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ABSTRACT
Hardware transactional memory is a promising synchro-
nization technology for chip-multiprocessors. It simplifies
programming of concurrent applications and allows for
higher concurrency than lock based synchronization. Stan-
dard transactional memory is optimized for average case
throughput, but for real-time systems we are interested
in worst-case execution times. We propose real-time
transactional memory (RTTM) as a time-predictable syn-
chronization solution for chip-multiprocessors in real-time
systems. We define the hardware for time-predictable trans-
actions and provide a bound for the maximum transaction
retries. The proposed RTTM is evaluated with a simulation
of a Java chip-multiprocessor.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent
Programming

Keywords
Transactional memory, Real-time systems

1. INTRODUCTION
Computing is about to undergo, if not another revolution,

then a vigorous shaking-up. Processor manufacturers have
essentially given up trying to increase clock speeds. Moore’s
law has not been repealed: each year, more and more tran-
sistors fit into the same space, but clock speeds cannot be
increased without overheating. Instead, processor manufac-
turers have focused on multicore architectures, in which mul-
tiple processor cores reside on a single chip. As a result of
this sea change, parallel machines with shared memory are
becoming a de facto standard. Unfortunately, programming
such systems safely and efficiently using classical concur-
rency abstractions is a severe burden. Yet with clock speeds
stagnant, programmers must increasingly use parallelism to
enable more ambitious applications. This adaptation will
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not be easy. Programmers typically rely on locks and con-
dition variables for synchronization, which are implemented
with special processor instructions, such as compare-and-
swap (CAS). Multi-processor programming with locks is far
from trivial. Simple coarse grain locks limit the possible
parallelism; fine grain locking can introduce errors due to
data races and deadlocks. Avoiding locks and implement-
ing lock-free or wait-free data structures and algorithms is
considered art and not engineering [10]. This conventional
approach is known to be error-prone. Programmability re-
mains the key hurdle towards effectively utilizing these next-
generation computing systems. This is particularly true for
embedded systems which are often safety critical and where
failures can cause loss of life. The difficulties of program-
ming multiprocessor systems, such as data races, and dead-
locks, are magnified in the context of embedded real-time
programs because there is still little support for multicore
in terms of theory and tools. Interestingly, shared memory
is also a scalability issue. Each core contains a local, first
level cache. The shared data in the local caches is kept co-
herent and consistent by cache coherence protocols between
the cache controllers. However, keeping caches coherent and
consistent limits the scaling of chip-multiprocessor (CMP)
systems.

Transactional Memory (TM) is a promising concur-
rency control solution for parallel and concurrent comput-
ing systems with shared memory. Transactional memory
has been the subject of significant interest in both academia
and industry because it offers a compelling alternative to
existing concurrency control abstractions, making it espe-
cially well-suited for programming applications on scalable
parallel platforms. Because transactional memory imple-
mentations often support an optimistic concurrency model,
they can be used to safely allow speculative access to data
by a large number of processors without requiring global
program analysis. TM abstractions permit logically concur-
rent access to shared regions of code, but ensure through
some combination of hardware, compiler, and runtime sup-
port that such accesses do not violate intended serializabil-
ity invariants. However, while there has been a plethora
of work exploring different implementation techniques for
transactional memory in both hardware and software, there
is no TM system that is adequate for real-time applications
running on multiprocessor systems. Although first intro-
duced as an extension of the cache coherence protocol [8],
TM can simplify caches with transactional coherence and
consistency [6]. The programming model with TM is sim-
pler than with locks; a mutual exclusive section is marked
as an atomic region. The TM ensures, either in hardware



or in software, that the marked section is executed atomi-
cally. The atomic sections are executed optimistically. On
a conflict one of the transactions is aborted and the atomic
section is automatically reexecuted.

This paper proposes Real-Time Transaction Memory
(RTTM), a new concurrency control abstraction for a shared
memory CMP that is geared towards time-predictability.
The proposal is evaluated in the context of real-time
Java programs running on a simulation of a CMP. While,
our work targets the Java programming language and
must thus deal with some issues that are specific to that
language, it is not limited to it. Choosing Java does present
some significant advantages over low-level languages. Java
is memory-safe, that is, the language prevents memory
accesses through untyped pointers. This property enables
the implementation of copying and compacting real-time
garbage collection algorithms which simplify the task of
writing concurrent algorithms as programmers need not
worry about memory reclamation. The second benefit of
Java is that compiler transformations and program analysis
techniques can rely on declared properties of pointers and
thus are easier to prove sound.

