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Abstract—Transactional memory is a promising, optimistic
synchronization mechanism for chip-multiprocessor systems.
The simplicity of atomic sections, instead of using explicit
locks, is also appealing for real-time systems. In this paper
an implementation of real-time transactional memory (RTTM)
in the context of a real-time Java chip-multiprocessor (CMP) is
presented. To provide a predictable and analyzable solution of
transactional memory, the transaction buffer is organized fully
associative. Evaluation in an FPGA shows that an associativity
of up to 64-way is possible without degrading the overall system
performance. The paper presents synthesis results for different
RTTM configurations and different number of processor cores
in the CMP system. A CMP system with up to 8 processor
cores with RTTM support is feasible in an Altera Cyclone-II
FPGA.

I. INTRODUCTION

Transactional memory (TM) provides a single, simple
mechanism for mutual exclusion: atomic sections. The im-
plementation is in charge to ensure that either the whole
transaction is committed to main memory or retried. TM can
be implemented in software or in hardware. In this paper
we describe the implementation of hardware transactional
memory (HTM).

In [15] we have presented the idea of real-time transac-
tional memory (RTTM) and showed that the number of re-
tries is bounded. It has also been showed how program anal-
ysis can be used to reduce the number of possible conflicting
transaction. In this paper we present the concrete design
and implementation of RTTM in a Java chip-multiprocessor
(CMP) system. As processor we use JOP, where worst-
case execution time (WCET) analysis is supported [14].
The design is evaluated in an Altera Cyclone-II FPGA. The
resulting resource consumption for small transaction buffers
is reasonable and the maximum frequency in the same range
as a CMP without RTTM support.

RTTM brings the benefits of transactional memories into
the real-time systems world. It simplifies the programming
model with the introduction of atomic regions instead of
locks. Error prone fine grain locking or lock-free algorithms
can be avoided. The contributions of the paper are: (a) the
design of a time-predictable hardware transactional memory;
and (b) evaluation of the design in an implementation in an
FPGA.

The paper is organized as follows. Section II presents
related work. The design of RTTM is presented in Sec-
tion III, followed by a description of the representation of
transactions in Java in Section IV. The concrete implemen-
tation is presented in Section V. The paper is concluded by
Section VI.

II. RELATED WORK

Knight was the first to propose hardware support for
transactions [7]. In his paper he considers support for
mostly functional languages. The key elements are two
fully associative caches: the depends cache implements the
dependency list (besides acting as normal data read cache)
and the confirm cache acts as local cache for uncommitted
writes (side effects in his terminology).

The term transactional memory was coined by Herlihy
and Moss [5]. They realized that only a minor modification
of the available cache coherence protocols is needed to
implement transactional memory.

Shavit and Touitou present software transactional memory
(STM) [17]. The proposed STM provides static transactions.
That means the data set has to be known in advance. Saha
et. al. propose an ISA extension to provide architectural
support for STM [11]. The idea is based on additional mark
bits for parts of a cache line (e.g., for 16 byte blocks of a
64 byte cache line). Language support for transactions [4]
in Java reinvestigates Hoare’s conditional critical regions.
To distinguish between normal field access and field access
under a transaction a second method table holds references
to a transactional version of methods. In [6] a practical
implementation as a library (DSTM2) for standard Java
is presented that requires only compare-and-swap (CAS)
instructions.

The Transactional memory Coherence and Consistency
(TCC) model is proposed in [3]. TCC combines the sim-
pler hardware for message passing with the simpler shared
memory programming model. The standard cache coherence
protocol with the latency issue on each load and store
instruction is substituted by the TCC hardware. The TCC
hardware broadcasts all writes from each transaction in a sin-
gle packet. Automatic rollback resolves any conflicts. TCC
differs from other approaches as all instructions are part of
a transaction. The code is just split into transactions, which



can be done manually or automatically by the hardware.
Language extensions for loop and fork based parallelization
for TCC are presented in [2]. The paper also contains
detailed simulation results of speedup and write set sizes.
The speedup is reported in the range of 4.5 to 7.8 for a 8
processor CMP configuration. For most applications a write
buffer of 1 KB is sufficient. We assume that applications in
the real-time domain will need even less on-chip memory.
Also a finer granularity of the write buffer (single words
instead of 64 Byte cache lines) will reduce the needed size.

