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Abstract—This paper explores the design of a circuit-
switched network-on-chip (NoC) based on time-division-
multiplexing (TDM) for use in hard real-time systems. Previous
work has primarily considered application-specific systems.
The work presented here targets general-purpose hardware
platforms. We consider a system with IP-cores, where the
TDM-NoC must provide directed virtual circuits – all with
the same bandwidth – between all nodes. This may not be
a frequent scenario, but a general platform should provide
this capability, and it is an interesting point in the design
space to study. The paper presents an FPGA-friendly hardware
design, which is simple, fast, and consumes minimal resources.
Furthermore, an algorithm to find minimum-period schedules
for all-to-all virtual circuits on top of typical physical NoC
topologies like 2D-mesh, torus, bidirectional torus, tree, and
fat-tree is presented. The static schedule makes the NoC time-
predictable and enables worst-case execution time analysis of
communicating real-time tasks.

Keywords-real-time systems; network-on-chip

I. INTRODUCTION

Network-on-chip (NoC) design has been an active area of
research in academia and industry for the past decade. Today
the interconnect fabric of single-chip multi-core systems is
typically some form of packet or circuit switched intercon-
nection network. This is the case for general-purpose chip-
multi-processors (CMP) as well as for application-specific
multi-processor systems-on-chips (MPSoC) used in a large
variety of embedded systems. Despite the growing similarity
in the way CMPs and MPSoCs are architected, there are
some fundamental differences as well: CMPs are typically
homogeneous, i.e., built from many identical processors,
and the focus is generally on providing the highest pos-
sible performance. MPSoCs are typically used in embedded
systems and hence dedicated to a specific product or class
of products. Thus, they often use a heterogeneous set of
processing cores in order to meet energy and performance
constraints. In many cases, these systems additionally have
to provide hard real-time guarantees.

Much of the recent research in NoCs for real-time MP-
SoCs is targeting the creation of application-specific hard-
ware platforms. However, the very high and growing cost of
developing and fabricating large integrated circuits makes
this relevant only for high volume (consumer) products.
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Figure 1. A TDM-based NoC providing all-to-all connections.

Systems that are to be manufactured in smaller quantities
must therefore be based on more general-purpose platforms.
In this paper we explore the design of a statically scheduled,
time-division-multiplexed (TDM) network-on-chip for such
general-purpose multi-processor platforms for use in real-
time systems.

In order to give hard guarantees on the real-time properties
of a system, the designer must be able to analyze and safely
estimate the worst-case execution time (WCET) of the dif-
ferent tasks in the system. The fact that the NoC is a shared
communication medium comprising multiple independently-
arbitrated resources (routers and links) severely complicates
timing analysis, and makes it hard to compute the WCET
and guarantee real-time behavior. Real-time NoCs have the
following options: (i) non-blocking routers with rate control
(e.g. Mango [1]); (ii) circuit switching where a connection
owns the resources providing the connection (SoCBUS [2]);
and (iii) virtual circuit switching, for example using TDM
(Æthereal [3], aelite [4], and Nostrum [5]).

The work presented in this paper is inspired by the aelite
NoC as well as initial discussions within the T-CREST1

project. In contrast to aelite and its associated CAD tools
– aiming at creating application-specific platforms derived
from use-cases and task-graphs – our aim is to explore
the design of a TDM network-on-chip for use in general-
purpose, real-time MPSoC platforms. Additional goals are:
hardware simplicity, speed, and an FPGA-friendly design
enabling both chip and FPGA implementations.

We assume a system with n IP-cores, where the TDM-
NoC must provide directed virtual circuits – all with the

1http://www.t-crest.org/



same bandwidth – between all nodes, as shown in Figure 1.
In the following we will address the hardware design of such
a general-purpose TDM-NoC, and we will explore how to
schedule packets and provide all-to-all point-to-point virtual
circuits on top of typical physical NoC topologies like 2D-
mesh, torus, bidirectional torus, tree, and fat-tree. One of the
questions that we try to answer is the following: “What is the
minimum period of a schedule that provides virtual circuits
with identical bandwidth between all pairs of nodes?” The
contributions of the paper are as follows:
• Design of a time-predictable NoC for real-time systems
• An algorithm to generate static TDM schedules
• Study of different topologies with respect to the mini-

mum period of static schedules
• A small, fast, and FPGA-friendly router design
An all-to-all communication schedule might lead to a low

utilization. However, a fixed schedule can be implemented
in hardware. Therefore, our NoC uses less resource than
one with programmable schedule support or additional best-
effort traffic support. The performance/cost ratio is more
important than fully utilization.

