output be-
comes zero, followed by a sequence of results (see section
4.4). On the software side, the application has to execute
a hwSynch(hwID) which is a busy wait for the zero (fin-
ished) value from accelerator. Finally, the results and/or
modified variables are read back using hwRead(hwID).
At compile time jcc will identify the JOP micro-code calls,
generate the right calling structure and use the dedicated
bytecode for the appropriate hardware accelerators entry.
Note that hardware calls can be interleaved in order to take
advantage of the parallelism existing in the architecture.

4.3 Micro-instruction Set Extension
Besides the initial JOP micro-code, we added, as just men-
tioned, micro-code calls for writing parameters to the hard-
ware, synchronising with the accelerators, and reading re-
sults from the hardware. We managed to write these general
enough, such that no changes are required whenever hard-
ware accelerators are added or removed. For this purpose,
the micro-instruction set was extended to include:

• stma – a select hardware micro-instruction, which out-
puts the top of the stack on the address bus of HWALB.
This is not a new micro-instruction, however, since it
is also used for selecting the OPB address.

• sthr – a store hardware, which writes the top-of-stack
to the hardware selected by a stma, causing the accel-
erator registers to shift values (see section 4.4).

• ldhr – a load hardware, which reads a word from the
hardware selected by a previous stma.

1Slightly more complex address decoding schemes, support-
ing even 232 accelerators can be implemented without great
impact on performance and/or device utilization.
2The alternative of having a dedicated bytecode for each
accelerated section might limit the number of hardware ac-
celerators more drastically.

As opposed to the OPB read/write instructions for access-
ing the memory and peripherals, the hardware read/writes
are non-blocking, assuming that the hardware can read data
or provide results in a single clock cycle. An architecture
without a HWALB could use the OPB bus and memory
mapped hardware accelerators, without modifying the micro-
code, however with the drawbacks mentioned in section 3.

4.4 Accelerator Access Structure
The description given until now covered mainly the proces-
sor side, however there are a few choices made on the ac-
celerator side as well, leading to the structure depicted in
Fig. 3. In particular, the registers holding the input values
for the accelerator are chained, making up a FIFO, accessed
through the same address. Each sthr micro-instruction ba-
sically pops the JOP top-of-stack and pushes it into the
accelerator FIFO. A similar structure was adopted for the
output registers. However, the output is dependent also on
the accelerator state. A non-zero value is output as long as
the results are not available (i.e. during computation). A
zero is output as soon as the results are ready for reading,
followed by a new output value each ldhr. Synchronisation
between JOP and an accelerator is thus solved by polling
the accelerator output until a zero is read. It is important
to stress here that the input and output registers are not
dedicated resources, but can be used during computation,
and in most cases a single register is used as both input and
output, representing one variable from the Java code.

JOP
Top of
stack

HWALB

Hardware Accelerator

In Register 3

In Register 2

In Register 1

Process Out Register 1

Out Register 2

WriteDBus
ABus, Select, RnW

ReadDBus

DBus

Address Register

ABus Select,RnW

Mux

01

State

Figure 3: Accelerator access structure detail.

Other access structures are of course possible, such as as-
signing each hardware register to a different HWALB ad-
dress or using interrupt driven synchronization. However,
we decided that giving individual addresses to each registers
would complicate the structure (another decoder), without
any real gain, since all the parameters must be passed on
anyway every time the accelerator is used. As for the inter-
rupt driven synchronization, it is still under investigation.

4.5 Trade-offs and Optimizations
While going through our design flow, we were confronted

with a number of trade-offs and possibilities for optimisa-
tions that we wish to point out next.

The first trade-off is the actual hardware/software par-
titioning step, in which speed is traded for device utilisa-
tion. This is obviously greatly dependent on the application
and for now strongly controlled by the designer, which could
however benefit from a estimator/profiler especially built for
our hardware/software architecture.

Deciding the actual structure of a hardware call is an-
other interesting problem. Initially we decided to imple-
ment micro-code calls that would pass a variable number
of values to the hardware, using an array of integers. The
micro-code needed for this was rather complex, and required
us to initialise an array for each hardware call. The call
overhead as such was small, since only two parameters (the
hardware address and the parameter array address) had to
be passed on, while looping through the array was done at
micro-code level. However, preparing the hardware call by
transferring the parameters into the parameter array was a
hidden overhead (i.e. array initialisation). We then decided
to implement instead micro-code calls for passing a single
parameter at a time. The micro-code directly became much
simpler (no loops) and no additional arrays were needed.
Furthermore, the number of parameter exchanged with the
hardware seemed to be rather small (maximum eight) in our
examples. Finally we intend to implement specialised calls
for one, two, three, and four parameters, in order to reduce
the size of the Java bytecode.