RTTM brings the benefits of transactional memories into
the real-time systems world. It simplifies the programming
model with atomic regions instead of correct selection of
locks. The execution time pessimism is reduced by analy-
sis tools instead of error prone implementation of lock-free
algorithms. The contributions of the paper are following:
(a) the design of a time-predictable hardware transactional
memory; (b) analysis of the worst-case number of retries
in a periodic thread model; (c) suggestions for analysis to
reduce the number of possible conflicting transactions; and
(d), a first evaluation of RTTM on a simulation within a
Java based CMP.

The paper is organized as follows. Section 2 presents back-
ground and related work. The design of RTTM is presented
in Section 3, followed by the analysis of the WCET of atomic
sections in Section 4. We evaluate the proposed design and
discuss the findings in Section 5. The paper is concluded in
Section 6.

2. REAL-TIME JAVA AND TM
This section presents some background on the use of Java

for real-time processing and overviews related work.

2.1 Real-Time Java
Java is increasingly being used in mission-critical systems

in fields such as avionics [20] and shipboard computing for
steering and control. To address the requirements of time-
critical applications, the Real-Time Specification for Java
(RTSJ) [4] was developed. One of the notable advantages of
the RTSJ is that it is possible to implement mixed-mode sys-
tems in which real-time and non-real-time tasks can co-exist.
The integration of the two programming models, while not
seamless, represents a pragmatic engineering compromise.
It is possible to implement the real-time portion of an appli-
cation using the real-time extensions, and to use standard
Java for the rest.

Real-time threads have to be scheduled carefully. Each
thread may have a length of time during which it must com-
plete a given task before it yields; this time is called the
thread’s deadline. In the RTSJ, the default scheduler is pri-
ority preemptive. If multiple threads have the same prior-

ity, they are scheduled in FIFO order. We say that a set
of threads is schedulable if all threads can execute within
their periods without missing deadlines. In order to ensure
schedulability, it is necessary to bound both the time re-
quired to execute the thread up to the end of the current
period and the thread’s blocking time. The requirement of
schedulability is complicated by a number of blocking is-
sues. It is necessary to estimate the longest time a thread
may block. Thus, bounds need to be provided for the length
of any given critical section. This is a standard assumption
in real-time systems. If a high priority thread blocks wait-
ing for a low priority thread to release a lock, and the low
priority thread is preempted by a medium priority thread,
then the medium priority thread may execute instead of the
high priority thread. This situation is called priority in-
version, and can result in unbounded blocking times, po-
tentially causing the high-priority thread to miss deadlines.
Priority inversion has a history as a particularly trouble-
some issue: in the Mars Pathfinder mission, for instance, a
priority inversion problem caused frequent system resets.

One motivation for our work is to simplify the task of
reasoning about critical sections by providing a concurrency
control abstraction that minimizes these problems and at-
tempts to avoid undue blocking delays and catastrophic in-
terference between the real-time and the non-real-time parts
of an RTSJ environment.

2.2 Transactional Memory
The term transactional memory was coined by Herlihy

and Moss [8]. They realized that only a minor modification
of the available cache coherence protocol is needed to im-
plement transactional memory. Knight proposed hardware
support for transactions for mostly functional languages [11].
The key elements are two fully associative caches: the de-
pends cache implements the dependency list (besides acting
as normal data read cache) and the confirm cache that acts
as local cache for uncommitted writes.