The paper is organized as follows. In the next section, we
discuss related work. In Section III we motivate our design
with a problem statement. The design of the time-predictable
NoC is described in Section IV. In Section V we present
an ILP-based algorithm to find minimum-period schedules.
Analytical lower bounds of schedule periods are presented in
Section VI. In Section VII we present evaluation results for
a range of NoC topologies (2D-mesh, torus, bidirectional
torus, tree, and fat tree) and provide details of a specific
FPGA-based implementation. Section VIII concludes the
paper.

II. RELATED WORK

In the following we describe approaches to use NoCs for
real-time systems and how to generate schedules for those.

A. Real-Time Network-on-Chips

MANGO [1] is an asynchronous NoC, which supports
both guaranteed service (GS) and best effort (BE) traffic,
using non-blocking routers and rate control. A non-blocking
router requires a separate physical buffer for each virtual
circuit, an elaborate arbitration mechanism for each router
output port, and a credit-based flow control mechanism
among output buffers in neighboring routers. This indicates
that the hardware cost of rate-controlled routers consider-
able.

SoCBUS [2] and Wolkotte [6] use a pure circuit-switching
NoC, i.e., no resources, such as wires and router buffers,
are shared between connections. This lowers utilization
and increases costs. However, once a connection has been
established, real-time guarantees are trivially achieved. It is,
however, possible that a requested connection cannot be set

up due to lack of resources (links) – this may compromise
the real-time properties.

Æthereal [3] uses TDM, i.e., reserves resources for certain
points in time. In each slot of time a block of data is
forwarded through a router without waiting or blocking traf-
fic, hence, contention cannot occur. Slot tables with routing
information are contained in the routers and no arbitration or
link-to-link flow control is required. Instead, a credit-based
flow control is applied for end-to-end control, saving buffer
space between links. Guaranteed services are combined with
best effort routing in order to utilize unreserved resources.
aelite, a light version of Æthereal, only offers guaranteed
services resulting in a simpler router design [4]. Slot tables
are placed in the network interfaces and routing is done
through message headers. In the latest version of aelite,
called dAElite [7], the static routing tables are back in the
routers to support multicast routing.

A time-triggered NoC (TT-NoC) applies the concepts of
the time-triggered architecture (TTA) [8] to NoCs [9]. The
TT-NoC consists of a ring structure and is therefore only
intended for a small number of IP-cores. As the ring is
built out of simple multiplexers and registers, it is clocked at
double the frequency of the computation nodes. Similar to
our presented design, the communication schedule is static
and predetermined.

Paukovits and Kopetz use a time-triggered NoC for the
time-triggered system-on-chip (TTSoC) architecture [10].
The main difference to other NoC designs is the absolute
time format for the TDM slotting, which is called a macro
tick. The macro tick is not directly related to the clock
frequency. The network interfaces (called TISS in TTSoC)
are synchronized at the macro tick, which is distributed
separately. The TDM-based slot at macro ticks may last
several clock cycles at the network clock. The slotting
ignores any pipeline effects within the NoC and therefore
results in some idle time within links. Our design shares the
idea of static scheduling based on TDM. However, we base
our schedule on the finer granular network clock and take
pipeline effects into account in the network.

Static scheduled communication between processors was
explored in the NuMesh project [11]. It is argued that
static schedules result in less hardware complexity and the
control circuit for the static decisions can be arbitrarily
deep pipelined. In contrast to NuMesh, we further simplify
the hardware as the schedule is completely fixed and no
hardware to support the reprogramming is needed.

The Raw machine [12] is a 16-tile architecture, where
each tile contains a MIPS-like processing pipeline and a
network router. Similar to our router architecture, the Raw
router also contains static routes (besides dynamic routes).
The network in Raw is tightly connected to the processing
core: the network input and output buffers are mapped to
processor registers. This allows a very low latency where
an output of the ALU can be routed to the ALU input of



(c) Bi−torus

IP

R

IP

R

IP

R

IP

R

IP

R

(f) Ring (g) Bi−ring

(b) Torus(a) Mesh

Bi−directional link

IP−core

Router (4 x 4)

Bi−directional link

IP−core

Router (3 x 3)

(d) Binary tree (e) Fat−tree

Figure 2. The NoC topologies considered: (a) mesh, (b) torus, (c) bidirectional torus, (d) binary tree using 3× 3 routers, (e) fat-tree built from identical
4× 4 routers, (f) ring, and (g) bidirectional ring. A filled circle represents a node, comprising a router and an IP-core as shown.

the neighbor processor in 3 cycles. This tight integration
of the network and the processor pipeline is the basis for,
so-called, software circuits, i.e., applications that resemble
ASIC circuits.

