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Abstract—This paper investigates how a light-weight, statically
scheduled network-on-chip (NoC) for real-time systems can be
designed and implemented. The NoC provides communication
channels between all cores with equal bandwidth and latency. The
design is FPGA-friendly and consumes a minimum of resources.
We implemented a 64 core 16-bit multiprocessor connected with
the proposed NoC in a low-cost FPGA.

I. INTRODUCTION

For chip-multiprocessor (CMP) systems used in real-time
systems we need time-predictable processors, memories, and
communication channels. For on-chip core-to-core communi-
cation, a network-on-chip (NoC) is a scalable solution. In order
to build a time-predictable CMP, the NoC is time-division-
multiplexed (TDM). The NoC uses a static schedule; tables
implementing this schedule are stored in each router and each
network adapter. We use a schedule that provides all-to-all
communication between all nodes, as depicted conceptually
in Figure I.

In [11] we have shown that a router for a statically scheduled
NoC is very small. In this paper we explore the full design,
containing a processor, the network adapter, and the router.
We explore how small this system can be and still represent
a usable architecture. In other words we aim at a many-core
architecture in a medium size FPGA. With our size-optimized
processor Leros [10], which can be implemented in about
190 logic cells (LC), we set a very low bar for a NoC. One
expects that the communication infrastructure is smaller than
the processing node.

One TDM based router and one minimalistic network
adapter consumes 665 LCs and 2 on-chip memory blocks
for an 8x8 bi-torus configuration. Therefore, we were able to
synthesize and run a 8x8 CMP system, containing 64 proces-
sors, network adapters, and routers, in the low-cost Cyclone II
FPGA EP2C70 on the DE2-70 board. The contributions of the
paper are:

• The design of a minimal network adapter for a TDM
based NoC

• A 64 core CMP, running a simple test application
• Providing the NoC in open-source form
The paper is organized as follows: The following section

presents related work in the area of real-time NoCs. Section III
presents the design of the TDM scheduled network-on-chip.
A minimal network adapter is described in Section IV. The
simple implementation of the system is presented in Section V.
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Fig. 1. A conceptual interconnect providing all-to-all connection between
micro processors (µP).

An alternative implementation of the system is described
in Section VI. We present our results in Section VII. In
Section VIII we discuss the strengths and weaknesses of the
design. The paper is concluded in Section IX.

II. RELATED WORK

Æthereal [4] uses TDM, i.e., reserves resources for certain
points in time. In each time slot a block of data is forwarded
through a router without waiting or blocking traffic, hence,
contention cannot occur. Slot tables with routing information
are contained in the routers and no arbitration or link-to-
link flow control is required. Instead, a credit-based flow
control is applied for end-to-end control, saving buffer space
between links. Guaranteed services are combined with best
effort routing in order to utilize unreserved resources. aelite,
a light version of Æthereal, only offers guaranteed services
resulting in a simpler router design [5]. Slot tables are placed
in the network adapter and routing is done through message
headers. In the latest version of aelite, called dAElite [12], the
static routing tables are back in the routers to support multicast
routing.

SoCBUS [13] and the NoC presented in [14] use a circuit-
switching NoC, i.e., no resources, such as wires and router
buffers, are shared between connections. This lowers utiliza-
tion and increases costs. However, once a connection has been
established, real-time guarantees are trivially achieved. It is,
however, possible that a requested connection cannot be set
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Fig. 2. The network architecture: (a) the bidirectional torus topology, (b) a node/tile, and (c) the router.

up due to lack of resources (links) – this may compromise the
real-time properties.

MANGO [1] is an asynchronous NoC, which supports both
guaranteed service (GS) and best effort (BE) traffic, by using
non-blocking routers and rate control. A non-blocking router
requires a separate physical buffer for each virtual circuit, an
elaborate arbitration mechanism for each router output port,
and a credit-based flow control mechanism among output
buffers in neighboring routers. This indicates a considerable
hardware cost of the rate-controlled routers.

A time-triggered NoC (TT-NoC) applies the concepts of
the time-triggered architecture (TTA) [6] to NoCs [9]. The
TT-NoC consists of a ring structure and is therefore only
intended for a small number of IP-cores. As the ring is
built out of simple multiplexers and registers, it is clocked
at double the frequency of the computation nodes. Similar to
our presented design, the communication schedule is static and
predetermined.