As computer architects where not convinced by the trans-
action idea, no hardware implementation exists up to date
in commercial microprocessors. To solve this chicken-egg
problem, researchers started to investigate solutions in soft-
ware. Shavit and Touitou present software transactional
memory (STM) [21]. The proposed STM provides static
transactions. That means the data set has to be known in
advance. Herlihy et al. describe a software transactional
memory abstraction [9] for Java that allows transactional
objects to be created dynamically. Harris and Fraser [7] de-
scribed a lightweight transactional model for Java. Their
model is more general than ours, but incurs overheads that
are much higher, and does not provide real-time guarantees.
Anderson et al. [3] describe a language independent notion
of lock free objects in real-time systems. In contrast, our
work leverages its integration with the language and com-
piler to achieve greater simplicity and efficiency. Saha et. al.
propose an ISA extension to provide architectural support
for STM [16]. The idea is based on additional mark bits for
parts of a cache line (e.g., for 16 byte blocks of a 64 byte
cache line).

The Transactional memory Coherence and Consistency
(TCC) model is proposed in [6]. TCC combines the sim-
pler hardware for message passing and the simpler shared
memory programming model. The standard cache coher-
ence protocol with the latency issue on each load and store



instruction is substituted by the TCC hardware. The TCC
hardware broadcasts all writes from each transaction in a
single packet. Automatic rollback resolves any correctness
violation. TCC differs from other approaches as all instruc-
tions are part of a transaction. The code is just split into
transactions which can be done manually or automatically
by the hardware. Language extensions for loop and fork
based parallelization for TCC are presented in [5]. The pa-
per also contains detailed simulation results of speedup and
write set sizes. The speedup is reported in the range of 4.5
to 7.8 for a 8 processor CMP configuration. For most ap-
plications a write buffer of 1 KB is sufficient. We assume
that applications in the real-time domain will need even less
on-chip memory.

Preemptible atomic regions (PAR) [12], was the first pro-
posal of TM for real-time systems. A PAR is aborted when
a higher priority task becomes ready and preempts the lower
priority task – independent whether the high priority task
executes an atomic region or not. The effects of a PAR are
undone at the interrupt. The concept of PAR is only valid
on uniprocessor systems. A first concept of TM for real-time
CMP systems is presented in [19].

2.3 Time-predictable CMP
For the schedulability analysis of (hard) real-time systems

the worst-case execution time (WCET) of all tasks and crit-
ical sections needs to be known. WCET analysis of complex
architectures is far from trivial. Architectural enhancements
that dynamically extract instruction level parallelism are
practically not analyzable. A multi-core chip consisting of
simpler pipelines is a possible solution for high-performance,
time-predictable systems [18].

For RTTM we assume a CMP system with a time-division
multiple access (TDMA) scheduled memory access. The
TDMA arbitration policy isolates the cores of the CMP in
the temporal domain and is therefore time predictable. The
WCET of memory accessing instructions can be calculated
when the TDMA schedule is known [15].

3. REAL-TIME TRANSACTIONAL MEM-
ORY

We propose a hardware implementation of the RTTM for
a time-predictable CMP system. Only with hardware sup-
port of transactions the desired efficiency of atomic sections
can be achieved. With TM we can solve two issues of CMP
systems: (1) synchronization and cache coherence/consis-
tency protocols are expensive; (2) exploring the power of
CMP systems needs multiprogramming, but the program-
ming model is complex. With TM we can relax the memory
coherence and consistency model [6]. This results in simpler
and more efficient hardware for shared memory multipro-
cessing. Furthermore, avoiding cache coherence protocols
simplifies the timing model of the memory access for WCET
analysis. The use of generic atomic primitives relieves the
programmer from the headaches to get the synchronization
correct and provide the maximum possible concurrency. For
real-time systems we shift the problem from the programmer
to analysis tools to provide safe and tight WCET estimates.

The main design goals for the RTTM are: (a) simple
programming model and (b) analyzable timing properties.
Therefore, all design and architecture decisions are driven by
their impact on the WCET. In contrast to other TM pro-
posal RTTM does not aim for a high average case through-

put, but for a time-predictable TM with a low WCET.
RTTM is intended to support small atomic sections with
a few read and write operations. Therefore, it is more an
extension of the CAS instruction to simplify the implemen-
tation of non-blocking communication algorithms.

3.1 Transaction Buffering
Each core in the CMP is equipped with a small, fully as-

sociative buffer to cache the changed data during the trans-
action. All writes go only into the buffer. Reads addresses
are marked in a read set – a simplification that uses only
tag memories. Read data can also be cached, but caching is
not essential for the correct operation of the RTTM.