B. Routing Schedule Construction

Lu and Jantsch [13] propose a configuration technique for
the Nostrum NoC [5] that allows multiple virtual circuits
to share buffers of the network. They present a problem
formulation that defines a legal allocation of TDM time slots
using a backtracking search algorithm. In contrast to our
problem, only a single assignment of a given set of virtual
circuits is needed that satisfies the required bandwidth and
a conflict-free operation of the NoC.

A similar slot allocation problem appears for the Æthereal
NoC. The allocation here proceeds in two steps. First,
routing paths are determined through the NoC depending
on a mapping of an application to the network and the
application’s communication requirements [14]. Given these
paths, TDM time slots are allocated for each virtual circuit in
turn [15]. This technique has been extended to split packets
and deliver the individual fragments of the packet over
multiple paths in order [16]. This approach provides a single
solution satisfying the application-specific communication
and bandwidth requirements.

The scheduling problem considered in this work can
formally be stated as a dynamic multi-commodity flow prob-
lem over time. A seminal work by Ford and Fulkerson
introduced time-expanded flow networks to model dynamic
flow problems using equivalent static problems [17]. A time-
expanded network is a structure containing replications of

the network for several time instants (e.g., clock ticks).
Fleischer and Skutella study variants of the NP-hard quickest
multi-commodity flow problem [18] and present a polynomial
2-approximation algorithm. Although closely related, these
results apply to general multi-commodity flow problems,
where fractional solutions are acceptable. In the context of
this work, however, integer solutions are required since the
physical hardware resources are indivisible.

III. REAL-TIME NETWORK-ON-CHIP

In dependable real-time systems it needs to be guaranteed
that all deadlines will be met. This guarantee is performed
by schedulability analysis. The input to this schedulability
analysis is the worst-case execution time (WCET) of the
tasks. To enable WCET analysis, all components of the
system (the application software, the processor, the memory
subsystem, and the communication network) need to be
time-predictable. We aim for a time-predictable NoC that
supports WCET analysis.

To enable time-predictable usage of a shared resource the
resource arbitration has to be time-predictable. In the case
of a NoC, statically scheduled TDM is a time-predictable
solution. This static schedule is repeated and the length of
the schedule is called the period. Like tasks in real-time
systems, also the communication is organized in periods.
One optimization point of the design is minimizing the
period to minimize the latency of delivering flits and the
size of the schedule tables.

Many NoCs are intended to be optimized for a given
application or application domain. The NoC structure and/or
the routing schedules are then optimized and are then



application-specific. While our proposed network can be op-
timized this way, we aim at a general-purpose solution. The
general-purpose solution allows each core to communicate
to every other core and the bandwidth is identical for each
communication channel. For a general-purpose solution we
need to find a single static schedule, which can then be
implemented in hardware.

We look at several different NoC topologies and evaluate
how well they support this general-purpose static schedule.
We consider mesh, torus, torus with bidirectional links (bi-
torus), tree, fat-tree, ring, ring with bidirectional links (bi-
ring), and bus topologies. Figure 2 shows these topologies.
Except for the tree, the fat-tree and the bus, we assume that
each topology is composed of n nodes each consisting of an
IP-core and a router. With tree structures the IP cores and
router do not have a one-to-one mapping. The routers range
from 2-ported routers (2 in and 2 out) to 5-ported routers: the
mesh (inner nodes) and the bi-torus use 5-ported routers; the
fat-tree uses 4-ported routes; the torus, the bi-ring, and the
tree use 3-ported routers; and the ring use 2-ported routers.

In this paper we concentrate on the network itself and con-
sider it as a structure that supports communicating streams
of flits. Designing the network interface and the flow control
are out of the scope of this paper.