A first prototype of TCC in FPGAs [18] implements a 8
processor configuration with PowerPC cores and a custom
data cache for the transaction buffer. The system consists
of 4 FPGAs for the TCC (2 PowerPCs per FPGA) and one
control FPGA that runs Linux. Although the PowerPC can
be clocked up to 300 MHz, the TCC system is clocked
with 100 MHz. The paper also reports issues with the
implementation of the custom data cache in current FPGA
technology. The 4-way set associative TCC cache has an
access time of 13 clock cycles and clearing the cache state
bits at the end of a transaction takes 257 clock cycles. An
on-chip block RAM is used for the register checkpoint.

In contrast to the TCC implementation, we implemented
the transaction buffer with a high associativity with single
cycle access. As our transaction buffer is organized in FIFO
order, the transaction buffer can be cleared within a single
cycle by resetting a single pointer.

RTTM shares many ideas with TCC. We also perform
late conflict detection at commit and grab the commit token
early on a buffer overflow. However, the design of the
transaction buffer in our approach is different: TCC uses
a standard cache organization for the transaction buffer,
while we optimize our design for time predictability and
not for average case throughput. Furthermore, TCC uses
transactions for all memory operations. The resulting high
variability of memory access times is hard to include in
the WCET analysis.1 We use the TM only for short atomic
code sections and perform non transactional loads and stores
via a time-predictable memory arbiter [9]. The TCC design
consumes about 8000 LCs per processor core (not including
the processor). In our implementation the buffer for 32 words
consumes moderate 1600 LCs.

Preemptible atomic regions (PAR) [8] was the first pro-
posal of TM for real-time systems. A PAR is aborted when a
higher priority task becomes ready and preempts the lower
priority task – independent whether the high priority task
executes an atomic region or not. The effects of a PAR are
undone at the interrupt. The concept of PAR is only valid
on uniprocessor systems.

1The bounds become impractical high: for n processors the WCET of a
single load or store is n− 1 times the longest commit time.

III. REAL-TIME TRANSACTIONAL MEMORY DESIGN

The mechanics of a transaction in RTTM is as follows: At
transaction start the state of the processor is saved. During
the transaction all memory writes – the update of the global
state – go into a core local buffer. On a commit the local
state is atomically written to the main memory. If a conflict
between a committing transaction and another transaction
occurs, the other transaction is restarted. On a restart the
local memory content is discarded and the processor reset
to the saved state.

The main design goals for the RTTM are: (a) simple
programming model and (b) analyzable timing properties.
Therefore, all design and architecture decisions are driven by
their impact on the WCET. In contrast to other TM proposal
RTTM does not aim for a high average case throughput,
but for a time-predictable TM with a low WCET. RTTM is
intended to support small atomic sections with a few read
and write operations. Therefore, it is more an extension of
the CAS instruction to simplify the implementation of non-
blocking algorithms.

A. RTTM Analysis

For real-time systems the execution time of all operations
must be bounded and the bounds need to be known for
WCET analysis. In case of transactions, the number of
retries needs to be bounded. In the general case, e.g.,
performing transactions in tight loops, the retry count of
a transaction is unbounded. The common solution is to use
a transaction manager and an exponential back-off, which
works in practice.

For real-time systems stronger bounds on the retries are
needed. In [15] we have shown that if the transactions of
each thread are displaced at least the conflict resolution time
tr, the maximum number of retries is n−1 for n conflicting
transactions. As real-time applications are usually organized
as periodic tasks, the displacement between transactions is
automatically given.2

B. Transaction Context

A transaction needs to be restartable with exactly the same
context as initially started. The context of a RISC processor
is the program counter and all registers that need to be
saved and restored on a retry. Local variables and method
arguments, which are mapped to memory locations on the
thread’s stack, can be treated as normal memory locations.
They are part of the transaction.

However, in Java method arguments and locals are guaran-
teed thread local. Therefore, they can be excluded from the
transaction. In that case, they become part of the processor
context that needs to be saved on transaction start and
restored on transaction abort. In Java a method has no access

2If tasks that contain more than one transaction per period, the retry
count can still be bounded. For details see [15].



to stack allocated data from an outer method. Therefore, this
additional context is usually minimal. A simple solution is
to add additional local variables to a method and copy the
arguments and locals that are visible at transaction start into
the additional locals.