The write buffer and tag memory for the read set are
organized for single word access. This organization ensures
that no false positive conflicts are detected. For the same
reason the transaction buffer has to be a fully associative
cache with a FIFO replacement strategy. Fully associative
caches are expensive and therefore the size is limited. We
assume that real-time systems programmers are aware of
the high cost of synchronization and will use small atomic
sections where a few words are read and written.

3.2 Transaction Commit
On a commit the buffer is written to the shared memory.

During the write burst on commit all other cores listen to
the write addresses and compare those with their own read
set. If one of the write addresses matches a read address
the transaction is marked to be aborted. The atomicity of
the commit itself is enforced by a single global lock – the
commit token.

The commit token can also be used on a buffer overflow.
When a transaction overflows the write buffer or the tag
memory for the read set, the commit token is grabbed and
the transaction continues. The atomicity is now enforced
by the commit token. Grabbing the commit token before
commit is intended as a backup solution on buffer overflow.
It effectively serializes the atomic sections. The same mech-
anism can be used to protect I/O operations that usually
cannot be rolled back. On an I/O operation within a trans-
action the core also grabs the commit token.

3.3 Conflict Detection
Conflict detection can be performed early, when the first

conflict really happens, or late on commit. From the analysis
point of view both approaches lead to the same WCET.
Early conflict detection is an average-case optimization.

Early conflict detection is very expensive in hardware as
the buffer local write traffic has to be observed by all other
cores. That means n − 1 cores have to listen to the other
n−1 cores. This is the same effort that is needed for a cache
coherence protocol. Therefore we propose to use late conflict
detection during the commit phase. When one transaction
commits its write buffer to the shared memory all other
transaction units just need to listen to this write burst –
leading to maximum of n− 1 listeners to a single writer.

When a conflict is detected the corresponding thread can
be notified to abort the transaction early or late. Early no-
tification can be represented by a thrown exception. Late
notification just marks the transaction for an abort and the
abort can be communicated at the end of the transaction.
Again from a real-time perspective the worst-case behavior
is the same and the implementation of the late notification
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Figure 1: Conflict resolution in RTTM.

is simpler in hardware. It gives also a cleaner software in-
terface.

Transactions that are marked as aborted, but continue to
run their transaction, are called zombie transactions. Zom-
bie transactions can see a mix of old and committed data.
Therefore, the invariant of the atomic section is not pre-
served. As those transactions will be aborted at the end of
the transaction they do not change the global state. How-
ever, zombie transaction can throw unexpected exceptions
(e.g., divide by zero) or run infinite loops. Thrown excep-
tions for a transaction that is marked aborted can be safely
ignored. To avoid infinite loops the abort status has to be
checked on branches. A branch can simply be redirected to
the abort handler.

4. RTTM ANALYSIS
In order to make use of TM in real-time systems we need

to show that it is possible to calculate a bound for the ex-
ecution time of every thread in the given system. We will
show that the number of retries for any given transaction is
bounded and the WCET of a task can be calculated.

Definition 1. For the analysis we assume a real-time
system consisting of n threads τ1 . . . τn that each contain a
single atomic region, which is executed only once per period.
Each thread has a period Ti and a WCET (in scheduling
theory often called cost) tci that includes the execution time
tai of the atomic section.

The preliminary WCET bounds the thread’s execution
time per period without TM conflicts, i.e., it does not ac-
count for aborts and retries. However, the successful execu-
tion of the atomic region is included. When the maximum
number of retries r is known, the final WCET twcet is

twcet = tc + rta (1)

Conflicts occurring at runtime are resolved by aborting
and restarting all but one of the involved transactions. Fig-
ure 1 illustrates this resolution process for mutually conflict-
ing threads. In the worst-case phasing all threads start their
respective transaction at the same time and simultaneously
try to commit the transaction’s state to the shared memory.
Only one of the threads is allowed to commit its state, for
all others the transactions are aborted and restarted. In the
next round, the same situation repeats with the exception
that the previously winning thread does not participate in
the race. The number of competing threads thus decreases
with each round until all threads where able to commit.