IV. NETWORK DESIGN

A static schedule guarantees latency and bandwidth for
sending data over the NoC, which itself enables WCET
analysis of tasks. Furthermore, this static schedule allows
optimization of the routers. With our design we avoid
transmitting the packet route via the network, but keep the
network schedule in the routers. With a predefined schedule
there are no collisions possible.

The simple router, as shown in Figure 3, consists of
multiplexers and registers. This structure fits very well to
the structure of a logic cell (LC) in an FPGA. A LC usually
contains a lookup table (LUT) and a register. The LUT is
used to build combinational logic (e.g., the multiplexer).
Although we do not want to restrict our NoC to FPGAs,
we consider FPGAs as an important platform and aim for
an FPGA-friendly design.

A. Packet Organization

As the static schedule is contained in the router, the flits
traveling through the network contain only data and no
routing information. The time slot the flit is injected to the
network implicitly gives the destination address. Without the
address header we are less constrained on packet lengths
– we do not need to amortize for the address overhead.
Therefore, we define that a packet is a single flit long and use
schedules for single clock/flit granularity. This short packet
length minimizes the latency for short data transportation.

The link width is usually determined by the length of the
address field (the packet header) and therefore depends on
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Figure 3. Connections of the multiplexer based router

the network size. Free of these constraints, we can use any
link width that is needed for the bandwidth requirements.
The resource consumption of a router is directly related
to the link width. Therefore, we can trade bandwidth with
resource consumption.

At the lowest level the individual flits are considered to
be individual words of a data stream – similar to a serial line
connection. The only control structure is a valid bit in the flit.
The framing of the data, the forming of longer packets (e.g.,
cache line fills), and the meaning of the stream is defined
in the network interface. Or in other words: the NoC just
represents a transport layer with end-to-end channels.

Using single flit packets and a static schedule results in a
deadlock free design.

B. Router

One of the benefits of a static scheduled NoC is the simpli-
fication of the network routers. Figure 3 shows the router for
our NoC. A router consists of registers for a single flit at the
output ports and a multiplexer feeding this register from each
input port. Due to the static schedule there is no need for
dynamic arbitration or additional buffers. Furthermore, there
are no flit collisions or deadlocks possible. Flits move each
clock cycle one hop. They cannot stay within the routers’
registers.



Figure 3 shows a router for a mesh or bi-torus NoC with
5 input and 5 output ports. Input and output L stands for the
local connection to the IP-core; N, S, E, and W represent the
four directions in a mesh-style network. Each multiplexer
is connected to four inputs. The black dots represent a
connection point. The box with ST represents the schedule
table for each multiplexer. A slot counter drives the schedule
table. This counter can be a global one. To avoid long wires
from this global schedule counter the distribution can be
pipelined or the counter can simply be replicated locally in
every router.

C. Schedule Tables

In [4] schedule tables in the routers have been avoided
due to high resource consumptions. However, in our design
two properties make schedule tables in routers attractive: (a)
a fixed schedule (compared to a configurable) is cheaper
to implement (in a ROM); and (b) the size of the table
(the schedule period) is relatively small for the symmetric
bandwidth configuration. Each router has a table for the
static schedule, which basically includes just the multiplexer
selection. The schedule period is quite short. Therefore, the
resource consumption for this table is low. Let us consider
a small network, a 3x3 mesh network, as an example. For
this network the ideal static schedule is 10 entries long – in
each clock cycle each IP-core injects a flit into the network
and receives one flit. Let us assume that we cannot find
this ideal schedule, but one that fits into a maximum of 16
entries. With FPGA technology, 16 entries of a schedule
table fit perfectly into the available 4-bit LUT. Therefore,
for each multiplexer, which has 2-bit select lines, 2 LUTs
are needed to represent the schedule table.

D. Router Size Estimation

To set the size of the schedule table in relation to the
complete router resource consumption we assume for now a
16-bit link. A 4:1 multiplexer can be built out of two 4-bit
LUTs. Each LC contains one register. The LUT used for
the multiplexers can share the same LC for the registers.
Therefore, a 16-bit multiplexer plus register consumes 32
LCs. The overhead for the schedule table for up to 16
schedule entries is 2 LCs, in other words 6.25%. A 4-
port router with 16-bit links consumes overall 136 LCs,
which is way smaller than other designs that need additional
buffering, dynamic arbitration, and/or pipeline stages.