Another issue laid in selecting the most efficient architec-
ture/interconnect structure for the hardware accelerators.
There are advantages and drawbacks both with system bus
accessed accelerators and with locally accessed hardware
units, depending on the amount and localisation of data re-
quired by the accelerator. A combination between HWALB-
slave and OPB-master seems to be the best in our case.

Beside the issues just mentioned, there are a number of
trade-offs that could be investigated. For example, allow-
ing some of the hardware accelerators to merge, would re-
sult in reduced device utilisation, but possible in increased
computation latency. To improve merging, one could ex-
amine the Java source, to detect hardware functions that
are never executed concurrently. In addition, using specific
micro-programs for each accelerator might increase the per-
formance at the expense of the micro-code memory size, yet
another optimization problem.

5. EXPERIMENTAL EVALUATION
To examine the feasibility and efficiency of our design flow,
we chose a simple application and run it through the design
process. The application consists of an element-wise addi-
tion of two vectors of integers, followed by a summation of
all the elements in the result vector, and a conversion from
integer to a hexadecimal ASCII representation of the final
sum. Although our goal is an almost fully automated flow,
some of the steps were carried out manually, as not all the
tools were yet available. However, these steps were relatively
few, namely selecting the code to be implemented in hard-
ware, replacing these code sections with proper hardware
calls, and writing one of the hardware accelerators in vhdl
(the conversion from integer to hexadecimal ASCII – itoh).
We also selected for acceleration the vector addition (vadd)
and the element summation (vsum), from which however
the accelerators were automatically translated from Java to

a vhdl OPB/HWALB core. Full systems were built in the
Xilinx Platform Studio using both the cores from section
4.1 and the hardware accelerators, and then synthesized,
mapped, placed, and downloaded on a Virtex-II FPGA.

For evaluation we initially built two systems, one without
any hardware acceleration (plain), where all tasks are car-
ried out on the processor, and a system containing the three
hardware accelerators just mentioned (vadd,vsum,itoh). We
then compared these two systems from several points of
view. First, the micro-code size for the accelerated sys-
tem (including the code for hwWrite, hwSynch, and hwRead)
marginally increased from 869 to 881 10-bit words (1.4%).
Note that this is a one time change, regardless of the number
of the accelerators.

Second, we were interested in the area increase or the de-
vice utilisation for the accelerated system. Fig. 4 presents
the figures gathered from the MAP report (Xilinx ISE 6.2)
for the hardware accelerator local bus (HWALB), the itoh,
vsum, and vadd accelerators, followed by the overall device
utilisation for the accelerated system, the overall device util-
isation for the initial system and finally, the figure for our
version of the JOP core. Note that the device utilisation
grows for the accelerated system with about 75% for this
particular example. For comparison, on the xc2v1000 de-
vice used for evaluation, the accelerated system still occupies
a rather small percent of the available resources (28% of the
total Slice Flip Flops and 14% of the total 4 input LUTs).

Device Utilisation

0 32
141

275

1399

719

188
96 44

314

553

2864

1771

1404

hwalb itoh vsum vadd accelerated plain jop

sliceFF

4LUT

Figure 4: Device utilisation for the different hard-
ware accelerators (hwalb, itoh, vsum, vadd), the full
system both after (accelerated) and before accelera-
tion (plain), and also for our version of JOP (jop).

Third, the program memory footprint is also affected by
replacing code sequences with hardware calls. Intuitively,
one expects the software to shrink as more functionality is
moved to hardware. For the example we used, however, the
memory footprint slightly increased from 3173 to 3198 words
(0.7%). This can be explained on one hand by the properties
of the sequences that were replaced, which although take a
long time to execute, do not actually take many bytecodes
in the executable. On the other hand, a large number of
values exchanged with an accelerator (itoh needs 9 values
and, thus, 10 hardware calls) may increase the accelerated
code. Furthermore, if many of these parameters are return
values, they have to be transferred back in the memory,
increasing the code even more.

Finally, the fourth and most interesting figure we looked at

is the speed-up of the accelerated system. We measured this
through the opb timer core, programmed to count clock
cycles. In Fig. 5 we present the execution time in clock
cycles for a specific application region consisting of three
segments chosen for acceleration (itoh, vadd, vsum). Fur-
thermore, for a more fair comparison, these are reported for
a number of system architectures and design flows as fol-
lows. Besides the non-accelerated Java on JOP (jop) and
JOP plus hardware accelerators (jop+Hw), we also exam-
ined a MicroBlaze-based [12] system and the same appli-
cation written in pure C, compiled with gcc, both with no
optimisation (mb, gcc –O0) and highly optimised (mb, gcc –
O2). Furthermore, on the same MicroBlaze system, we also
looked at a flow that uses first a Java to C translator [9]
to convert the initial Java application into C, which can
then further be compiled using gcc (mb, java2c –O2). We
also tried to use similar memory architectures for both JOP
and the MicroBlaze architectures. In particular, since JOP
has a method cache, we also enabled the instruction cache
(I$) on the MicroBlaze. In addition, we conducted mea-
surements for three different memory architectures, namely
block RAM (BRAM), double data rate SDRAM (DDR),
and static RAM (SRAM). The java2c case for the BRAM
is missing, since the generated executable could not fit in
the available 64KB BRAM available on the Virtex-II. We
also had problems getting jop+Hw run with the SRAM. All
systems used a 66MHz clock, due to device speed grade and
off-chip memory timing. However, the individual compo-
nents (JOP, accelerators, MicroBlaze, . . .) are reported by
the synthesis tool as able to work even with a 100MHz clock.