C. Transaction Buffer
During a transaction all memory writes go into the core

local transaction buffer. Read addresses are marked in a read
set – a simplification that uses only tag memories for the
read set. Read data can also be cached, but caching is not
essential for the correct operation of the RTTM.

Common proposals of hardware transactional memory
reuse the core local cache for the transaction buffer. The
conflict is detected at cache line granularity. This can result
in false positives for conflicts. In the general case the false
positives will just degrade the performance. However, for
a time-predictable design we have to avoid false conflicts.
Therefore, the transaction buffer of RTTM has a granularity
of single memory words.

Another issue with standard caches is that two words in
memory can map to the same cache line. In that case a
backup solution, e.g., early commit, has to be performed.
However, the addresses of data in the heap are only known
at runtime. Therefore, it is practically impossible to predict
such a cache line conflict. In the RTTM design this conflict is
avoided by a fully associative buffer. If a transaction accesses
less words than the associativity of the buffer, the transaction
will not overflow the buffer. Fully associative buffers are
expensive and therefore small (e.g., 32 or 64 words). Real-
time programs shall be written with this limitation in mind.
RTTM can serve as a multi-word CAS to simplify non-
blocking algorithms.

D. Transaction Commit
On a commit the content of the transaction buffer is

written to the shared memory. During the write burst of
the commit all other cores listen to the write addresses and
compare those with their own read set. If one of the write
addresses matches a read address the transaction is aborted.
The atomicity of the commit itself is enforced by a single
global lock – the commit token.

If the transaction buffer or the tag memory for the read set
overflows, the backup solution is to grab the commit token
and finish the transaction while holding the token. If several
transactions overflow this mechanism effectively serializes
the overflowing transactions – independent if they would
conflict or not. The same mechanism can be used to protect
I/O operations, which usually cannot be rolled back. On an
I/O operation within a transaction the core also grabs the
commit token.

E. Conflict Detection
Conflict detection can be performed early, when the first

conflict really happens, or late on commit. From the analysis

void foo( int a, int b) {

int a = a; // save arguments
int b = b;

while (true) {
try {

RTTM.start();
// atomic section
RTTM.end();

} catch (RttmAbort e) {
a = a;
b = b;
continue;

}
break;

}
}

Figure 1. Code transformation of an atomic method. Method arguments
are saved in additional local variables.

point of view both approaches lead to the same WCET. Early
conflict detection is an average-case optimization.

Early conflict detection is very expensive in hardware as
the buffer local write traffic has to be observed by all other
cores. That means that each core has to listen to the other
n−1 cores. This is the same effort that is needed for a cache
coherence protocol. Therefore we propose to use late conflict
detection during the commit phase. When one transaction
commits its write buffer to the shared memory, all other
transaction units just need to listen to the write burst of a
single core.

F. Conflict Communication

When a conflict is detected, the corresponding thread
can be notified to abort the transaction early or late. Early
notification can be represented by a thrown exception. Late
notification just marks the transaction for an abort and the
abort can be communicated at the end of the transaction.
Again from a real-time perspective the worst-case behavior
is the same.

The RTTM module communicates a conflict via an ex-
ception signal to the pipeline. The mechanism is already in
place for exceptions such a null pointer access or division by
zero. This hardware exception is translated by the JVM to a
standard Java exception, which can be handeled by normal
Java try/catch blocks.

IV. ATOMIC SECTIONS IN JAVA

Transactions are marked atomic by the Java annotation
@atomic. As annotations are not possible for arbitrary
code blocks, the granularity of a transaction is a method.
This method invocation introduces some overhead, but also
reduces the context that needs to be saved at transaction start.
Only the arguments need to be saved, no local variables, and
no possible operands on the JVM stack.
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Figure 2. Overview of the CMP system with RTTM

A Java program containing atomic sections is compiled
with a standard Java compiler. The transformation of the
method is performed by manipulation of the bytecode.
We have implemented the transformation within the JOP
application builder JOPizer, which itself is based on the
bytecode engineering library BCEL [1].