Paukovits and Kopetz use a time-triggered NoC for the
time-triggered system-on-chip (TTSoC) architecture [7]. The
messages use wormhole routing and the TDM slotting is based
on complete message transmissions. The TTSoC is topology
agnostic. The prototype uses an uncommon version of a
mesh topology: a 3x2 mesh supporting 10 computation nodes.
Therefore, the corner routers are connected to two computation
nodes. Our design shares the idea of static scheduling based on
TDM. However, we base our schedule on the finer granular
network clock and take pipeline effects into account in the
network.

III. A STATICALLY SCHEDULED NOC

In [11] we presented the idea of a statically scheduled TDM-
based NoC, called S4NoC, that provides all-to-all communica-
tion in regular topologies (e.g., mesh, torus, bi-torus, tree). We
presented results on the minimum period of a schedule that
provides all-to-all communication and derived first resource

estimates for the routers. All-to-all communication schedules,
which are only 15% to 20% longer than theoretical lower
bounds, can be calculated with a heuristics [2].

In this paper we design a simple network adapter to go
along with the simple router and we implement the whole
system. The network adapter has to do some bookkeeping and
buffering of data and thus the design will be more complex
than that of the router. We still aim to keep the design as
simple as possible.

A router for the NoC is very simple, which is one of the
motivations for using a statically scheduled TDM-based NoC.
For a mesh or a bi-torus a router has 5 bi-directional ports
(north, east, south, west, local) and each output port is a
pipeline stage consisting of a register with a 4-to-1 multiplexer
on its input (in and out of the same port is not allowed).
The multiplexers are controlled by schedule tables indexed
by a slot counter. This avoids the need to transmit address
information with the packet. Without the pressure to amortize
for the header overhead we can use arbitrary short packets.
Therefore, we transmit and schedule single words as packets,
which helps to keep the schedule period short and the latency
moderate.

For the evaluation described in the following sections we
assume a bi-torus topology, as shown in Figure 2(a). Each
node consists of a processor with local instruction and data
memories, a network adapter, and a router, as shown in Fig-
ure 2(b). The processors execute from their local memories and
communicate by sending messages across the network. The
NoC provides (virtual) channels, all with the same bandwidth,
allowing a processor to send messages to and receive messages
from all other processors. For simplicity we restrict to single
word messages, and by using the same width of the links and
routers in the NoC we get a simple design, as illustrated in
Figure 2(c), where a message traverses a router in one clock
cycle.

The router is obviously very simple (i.e. small and fast) and
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Fig. 3. A tile including the Leros processor, the network adapter with receive, transmit, and status registers, the interface to the router, and the router.

the sizes of different processors targeting FPGA implementa-
tions are also quite well known. The third and last component
in a tile is the network adapter. Despite our aim for simplicity
its function is non-trivial, and its size and speed is difficult
to assess. This is one of the main reasons for the design
experiment reported in this paper – to get reliable speed and
area figures and to gain insight in the design of this critical
component.

The network adapter’s interface towards the processor is
similar to a memory mapped IO-device, and it offers input
and output registers corresponding to all the incoming and
outgoing (virtual) channels connecting it to all the other
processors. The design is described in more detail in the
following.

IV. THE NETWORK ADAPTER

The basic functionality of a minimalistic network adapter
(NA) is to present an interface to the processing core, which
enables the processor to access communication channels to
other cores efficiently. The processing core should not be con-
cerned with managing time slots. To fully utilize the network,
there are the following requirements to the minimalistic NA:

• Provide an interface to view the status of all channels to
the processor

• Send and receive single data words to and from the
network in line with the TDM mindset to all other cores
in the system

• The NA must be able to transmit and receive data in all
consecutive time slots

To synchronize the sending and receiving of flits (transmit-
ted logical words) to the router, the NA uses a time slot table.
The time slot table is generated from the static schedule of
the size and topology of the desired system. The time slot
table in a NA, maps a given time slot to a source and a
destination address. These addresses are the ID of the receiving

or transmitting processing core, thus the time slot tables are
different for all NAs. The time slot table is driven by a counter
in the NA.