V. FINDING THE SCHEDULE

A corner stone of our NoC is the assumption of a
periodic communication schedule that allows every node
in the network to communicate with any other node. This
schedule is fixed, does not change during the operation of the
network, and can thus be pre-computed off-line. Computing
optimal schedules is rather time consuming, however, it
needs to be done only once for every network configuration.

We formulate the problem of finding an optimal schedule
as a generic, linear optimization problem (ILP) that is solved
using CPLEX. The input to our formulation is an instance
of an arbitrary network topology, specifying the number of
nodes and routers, and the interconnect structure. Such an
instance is described by the graph G = (R, I, L), where
R represents the set of routers available in the NoC, I
denotes the set of IP-cores connected to the network, and
L ⊆ (R∪I)×(R∪I) represents the set of directed network
links. We assume that the network operates synchronously
and transmits flits between routers and/or IP-cores on every
clock tick. Links may only be used to transfer one flit at
a time, while we assume that routers and IP-cores do not
impose any constraints on the schedule, e.g., routers and IP-
cores are capable of processing all incoming and outgoing
flits at every time instant. Furthermore, flits cannot be stalled
at a link, which implies that a flit has to be routed to another
link on the next clock tick.

Given a network instance G = (R, I, L) we generate a set
of linear equations that model the flow of flits in the network
over a time period [0, T ], where T represents an upper bound
of the schedule length. In a first step we generate a time-
expanded network GT = (RT , IT , LT ) which is defined as
follows: (1) RT = {rt|t ∈ [0, T ], r ∈ R}, (2) IT = {ct|t ∈
[0, T ], c ∈ I}, (3) LT = {lt = (ut, vt+1)|t ∈ [0, T − 1], l =
(u, v) ∈ L}. This approach is very similar to time-expanded
networks of dynamic multi-commodity flow problems [17].

A. Variables

We then introduce ILP variables for every link in the time-
expanded network GT in order to express the flow of flits
within the network. A binary variable `tl,c, where lt ∈ LT

and c ∈ I , represents the use of the network link l at time
instant t in order to send a flit to IP-core c. Note that the
variable does not cover the source IP-core sending the flit.
More formally we introduce the following variables:

V(GT ) = {`tl,c|lt ∈ LT , c ∈ I} (1)

B. Constraints

Next, we define constraints on the variables in V(GT )
expressing legal flows of flits through the NoC. These con-
straints ensure three properties: (1) every flit on a network
link leading to a router at one time instant will be forwarded
to another network link leading from the router on the
next time instant, (2) every link is used to transmit at
most one flit at any moment in time, and (3) every IP-core
sends and receives a flit to/from every other IP-core on the
network. In the following we will make use of the functions
In(nt) = {lt|lt = (ut−1, nt) ∈ LT } and Out(nt), which is
defined analogously, that return the incoming and outgoing
links of a router or IP-core in the time-expanded network.

The first constraint ensures that flits are never lost within
the network. For every router rt ∈ Rt, t ∈ [0, T − 1] the



following equation has to be fulfilled:∑
it∈In(rt)

∑
c∈I

`ti,c −
∑

ot+1∈Out(rt+1)

∑
c∈I

`t+1
o,c = 0 (2)

The second constraint ensures that every network link
lt ∈ LT is used to transmit at most one flit on every
time instant t ∈ [0, T ]: ∑

c∈I
`tl,c = 1 (3)

Finally it remains to ensure that flits are actually sent
from every IP-core on the network to every other IP-core,
we thus add the following equations to the optimization
problem for every IP-core c ∈ I and every destination IP-
core s ∈ I, s 6= c:∑

lt∈In(c),t∈[0,T ]

`tl,c = |I| − 1 (4)

∑
lt∈Out(c),t∈[0,T ]

`tl,s = 1 (5)

C. Solving

We then ask the CPLEX optimizer to find a schedule
under the given constraints that minimizes the schedule
length, which can easily be derived from the time index
of the ILP variables in V(GT ) representing the usage of
network links from above. In addition to minimizing the
schedule length, we also assign a small weight to every use
of a link to transmit a flit. This minimizes the overall length
of the paths within the schedule and, among others, helps
to avoid useless cycles in the schedule.

Note that, due to the intrinsic complexity of solving
ILP problems, the size of the network, and the use of
a time-expanded network to model the network behavior
over time, solving the equation system from above is time
consuming. However, this approach is simple to realize
and very powerful. It allows to model arbitrary network
topologies, to model constraints on the usage of the network
and its links, and to express constraints on time instants
when flits are sent and/or received, et cetera.