Definition 2. The worst-case time for resolving any TM
conflict in a real-time system such that every thread was able
to commit its local transaction state is referred to as tr.

This resolution time tr is influenced by transactions of
other threads that conflict with the threads own transaction,
i.e., the completion of another transaction may cause the
threads running transaction to be aborted when the write
set of the former transaction overlaps with the read set of the
latter. To bound the conflict resolve time, two transactions
of thread τi must be separated at least by the resolution
time tr. Therefore, one thread will influence the conflict
resolution only with a single transaction.

Lemma 1. Under the assumption that the deadline of a
thread τ is not longer than its period T two transactions of
τ are separated by at least the resolve time tr.

Proof. To meet the deadline following criterion must be
met:

tc − ta + tr ≤ T (2)

With one transaction per period the worst case is a late
start of the transaction in period k and an early start at
period k + 1. Due to (2) the latest start time tk

late, relative
to the period k start time tk, is

tk
late = tk + T − tr (3)

The earliest start time tk+1
early is at the begin of the period.

The period start times tk and tk+1 are separated by the
period T = tk+1 − tk. The minimum difference tmin of the
start times is

tmin = tk+1
early − tk

late (4)

= tk+1 − (tk + T − tr) (5)

= tk+1 − tk − T + tr (6)

= T − T + tr (7)

= tr (8)

Theorem 1. For n periodic threads that contain a single
transaction the maximum number r a single thread has to
reexecute that transaction is

r = n− 1 (9)

Proof. We assume the critical instant where n threads
commit their atomic section at the same time. One thread
will commit and n− 1 threads will have to perform a retry.
We again assume a critical instant where now n− 1 threads
execute their atomic region and n−2 threads have to execute
their atomic region a 3rd time. The last thread that will
commit was aborted n − 1 times and had to reexecute the
atomic region n− 1 times. In that case r = n− 1.

With the simplification of equal1 transaction times ∀i ∈
{1, . . . , n} : tai = ta the resulting resolve time is

tr = (r + 1)ta (10)

The above analysis can also be used to calculate the
retry bounds of compare-and-set (CAS) operations, which
are available on current CMP systems. To include several
transactions per period in the analysis, those transactions

1Or using the maximum value of ta = max(tai).



can be modeled as several threads with the same period
and a single transaction. The resulting bounds will be
conservative, but safe.

Considering individual transactions times tai and the re-
sulting individual resolve times tri is considered future work.
Tightening the bound for a thread that contains more than
one transaction is considered future work.

4.1 Program Analysis
The use of transactional memory greatly simplifies the

programming model and has the potential to reduce typical
synchronization errors and deadlocks. However, it also de-
mands for accurate program analysis that allows to (semi-)
automatically infer the interdependencies between threads
and transactions. The analysis is required to accurately de-
rive the conflict sets and the size of the read and write sets
for each thread. Tight conflict sets result in lower bounds
on the maximum retry count.

The conflict sets can be computed efficiently using flow-
insensitive, context-sensitive points-to analysis. For every
instruction that is executed within an atomic section, the set
of possible pointers is calculated and combined to summarize
the possible memory locations referenced by the transaction.
Two transactions are considered to conflict if the memory
locations computed by the analysis overlap, such that one
thread potentially updates a location that the other thread
potentially reads from. The accuracy of the analysis directly
influences the number of retries that need to be accounted
for in the final WCET.

Context-sensitive points-to analysis has successfully been
applied on large programs in the context of various trans-
formations and optimizations [22, 13] such as elimination
of type-checks for casts or receiver-type analysis for virtual
method invocations. Static detection of race conditions in
multi-threaded programs [14] is an important application
that is highly related to the problem of determining conflict
sets.

The internal buffer that holds the local state for each
transaction are limited in size. This can lead to buffer over-
flows in the case when the set of referenced memory locations
grows too large. RTTM is able to handle such overflows, at
the expense of performance, by serializing transactions. In
case of an overflow the global commit token is acquired and
commit of all other transactions is blocked.