The block diagram of the NA is shown in Figure 3. The
processor can write to the transmit (Tx) buffer, or read from
either the receive (Rx) buffer or the status registers. The status
registers shows the status of each register in the Tx or Rx
channels, i.e., if the Tx register is ready to receive or if the
Rx register is ready to be read out.

The interface to the processor is an address space, where
each communication channel is mapped to one address and
status registers are mapped to several registers depending on
the number of cores in the network. In each of the two status
registers, each bit represents a communication channel to one
other core in the system. Maximizing the utilization of the
given hardware, the static schedule is made such that the NA
can both send and receive flits in each time slot.

In this simple NA not much control is needed. The task of
the control logic is to set and reset bits in the status registers
when flits are received and transmitted. The task of controlling
each bit of the status registers individually is not complicated,
but an increasing number of bits lead to an increasing amount
of control logic. To set and reset each bit of the status registers
efficiently the status registers should be implemented in flip-
flops.

V. IMPLEMENTATION

In this first simple implementation the whole system resides
in one global clock domain. Our design is technology agnostic,
but in this section the implementation decisions are related to
the Cyclone II FPGA we have used for testing.

Processor Interface: On the processor side of the network
adapter, the processor needs the ability to read out the status
of the communication channels and to read or write data
to the individual communication channels. The data to the



communication channels are written or read directly to/from
the block RAM. Because the address on the block RAM
is registered there is a one cycle delay on a read form the
communication buffer. The simple way of solving this problem
is to require that when the processor wants to read data, the
same read instruction should be executed twice. When the
status registers are read there is a multiplexer for selecting
which part of the status register to select. In a design where
a read from the NA would be limiting the clock frequency
of the processor, the NA could implement indirect addressing.
For indirect addressing the processor writes the address of a
request into an address register and in the following clock
cycle the data on that address can be accessed. Indirect
addressing will cut the processor I/O bandwidth in half, but
the clock frequency of the system could increase.

Communication Buffer: In this simple implementation
we use one dual ported block RAM for each communication
buffer. A block RAM in a Cyclone II FPGA is 4 KBit. Using
the block RAMs as buffers, one port is only used for writing
and the other port only used for reading. Our system supports
all-to-all communication and each communication channel
requires two 16-bit words of storage in the NA. The two
RAM blocks will support systems of up to 16x16 nodes. In the
Cyclone II FPGA the RAM blocks will not be fully utilized.
In systems where block RAMs can be instantiated with a finer
granularity the resource consumption can be decreased. In an
ASIC design the utilization can be made to 100 %.

Control Logic: Our implementation of the described
design is not tuned for any specific number of processing
cores. The circuitry for selecting and updating the status
registers are (Number of cores)-to-1 multiplexers, and 1-to-
(Number of cores) decoders. Updating the status registers can
be limiting the clock frequency for a sufficient number of cores
in the system. When instantiating a system of a specific size,
the control logic can be pipelined, if the desired frequency
is not obtained. This pipelining results in a longer latency
for status register updates, both for setting and resetting, the
software should be aware of this longer latency.

VI. ALTERNATIVE DOUBLE-CLOCK IMPLEMENTATION

The routers are simple: just registers connected with 4:1
multiplexers. Therefore, those can be run at a higher frequency
than a processor. If we use a second clock, synchronous to
the main clock and double the frequency, we can time share
the router. Thus reducing the size of the router by 50%. The
block RAM usually can also run at a higher frequency (e.g.,
at up to 250 MHz in the Cyclone II device). Therefore, it can
also use the double-frequency clock. Then we need only one
block RAM for both communication buffers. The block RAM
consumption for an FPGA implementation can be reduced for
all NoC sizes up to 11x11.

Running the network at a higher frequency requires the NA
to split a single flit into two phits. An extra pipeline stage is
needed to align phits (physically transmitted words) to flits in a
TDM time slot. The processors in the dual clock design all run
in the primary clock domain. The network i.e., the routers and

TABLE I
RESOURCE CONSUMPTION AND MAXIMUM FREQUENCY OF ONE NETWORK

ADAPTER (NA) AND ONE ROUTER (R) IMPLEMENTED IN A CYCLONE II
(EP2C70) FPGA. THE NUMBERS INCLUDE THE TDM TIME SLOT TABLES.