To sum up, introducing the accelerators in the JOP archi-
tecture leads to an impressive performance improvement (a
3 to 6 times speed-up for the examined application). Fur-
thermore, the application runs on jop+Hw slightly faster
than the optimised gcc compiled C code on the MicroBlaze,
rendering Java competitive even for embedded systems.

0

5000

10000

15000

20000

25000

m
b,

 g
cc

 -O
0

m
b,

 g
cc

 -O
2

m
b,

 ja
va

2c
 -

O
2

jo
p

jo
p

+
Hw

m
b,

 g
cc

 -O
0

m
b,

 g
cc

 -O
2

m
b,

 ja
va

2c
 -

O
2

jo
p

jo
p

+
Hw

m
b,

 g
cc

 -O
0

m
b,

 g
cc

 -O
2

m
b,

 ja
va

2c
 -

O
2

jo
p

jo
p

+
Hw

BRAM + I$ DDR + I$ SRAM + I$clo
ck

 c
yc

le
s

itoh vsum vadd

Figure 5: The execution time in clock cycles for the
test application, for various architectures and flows.
Solutions based on MicroBlaze and C/Java are de-
noted by mb and gcc/java2c. Our own solutions are
denoted by jop and jop+Hw.

6. SUMMARY
The current paper described a semi-automatic approach for
fast generation of application specific system, based on a

Java micro-programmed core, suitable for FPGA systems-
on-chip. An overview of the proposed design flow was given,
followed by a discussion regarding the architectural choices,
and concluded by presenting the results of employing our
flow to synthesis a simple application. In particular, for
that test application we observed a speed-up between 3 and 6
times, at an expense of 75% increase in the device utilisation.

We believe that the novelty and the strength of our ap-
proach resides in a combination of features, as follows. The
architectural choice for integrating the hardware accelera-
tors with the processors allows for a straight forward and
rather simple design flow. Using a micro-programmed core
with specific hardware call micro-programs hides the accel-
erator access procedure from the high-level software, while
giving more opportunities for a closer interaction between
the processor and the hardware functions. In addition, by
keeping the accelerators out of the core execution path, the
need for a specialised compiler (as necessary for ASIPs) is
eliminated.

7. REFERENCES
[1] P. Andersson and K. Kuchcinski. Automatic local

memory architecture generation for data reuse in
custom data paths. In International Conference on
Engineering of Reconfigurable Systems and
Algorithms, June 21–24 2004.

[2] J. M. P. Cardoso and H. C. Neto. Fast hardware
compilation of behaviors into an FPGA-based
dynamic reconfigurable computing system. In The XII
Symposium on Integrated Circuits and System Design,
pages 150–153, October 1999.

[3] K. Compton and S. Hauck. Reconfigurable computing:
a survey of systems and software. ACM Computer
Survey, 34(2):171–210, 2002.

[4] M. B. Gokhale and J. M. Stone. NAPA C: Compiling
for a hybrid RISC/FPGA architecture. In Proceedings
of the IEEE Symposium on FPGAs for Custom
Computing Machines, page 126. IEEE Computer
Society, 1998.

[5] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Spark:
A high-level synthesis framework for applying
parallelizing compiler transformations. In Proceedins
of the International Conference on VLSI Design,
January 2003.

[6] IBM. On-chip peripheral bus, architecture
specifications, version 2.1. Technical Report
SA-14-2528-02, IBM, 2001.

[7] Insight Memec. http://www.insight-electronics.com/
memec/iplanet/link1/virtex11mbv1000.pdf.

[8] K. Kent, H. Ma, and M. Serra. Rapid prototyping a
co-designed java virtual machine. In 15th
International Workshop on Rapid System Prototyping
(RSP) 2004, pages 164–171, June 2004.

[9] A. Nilsson. Compiling Java for real-time systems.
Licentiate thesis, Lund Institute of Technology, 2004.

[10] M. Schoeberl. JOP: A java optimized processor. In
Workshop on Java Technologies for Real-Time and
Embedded Systems, November 2003.

[11] SystemC. the open systemC initiative.
http://www.systemc.org.

[12] Xilinx. MicroBlaze Processor Reference Guide, EDK
v6.2 edition, June 14 2004.