Identifying the size of the read and write set of a trans-
action cannot be done using points-to analysis. Instead, a
symbolic analysis is required that accurately models all pos-
sible states of the internal buffers for every program point.
We consider abstract interpretation to be the best approach
to perform the desired analysis. Previous work on cache
analysis using abstract interpretation showed promising re-
sults [2]. In fact, the internal organization of the transac-
tion buffers is similar to fully associative caches. It is thus
likely that results on cache analysis can be applied to iden-
tify transaction overflows.

We have used the WALA analysis library [1] for some
preliminary tests to get insights into the analysis problems
for RTTM. The results, given in the next section, show that
the required analysis is feasible for real-world applications.

5. EVALUATION
For a first evaluation of RTTM we have implemented

RTTM within a simulation of the Java processor JOP [17].

// The producer task
while (cnt<Const.CNT) {

RTTM.start();
if (!queue. full ()) {

++cnt;
queue.enq((T) obj);

}
RTTM.end();

}

// The consumer task
while (cnt<Const.CNT) {

RTTM.start();
Object obj = queue.deq();
if (obj!=null) {

++cnt;
}

RTTM.end();
}

// The mover task
while (cnt<Const.CNT) {

RTTM.start();
if (! in . full ()) {

Object obj = out.deq();
if (obj!=null) {

in .enq((T) obj );
++cnt;

}
}

RTTM.end();
}

Figure 2: The producer, consumer, and mover tasks.

The simulation is an interpreting JVM that can execute the
linked binaries for JOP. It contains emulations of JOPs I/O
devices, the memory system, and the caches. Furthermore,
the simulation has the same restrictions as JOP as it is pri-
marily intended for debugging.

The simulation was extended to simulate a CMP version
of JOP. The interpreter loop executes bytecodes of several
JVMs and the switch between the JVMs is at bytecode level.
Therefore, we can simulate the fine grain interaction of a real
CMP system. The execution speed of the simulation, when
running on an actual PC, is similar to the execution time
on the real hardware – a JOP clocked at 100 MHz. Within
this simulation we are able to gather some statistics on the
RTTM behavior that will guide the hardware implementa-
tion.

5.1 Examples
RTTM is evaluated with a few micro-benchmarks imple-

menting different configurations of the producer/consumer
pattern. We use two different buffers for the data exchange:
(1) the standard Java Vector, and (2) a bounded queue.
Three types of tasks exchange information: the task Pro-

ducer, the task Consumer, and the task Mover. All tasks run
in a tight loop and perform their operations 1000 times.
Figure 2 shows the code for the three tasks for the queue
version. The Producer inserts 1000 objects into the buffer.
The same object is reused to provoke maximum transaction
collisions in the examples. The Consumer removes elements
from the buffer.

The Mover task is the classic example that does not com-
pose with traditional locks. An element shall be removed
from queue A and inserted into another queue B with the



Table 1: Single vector

Address set
Thread Trans. Retries Write Read R & W

Producer 1000 0 654 673 1316
Consumer 1001 1000 4 15 15

Table 2: Two vectors

Address set
Thread Trans. Retries Write Read R & W

Producer 1000 0 654 673 1316
Mover 1001 501 7 23 23
Consumer 3502 1000 4 15 15

Table 3: Two independent vectors

Address set
Thread Trans. Retries Write Read R & W

Producer 1 1000 0 654 673 1316
Consumer 1 1001 501 4 15 15
Producer 2 1000 0 654 673 1316
Consumer 2 1002 501 4 15 15

invariant that the element has to be either in A or B. When
the queues use internal locks for the synchronization, the
transfer needs to be protected by an additional lock. How-
ever, other threads that operate on the queues are usually
not aware of the additional transfer lock. With atomic sec-
tions this operation composes naturally.

Tables 1–6 show the transaction statistics for each worker
thread for the six examples. The tables show the number of
transactions committed, retried after an abort, and the size
of the write set, the read set, and the union of the read and
write set.