VI. ANALYTICAL BOUNDS ON THE PERIOD

By considering different bandwidth limits of the various
network topologies, we can derive a set of analytical lower
bounds on the schedule’s period P .

We assume a system with n IP-cores that are connected to
the network using bidirectional links, such that an IP-core
can send and receive one flit per clock period. During a
period P each node is assumed to send a flit to all the other
IP-cores in the system. This means that the total number of
flits injected into the network during a period P is n(n −
1). Based on these simple assumptions we can derive three
fundamental lower bounds on the period:

2hops: 1 3
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6

Figure 4. 4 × 4 Torus: No. of hops to reach from one node to all other
nodes.

• IO-bound, BIO: The total amount of flits communi-
cated during a period has to be communicated across
the n links connecting the IP-cores to the network. For
a given number of IP-cores, n, this figure is the same
for all the different topologies:

BIO =
n(n− 1)

n
= n− 1 (6)

• Link capacity bound, BCap: The total number of
link-hops required to communicate the total amount of
flits through the network (assuming the shortest paths),
divided by the total number of links in the network.

• Bisection capacity bound, BBisect: The total amount
of flits communicated across a bisection boundary
((n/2)2), divided by the number of links crossing the
bisection boundary.

In the following we will derive the above three bounds for
a range of common NoC topologies, as shown in Figure 2.
These bounds, and actual minimal periods for specific sched-
ules are shown in Table I which is introduced and discussed
later in Section VII. For some of the topologies we derive
analytical expressions, for others we calculate actual figures.
When counting the number of links in the mesh, the torus,
the bi-torus, the ring, and the bi-ring, we do not consider
the links that connect IP-blocks to routers or routers to IP-
cores. This is because the full amount of traffic is also carried
across the links in the “core network”, i.e., by the links that
connect pairs of routers. In this way we get a tighter bound
than if the IP-router and router-IP links were also included
in the count. Assuming n = m2 the number of links in the
core network is 2 · 2 ·m · (m− 1) for a mesh, 2 ·m2 for a
torus and 4 ·m2 for a bi-torus.

Torus: Due to its symmetry, every node in a torus sees the
same distances to the n−1 nodes to which it transmits flits.
With the help of Figure 4 we can determine the capacity
bound BCap,Torus for a 16-node, 4x4 torus. For simplicity
we consider the upper left node that does not make use of
the links that wrap around the edges. We first compute the
total number of hops made by all the flits send from the node
considered, to all the other n−1 nodes. From the figure we
see that in 1 hop 2 nodes are reachable, in 2 hops 3 nodes
are reachable, etc. resulting in a total hop count of:

1 · 2 + 2 · 3 + 3 · 4 + 4 · 3 + 5 · 2 + 6 · 1 = 48 (7)



Multiplying this figure by the number of nodes and
dividing by the total number of uni-directional links (2 per
node in a torus) we get:

BCap,Torus,4×4 =
48× 16

32
= 24 (8)

Assuming quadratic structures with a side-length of m,
i.e. n = m2, it is possible to derive a general expression:

BCap,Torus =
m3 −m2

2
(9)

Finally, assuming that m is even (resulting in equal-sized
bisection partitions), we derive a general expression for the
minimum period determined by the bisection capacity. It
is calculated as the number of flits transmitted from one
partition to the other(m2/2 ·m2/2), divided by the number
of links crossing the bisection boundary in that direction
(m):

BBisect,Torus =
m3

4
(for m even) (10)

Mesh: Due to the many special cases, which have to be
considered in the non-symmetric mesh topology, it is more
involved to derive an analytical bound. The basic idea is to
sum the minimal distances between all pairs of IP-cores in
the NoC, which gives after simplification:

BCap,Mesh =
m2 (m+ 1)

6
(11)

The bisection bound is the same as for the torus (again
assuming that m is even):

BBisect,Mesh =
m3

4
(for m even) (12)

Bi-torus: For the bi-torus, the capacity bound is de-
termined in the same way as for the torus, but as the
links are bidirectional the analysis considers a center node
transmitting to all other nodes. When m is odd, the situation
is fully symmetrical, and for this we have the following
general expression:

BCap,Bi−torus =
m3 −m

8
(for m odd) (13)

The bi-torus has double the bisection bandwidth of a torus,
and therefore the period-bound is half:

BBisect,Bi−torus =
m3

8
(for m even) (14)

Trees: In the binary tree there is one link to support the
traffic that crosses the bisection boundary. When the number
of IP-cores increases this obviously becomes the bottleneck
and the period will be limited by the (constant) bisection
capacity.