Figure 1 shows a simplified version of the transformed
code in standard Java notation. First the method arguments
are saved into additional local variables for an eventual
restore on a transaction retry. The retry loop is the while
loop. The transaction is started with RTTM.start() and the
commit is tried with RTTM.end(). If the transaction is
aborted, either within the code of the atomic section or
the RTTM.end() method, a RttmAbort exception is thrown.
The exception is caught, the arguments are restored, and the
transaction is restarted.

Details on handling of other runtime exceptions are omit-
ted from the figure. It has to be noted that a transaction can
see inconsistent data before it will be aborted. In that case,
other runtime exceptions (e.g., NullPointerException) can be
thrown, which is also handled by the generated code.

V. IMPLEMENTATION

We have implemented RTTM in the context of the Java
processor JOP [12], [14] in an Altera Cyclone EP2C70
on the Altera DE2-70 evaluation board. The main limiting
factor is the tag memory for the transaction read and write
set. As write locations are often also in the read set, we use
a unified tag memory. The tag memory is extended with a
read and a write bit. On a commit only the entries where
the write bit is set are written back to the memory. The read
bit is needed for conflict detection when a transaction on a
different core commits.

Besides the core individual transaction buffer, a transac-
tion manager handles the arbitration for the commit token.
The interface of the cores to the transaction manager is via
a memory mapped device, which is connected with JOP’s
system bus SimpCon [13].
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Figure 3. States of the RTTM module

Figure 2 shows a CMP system with the core local write
buffers and the read tags. The shared memory includes the
memory access arbiter. The commit token arbitration is also
centralized.

A. A Java Chip-Multiprocessor

The RTTM is integrated in a CMP version of the Java
processor JOP. JOP is an implementation of the Java virtual
machine in hardware. The unique feature of JOP is its time-
predictable execution of Java bytecodes. Therefore, it is an
easy target for worst-case execution time analysis [16].

Pitter has designed a CMP version of JOP [10]. To keep
this CMP system time-predictable, the access to the shared
main memory is controlled by a TDMA based arbiter. The
static schedule of the TDMA arbiter has been integrated into
the low-level timing model of JOP in the WCET analysis
tool WCA [16]. Therefore, WCET analysis is even possible
for a JOP based CMP system.

B. RTTM Module Logic

The possible states of the RTTM module are shown in
Figure 3. When no transaction is active, in state BYPASS, all
memory accesses bypass the RTTM module. A transaction
can be aborted from three different states: during normal
transaction processing (TRANSACTION); when waiting for
the commit token (WAIT TOKEN); or when waiting on the
commit token on a buffer overview (EARLY WAIT TOKEN).

C. Transaction Buffer

For the transaction buffer a simplified FIFO replacement
strategy is feasible. Just a single fill counter decides on the



−− a plain priority encoder
l <= (others => ’0’);
for i in 0 to lines−1 loop

if h( i )= ’1’ then
l <= to unsigned(i, way bits);
exit ;

end if ;
end loop;

−− encoder without priority
l <= (others => ’0’);
for i in 0 to way bits−1 loop

for j in 0 to lines−1 loop
n := to unsigned(j, way bits);
if n( i )= ’1’ and h(j)= ’1’ then

l ( i ) <= ’1’;
end if ;

end loop;
end loop;

Figure 4. VHDL code for a standard priority based encoder and an
optimized version without priority.

next element that will be used. After a successful commit or
on an abort, the transaction buffer is invalidated by resetting
the fill counter. If the fill counter reaches the maximum
value, the overflow mechanism with the early commit is
triggered.

The critical part of the tag memory is the hit detection.
All tag memories have to be compared with the address and
the correct line be chosen on a hit. It is easy to unintended
code a priority encoder for the line index generation. This
priority selection generates additional logic in the critical
path. Carefully written VHDL code implements a simpler
encoder.

Figure 4 shows the VHDL code for a priority encoder
and an encoder without priorities. Signal h(i) is 1 if the tag
memory for line i matches the address. At any time only one
or none of the hit signals is 1. Signal l gives the line index
on a hit. If there is no hit, the line index is simply ignored.