Cores 16 25 36 49 64
LUT 278 383 484 517 665
Reg 145 171 186 197 217
RAM (KBits) 1 1 2 2 4
Freq. (MHz) 106.6 106.7 104.3 106.0 104.8

part of the NAs run in the double-clock domain. As the clocks
are synchronous there is no real clock domain crossing needed.
Only the back-end of the NA needs to handle the splitting and
merging of phits between the two clock domains. The block
RAM is using the double clock to double the number of ports.

If both sides of the block RAM are clocked with the network
clock, the NA can return the value of a read to the processor
in the same clock cycle as the read is made, thus the need to
execute the read instruction twice is eliminated. Furthermore
the NA can be made to support simultaneously read/write from
the processor, which is supported in the processor interface
but not in the Leros Processor. Implementing the Tx and Rx
buffers in one block RAM requires three ports to the block
RAM. One read/write port for the processor interface, one read
port for the Tx channel on the network side of the block RAM
and one write port for the Rx channel on the network side of
the block RAM. The NA buffers the phits of a flit until the
entire flit is sent or received. A flit can be read from the Tx
buffer in every even clock cycle and a flit can be written to
the Rx buffer in every odd clock cycle.

Additional complexity is added to the NA when the data
width of the router is cut in half. The reduction in data width
calls for serialization in the NA, taking more area. Also the
multipumped block RAM increases complexity, multiplexing
the Rx and Tx data through the same port on the block RAM.
A not so obvious source of added complexity is the control
logic. If the large multiplexers for selecting the status bit to
update are clocked on the fast clock, they may need pipelining.

VII. RESULTS

To obtain results for resource consumption and maximum
frequency we have used Quartus II 12.0 to compile and
synthesize the design. We have also tested the implementation
in our Cyclone II FPGA with a small program sending mes-
sages between all cores and when all messages are received a
message is written to the UART connected to core zero. The
test program is written in assembler for a 16-core system, but
can easily be extended to 64 cores.

The resources shown on Table I are for one tile except
the processor itself for the different network sizes that fits in
our Cyclone II FPGA. The resource consumption is shown in
lookup tables (LUT), registers (Reg), and memory bits (RAM).
Along the resource consumption we also show the maximum
frequency that the components can operate at. The numbers
include the TDM time slot tables in the router and the network
adapter.



TABLE II
RESOURCE CONSUMPTION AND SCHEDULE PERIOD OF THE TDM TIME

SLOT TABLES FOR THE NETWORK ADAPTER (NA) AND THE ROUTER (R).

Cores 9 16 25 36 49 64 81
Period (clocks) 10 19 27 42 58 87 113
NA (LUT) 6 12 23 39 46 71 96
R (LUT) 12 28 38 63 78 127 173

TABLE III
A RELATIVE COMPARISON BETWEEN THE SINGLE CLOCKED AND THE

DUAL CLOCKED IMPLEMENTATIONS.

Cores LUT Reg RAM Freq.
16 1.18 1.48 0.50 0.97
64 1.44 1.91 0.50 0.74

The resource consumption of the different entities of the
system differs from core to core. The numbers in Table I
are from the entities of core zero (upper left corner) for
the given network size. Core zero is usually the largest
entity, but it can differ from the different network sizes. The
resource consumption of tiles is not uniform throughout the
implemented systems.

The major reasons for the increase in the resource con-
sumption on one network adapter and a router as the number
of cores in the system grows are:

1) Bookkeeping of the status bits in the NA, increases both
Reg and LUT count

2) The size of the routing tables grows, increases the LUT
count

3) Buffering more data channels, increase the RAM size
The frequency appears to be close to constant for the

network sizes we have synthesized, with small fluctuations
from run to run of the synthesis. We expect the frequency to
decrease when the systems size grows larger than what we
have experimented with, because of the increase in bookkeep-
ing. To avoid the frequency slowdown for larger systems the
bookkeeping mechanism can be pipelined.

In Table II we present numbers for the resource consump-
tion of the slot tables located in the routers and network
adapters along with the period of the TDM schedule. The
number of lookup tables increase proportional to the period
of the TDM schedules. The numbers for these slot tables are
not specific to our implementation of the network adapter, but
more general for these types of TDM schedules.