With the first experiment, the Vector based communica-
tion with 2 threads (one producer and one consumer), shown
in Table 1, we see large read and write sets. The consumer
does not keep up with the producer and the Vector is inter-
nally resized to buffer the request. The experiment shows
that this kind of data structure is not ideal for real-time sys-
tems. The Vector based communication with 3 threads (one
producer, one mover, and one consumer), shown in Table 2,
shows the similar issue with the resizing of the internal ar-
ray in the first queue. As the code of the Mover takes longer
to execute than the code of the Consumer the Vector between
these threads does not grow. The last Vector example shows
two independent producer/consumer pairs. As the simula-
tion runs all cores in lock-step, the results of both pairs,
shown in Table 6, is almost identical.

We have run the same examples with bounded queues for
the communication. The results of the simulation are shown
in Tables 4–6. As the queues are bounded we see only small
read and write sets. From the results in Table 5 we can
derive a few observations on the three thread example: (1)
The Mover task has the longest execution time and limits
the throughput. The other two tasks execute their atomic
sections more often finding the queue either full (Producer)
or empty (Consumer). (2) As the test for full and empty
does no change the state of the queue the retry count for
the Producer and the Consumer is quite low. (3) The Mover

task is aborted as often as it successfully commits.
In summary, we evaluated the RTTM with examples that

stress the transaction system to observe some real conflicts.

Table 4: Single queue

Address set
Thread Trans. Retries Write Read R & W

Producer 1000 999 3 14 14
Consumer 5359 637 2 9 9

Table 5: Two queues

Address set
Thread Trans. Retries Write Read R & W

Producer 5317 208 3 14 14
Mover 1003 1006 4 21 21
Consumer 8420 269 2 9 9

Table 6: Two independent queues

Address set
Thread Trans. Retries Write Read R & W

Producer 1 1000 999 3 14 14
Consumer 1 5360 636 2 9 9
Producer 2 1000 999 3 14 14
Consumer 2 5371 633 2 9 9

All threads run in a tight loop executing an atomic sec-
tion. Even under this load no thread starved. For real-world
applications the atomic section is only a small part of the
workload and conflicts are seldom. We have run some ex-
amples with periodic threads, but could not produce enough
conflicts to provide interesting results.

5.2 Preliminary Analysis Results
As discussed in Section 4.1, the program analysis is a

cornerstone for the successful identification of possible con-
flicts between threads and their corresponding transactions.
To gain some initial insights we have evaluated the feasibil-
ity of the proposed program analysis using the open source
analysis library WALA [1]. The existing flow-insensitive,
context-sensitive points-to analysis [22] was used to analyze
the sample programs. In particular, we were interested in
the memory locations referenced within transactions of the
worker threads. All touched memory locations were summa-
rized using points-to sets within functions of interest, e.g.,
the queues internal implementation, that are intersected in
order to identify possible transaction conflicts.

The analysis builds an abstract representation of the pro-
gram’s heap based on allocation sites, i.e., program points
where new objects are allocated on the heap. Two live
objects allocated at different allocation sites may never re-
side at the same memory location. Our results show that
a context-insensitive points-to analysis is not suited for our
purpose, as it is not able to distinguish allocation sites within
classes that are often reused. For example, the internal
buffers of queues, lists, and vectors are usually allocated
within the container’s constructor. Context information is
needed to be able to distinguish accesses to these internal
data structures.

We have found that analyzing the standard primitives of
the Java class library is considerable more complex with
respect to context-sensitivity. This is not surprising as the
standard library is not specifically intended to be analyzable
or to be used in real-time applications. Objects and buffers
are more frequently allocated and reallocated at various pro-
gram points within libraries, often combined with a large



Mover

ConsumerProducer

Figure 3: Conflict sets represented as an interfer-
ence graph for the two queues example.

Producer
write set Q0.buffer[], Q0.wrPtr
read set Q0.wrPtr, Q0.rdPtr, Q0.buffer.length

Mover
write set Q1.buffer[], Q1.wrPtr, Q0.rdPtr
read set Q0.wrPtr, Q0.rdPtr, Q0.buffer.length, Q0.buffer[]

Q1.wrPtr, Q1.rdPtr, Q1.buffer.length

Consumer
write set Q1.rdPtr
read set Q1.wrPtr, Q1.rdPtr, Q1.buffer.length, Q1.buffer[]

Figure 4: Read- and write-sets computed by the
points-to analysis.

depth of the call tree. This leads to a considerable higher
complexity for the points-to analysis and consequently vague
points-to relations. In addition, data structures are more
often copied resulting in large read and write sets and thus
pessimistic results for the analysis of transaction overflows.