D. Memory Access Types

Not all memory accesses need to be written to the transac-
tion buffer or recorded in the read set. As the stack and local
variables are thread local in Java, those memory accesses
are not considered part of a transaction. Furthermore, access
to constant data, such as instruction loads and loads from
the Java constant pool, are also excluded from the read set.
Only access to object fields and static data forms the global
state and is considered part of the transaction. This reduction
helps to keep the buffer demand lower than with traditional
cache based HTMs.

E. Results

To evaluate the resource requirements of RTTM and the
influence of the tag memory on the operation frequency
we have synthesized several versions of the JOP CMP
system. The target FPGA is the Altera Cyclone-II FPGA

# cores Total (LC) RTTM (LC) Memory Fmax

1 3383 - 8.1 KB 107.3 MHz
2 10011 3199 16.7 KB 102.7 MHz
4 19877 6390 33.3 KB 103.7 MHz
8 39610 12806 66.7 KB 94.9 MHz

Table I
IMPLEMENTATION RESULTS FOR A CMP SYSTEM WITH 32 WORD

TRANSACTION BUFFERS

# ways Total (LC) RTTM (LC) Memory Fmax

16 18201 4727 32.9 KB 102.8 MHz
32 19877 6390 33.3 KB 103.7 MHz
64 23118 9669 34.2 KB 100.4 MHz

128 29534 16086 35.8 KB 92.8 MHz
256 42421 28940 39.1 KB 84.3 MHz
512 66283 53108 45.8 KB 75.3 MHz

Table II
IMPLEMENTATION RESULTS FOR A 4 CORE SYSTEM WITH FULLY

ASSOCIATIVE TRANSACTION BUFFERS OF DIFFERENT SIZES

EP2C70-6. The design was constrained with a maximum
clock frequency of 100 MHz.

Table I shows variations in the number of processor cores
with a transaction buffer of 32 words. The first column
gives the number of cores, the second the resource of the
whole CMP system including the RTTM modules. The
third column shows the resource consumption of the RTTM
modules (included in the second column). Column 4 shows
the on-chip memory consumption and the last column gives
the maximum operation frequency. A single core version of
JOP without RTTM serves as reference design.

JOP with some hardware support for object-oriented oper-
ations consumes 3400 logic cells (LC). Support of a 32 word
transaction buffer for a dual core CMP version consumes
almost as many LC as a single processor core. As the tag
memory is fully associative, it is implemented in discrete
registers. For 4 and 8 cores the size increases roughly linear.
The RTTM with 32 words has no influence on the maximum
operation frequency. The critical path is in the memory
arbiter and depends on the number of cores.

Table II presents resource consumption and maximum fre-
quency for a 4 core CMP with variations of the buffer size.
The resource consumption of the RTTM buffer increases less
than linear, because part of the design has only logarithmic
complexity. Starting at a buffer size of 128 words the
RTTM dominates the resource consumption of the whole
CMP system. From that point on the RTTM also limits the
maximum operation frequency. However, it is surprising that
a 512 way associativity can be implemented at 75 MHz
within the Cyclone-II FPGA. If this high associativity is
needed the hit detection can be pipelined, resulting in an
additional cycle per memory access.

In summary, our implementation shows that RTTM is fea-



sible at a moderate resource consumption. High associativity,
without degrading the clock frequency, can be achieved with
a non-priority encoding of the hit detection.

VI. CONCLUSION

This paper presents the design and implementation de-
tails of a new synchronization paradigm for hard real-time
systems. Real-time transactional memory provides simple
atomic sections to protect shared data in concurrent pro-
grams. To keep the transactions analyzable, the transaction
buffer has to avoid false conflict detections. The resulting
design is a fully associative buffer, with FIFO replacement,
and single word lines. The evaluation in a Cyclone-II FPGA
shows that an associativity up to 64-way is feasible. 64
words restrict the practical transaction size, but greatly
simplify implementation of non-blocking algorithms and
data structures.

As future work we plan to adapt some real-world bench-
marks from lock based synchronization to transactions. We
will compare the performance and the code complexity.
Furthermore, we want to compare wait-free algorithms with
versions that can explore the power of transactions.

The RTTM implementation and the Java processor JOP
are open-source under the GNU GPL. The sources are avail-
able from the git repository git://www.soc.tuwien.ac.at/jop.git.
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