In Table III we show the relative size of the double-clock
design compared to the single clock design. The dual-clocked
design was intended to be smaller as the router multiplexers
are only half the size. However, only the RAM consumption
is lower due to double clocking. The logic consumes more
resources. The additional circuit in the NA for the packing
and unpacking offset the reduction in the routers.

Furthermore there is also a relative decrease in frequency
when using the double-clocked implementation. The disadvan-
tages of the double-clocked implementation increase as the
system size grows. On top the complexity of the dual clocked
network is higher, thus making it more complicated to debug

and harder to maintain.
Therefore, the double clocking of the network structure

proves not to be beneficial. However, the double clocking
of the communication memory reduced the number of block
RAMs to a single one. Therefore, one design point can be a
single clock per packet NoC and NA, but double-clock the
block RAM.

VIII. DISCUSSION

In Section VI we have described an alternative imple-
mentation with double clocked routers. However, the results
presented in Section VII show a higher resource consumption
for this alternative. This is another indication that simplicity
often wins, as the simple NA implementation was the smallest
and fastest.

With higher number of nodes, the resource consumption
of the routing tables increases per node. However, it has to
be noted that the router tables start very small and therefore
the increase is moderate. A complete NA and router with the
routing tables for a 64-core system is still just 665 LCs.

If one would even like to reduce this size further, an
application specific schedule can be used, i.e., a schedule
where not all cores can communicate to all other cores. An
application specific schedule can reduce the period length of
the slot table schedule and thereby the resource consumption.
It will also reduce the latency due to the shorter period.

An application specific schedule requires reconfigurable
hardware. However, this extra hardware complexity could
reduce the benefit of application specific schedule. In the
natively reconfigurable hardware of an FPGA the application
specific schedule can be part of the FPGA configuration and
therefore be quite efficient. No programming of the schedule
during runtime is needed.

The scheduler presented in [8] is capable of making such
application specific schedules. These schedules have been
tested on the implementation of our NoC.

As our target is to explore many-core architectures in
medium sized FPGAs, we decided to use a small micropro-
cessor, Leros [10], as the processing node. Leros is a 16-bit
processor intended for small applications and utility functions
similar to Xilinx’s PicoBlaze [15]. Leros is an accumulator
machine and uses on-chip memory for instructions and data.
The data memory also contains a register file, i.e., the first 256
data locations can be directly addressed. Leros implements a
two-stage pipeline and can be clocked faster than 100 MHz
in Cyclone and Spartan devices.

Tiny microprocessors, like Leros, are usually programmed
in assembler. Leros also comes with an assembler. However,
to provide a higher level programming language, the muvium
Java system has been adaped for Leros [3]. Muvium compiles
Java class files into Leros assembler. The Java supported
by Muvium/Leros is a very restricted subset. However, it is
enough to write test and example programs for the presented
NoC configuration.



IX. CONCLUSION

This paper presents a network-on-chip for real-time systems.
The communication is scheduled statically in a time-division-
multiplexed manner. This static schedule provides all-to-all
communication for the chip-multiprocessor system. The result-
ing router is quite small and calls for an efficient implemen-
tation of the network adapter. The presented network adapter
provides one word of buffer for each transmit and receive
channel. By time-multiplexing a single on-chip memory it can
be used to buffer input and output channels, even with one
receive and one transmit word per clock cycle.

The presented network adapter is small and therefore is a
good fit for the small and simple router. With a tiny processor
we where able to build a 64-core system connected via a
bidirectional torus network-on-chip in a medium sized FPGA
from the low-cost series Altera Cyclone-II.
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Source Access

We provide the VHDL code of the NoC and Leros in open
source. The design is vendor agnostic; only the Makefile has
this board as default target. The default target of our design
is the Altera DE2-70 board. The source can be found at

https://github.com/t-crest/s4noc
The source can be downloaded via a zip file or with git

git clone git://github.com/t-crest/s4noc.git

With a DE2-70 board attached, the whole design can be
built and downloaded with a simple:

cd s4noc
make

See the Makefile for different build options. The build
process on a Windows PC needs Altera Quartus, a Java
compiler for the Leros application compilation, and a Cygwin
environment for the make and git command.
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