In the fat-tree the bisection bandwidth increases with the
number of IP-cores. In the fat tree with 4 IP-cores there are
2 links crossing the bisection boundary, in a system with 8

IP cores there are 4 links, and in a system with 16 IP-cores
there are 8 links, etc.

Ring: It is possible to devise an optimal schedule for a
ring, and thereby determine the minimum period, analyti-
cally. In a unidirectional ring each router either forwards
a flit from its neighbor router or it injects a flit from its
attached IP-core. As the ring is symmetric we can easily
derive a static schedule, where each node performs the same
communication pattern. Within the first cycle the flit is sent
to the next neighbor, which can be performed in a single
hop. During the next two cycles a flit is sent to the node
two hops away. This is continued until the last flit, which
travels n− 1 hops. The resulting period P is:

PMin,Ring =

n−1∑
i=1

i =
n(n− 1)

2
(15)

A unidirectional ring results in the minimum hardware
cost, but flits that travel almost the whole ring consume a
lot of those communication resources. Adding a second ring
in the other direction reduces the maximum travel length of
a flit to the half. The period for a double ring is:

PMin,Bi−ring =

dn−1
2 e∑

i=1

i =
(dn−12 e+ 1)dn−12 e

2
(16)

With the above given schedule, and period of that sched-
ule, all links are used. Therefore, the capacity bound is equal
to the derived period. Furthermore, as we have the optimal
period there is no incentive to show a bisectional bound of
the period.

VII. EVALUATION RESULTS

For all the topologies shown in Figure 2, and for a range
of network sizes, Table I lists: the amount of resources
(number of routers and links), the 3 analytical lower bounds
on the period: BIO, BCap and BBisect, and the smallest
period, PMin, for which we have been able to find an actual
schedule using the ILP formulation. It should be noted that
BBisect can only be calculated when n = m2 is even using
one of the equations from Section VI. The figures for odd
values of n have been calculated using the same equations,
rounded up, and as a reminder that the values are not exact;
they have been put in parenthesis. For easy comparison with
Pmin, we have highlighted the largest of the 3 bounds.

A. Discussion

We see that mesh and torus topologies become very fast
bisection and capacity bounded when the number of nodes
increases to a medium sized 4x4 network. The practical
schedules that we found also reflect this. With larger struc-
tures we see a considerable growth of the period.

For large m the total number of hops is 4 times lower
in a bi-torus than in a torus. Comparing BCap,Torus and



Table I
RESOURCES, PERIOD BOUNDS, AND MINIMAL PERIODS FOR STATIC

SCHEDULED NETWORKS.

Period

NoC Resources Bounds

Topology IPs Routers Links IO Cap. Bisect. Min.

Mesh 2x2 4 8+8 3 2 2 5
3x3 9 24+18 8 6 7 10
4x4 16 48+32 15 14 16 18
5x5 25 80+50 24 25 (32) 34

Torus 2x2 4 8+8 3 2 2 5
3x3 9 18+18 8 9 (7) 11
4x4 16 32+32 15 24 16 26
5x5 25 50+50 24 50 (32) 52
6x6 36 72+72 35 90 54 n.a.

Bi-torus 2x2 4 16+8 3 1 1 4
3x3 9 36+18 8 3 (4) 10
4x4 16 64+32 15 8 8 18
5x5 25 100+50 24 15 (16) 28
6x6 36 144+72 35 27 27 n.a.
7x7 49 196+98 48 42 (43) n.a.
8x8 64 256+128 63 64 64 n.a.
9x9 81 324+162 80 90 (92) n.a.

Tree 4 2 2x5 3 4
8 6 2x13 7 16

16 14 2x29 15 64

Fat tree 4 4 2x8 3 2 3
8 8 2x24 7 4 9

Ring 4 4 4+8 3 6 6
9 9 9+18 8 36 36

16 16 16+32 15 120 120
25 25 25+50 24 300 300

Bi-ring 4 4 2x4 3 3 3
9 9 2x9 8 10 10

16 16 2x16 15 36 36
25 25 2x25 24 78 78

Bus 4 4 3 12 12
9 9 8 72 72

16 16 15 240 240
25 25 24 600 600

BBisect,Torus one can see that for increasing values of m,
the torus is always limited by the capacity bound, and never
the bisection bound. For all other structures, the bisection
bound is always the larger one (for large enough values of
m). If links are pipelined, the network capacity increases and
topologies that are not limited by IO or bisection bounds
may benefit from pipelining. The bidirectional torus and the
fat tree provide enough link capacity to build reasonable
sized networks where the schedule period is still bounded
by the IO capacity.

Finding an optimal solution for torus and bi-torus net-
works for sizes larger than 5x5 were not yet possible, due
to the computational complexity. We thus plan to investigate
fast optimal, or near-optimal, algorithms to derive schedules
for larger problem instances. For instance, symmetric topolo-
gies such as the bi-torus permit schedules where every router

Table II
RESOURCES AND FREQUENCIES FOR DIFFERENT SIZES OF MESH NOCS

WITH PROCESSOR CORES

Logic cells Frequency (MHz)
Size Total NoC Processor Processor NoC

2x2 1132 48–105 217–222 127 371
3x3 2726 48–112 217–223 130 327
4x4 5166 48–145 218–222 130 280
5x5 8287 48–146 218–226 134 264
6x6 12095 48–150 217–223 128 254
7x7 16662 48–160 217–224 125 223
8x8 22006 48–160 217–225 125 230
9x9 28113 48–160 219–224 127 227

in the NoC performs the same action. The problem of finding
a good schedule thus could be reduced to finding a spanning
tree that maximizes the number of flits in-flight at the same
time. This idea could also be adapted for other topologies
that are somewhat symmetric, e.g., mesh or torus, where
almost all routers could take identical routing decisions.

It is important to note that application-specific optimiza-
tions, as found in other real-time NoCs, can also be realized
in our framework, e.g., by adding constraints to the ILP
formulation or providing a tailored network topology.

B. FPGA Implementation

We have implemented the mesh network topology in
an FPGA and used a small processor (Leros [19]) as IP
core. The number of nodes is configurable and we explored
networks of different size. We used a flit/link width of
16 bits.

We evaluated the maximum attainable clock frequency
and its dependency on the size of the design. To explore
the NoC limits we use a PLL to generate two clocks: a
100 MHz clock for the processor and a 400 MHz clock for
the NoC. For our experiments we use a Cyclone III device
from Altera. The Cyclone device belongs to the low-cost
FPGA family from Altera. We left the synthesis tool Quartus
select the smallest FPGA for each configuration. To report
the maximum frequency of the NoC we use the slow timing
model at 85° C and 1200 mV core voltage.

The results of the experiments of different sizes of mesh
NoCs are shown in Table II. The processor node consumes
about 220 LCs, as it is a processor optimized for low
resource consumption. Simple 32-bit RISC pipelines in an
FPGA consume about 2000 LCs. The router, as it appears
on the table, occupies a small number of LCs (48-160), for
all implementation sizes, as it is a simple design. A router
in the middle of the network consumes, as expected, about
150 LCs. Routers at the sides are considerable smaller. The
operation frequency is also high (223-371 MHz) compared
to the processor frequency (125-134 MHz). It is double the
frequency of the processor even for larger NoCs. Therefore,
one design option is to clock the NoC at double the clock
frequency of the IP-cores and reduce the link width to half.



VIII. CONCLUSIONS

Hard real-time systems need an architecture with pro-
cessors and communication channels where upper bounds
on the worst-case execution time (WCET) can be statically
derived. To provide such bounds, all resources have to be
arbitrated using a static TDM schedule. This schedule has
to be considered during the WCET analysis.

In this paper we explored statically scheduled, time-
division-multiplexed network-on-chips for such real-time
systems. We investigated different topologies and derived
optimal static schedule tables by solving an integer linear
programming problem. Static schedules that allow communi-
cation between all processing nodes result in a considerable
pressure on the network bandwidth. For networks above 16
nodes, only bi-torus and fat trees have enough link capacity
to enable a schedule period that is in the same range as the
IO capacity of the IP cores.

The presented NoC design and the program for the
schedule generation are provided in open-source un-
der the BSD license. The source can be found at
https://github.com/t-crest/s4noc.
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