Nevertheless, for all examples presented in the last sec-
tion the analysis was able to correctly identify the conflicts
between transactions. The resulting conflict sets for the two
queues example is shown as an interference graph in Fig-
ure 3. The analysis correctly identifies 2 queues Q0 and Q1

that are accessed within the transactions of the Producer,
Mover, and Consumer threads. The internal buffers of these
queues are allocated in the queue’s constructor and are never
reallocated or copied. It is possible to distinguish them us-
ing a minimum length of the call string of 2 in our example.
Figure 4 depicts the read and write set computed by the
points-to analysis. As can be seen the Producer thread may
conflict with the Mover thread via the write pointer and the
internal buffer of its queue (Q0.wrP tr, Q0.buffer[]). The
conflict for the opposite direction is caused by the corre-
sponding read pointer (Q0.rdP tr). The same applies to the
conflicts between Mover and Consumer, except for the inter-
changed roles of the two threads. Most importantly the read
and write sets proof that the Producer and Consumer threads
may never interfere.

The analysis of the other examples yields similar results.
In particular, the examples with independent queues and
vectors are of interest. The read and write sets determined
by the points-to information show that only one producer
may conflict with its corresponding consumer and vice versa.
However, conflicts with the other running threads are impos-
sible.

An interesting problem arises for the benchmarks based
on the standard Vector implementation. The internal buffers
of theses vectors can dynamically grow over time and thus
need to be reallocated and copied. This poses two problems

Table 7: Resources for a transaction buffer

associativity LC Memory Fmax

16-way 528 0.5 KBit 137 MHz
32-way 937 1 KBit 121 MHz
64-way 1768 2 KBit 113 MHz

128-way 3425 4 KBit 103 MHz
256-way 6743 8 KBit 94 MHz

to the analysis: (1) the size of the read and write sets is
virtually unbounded and (2) the minimum context required
for accurate points-to information grows. The first prob-
lem arises from the fact that the current size of the vector
is not known statically – in fact it cannot be predicted for
the considered benchmarks at all. When the vector needs to
be expanded it is not clear how many elements need to be
copied, consequently all Producer threads of the vector bench-
marks potentially overflow. The second problem arises from
the programming style employed for the implementation of
the Java runtime library. Common operations are factored
out and (partially) distributed across different classes and
methods. This increases the minimal call string length re-
quired to achieve accurate points-to information and thus
complicates the analysis. For large programs this may lead
to imprecise data, because a full analysis is too expensive in
terms of memory consumption and computation time.

We conclude that the analysis techniques available today
are powerful enough to achieve accurate data on conflicts
between atomic sections and potential transaction overflows.
However, as can be seen for the implementation of the stan-
dard Vector, programmers of real-time applications need to
take the limitations of the analysis and the underlying hard-
ware into account.

5.3 Hardware Implementation
We have implemented a first prototype of the transaction

buffer for the write set in a field-programmable gate array
(FPGA). As expected the high associativity of the transac-
tion buffer results in a high resource consumption and limits
the maximum clock frequency. Table 7 shows the results for
a single buffer in a low-cost Altera Cyclone-I FPGA. The re-
source consumption is given in logic cells (LC) and in mem-
ory bits. The design was constraint to meet a maximum
clock frequency of 100 MHz.

To set the numbers in relation to a processor core: the cur-
rent version of JOP consumes 3590 LCs and the maximum
frequency in the Cyclone-I device is 93.6 MHz. Therefor, a
buffer for up to 256 words would be feasible without restrict-
ing the maximum clock frequency. However, the resource
consumption for such a large buffer is prohibitive. The ta-
ble shows the resource consumption for the write set buffer;
the read set buffer will consume about the same amount of
hardware.

Due to the high hardware cost, the transaction buffer
should be reused as normal, high-associative data cache out-
side of a transaction. Another option is to use a shared tag
memory for the read and write set. The results from the
simulation suggest a common tag memory as most write ad-
dresses are also in the read set. In that case, the tag memory
is extended with a read and a write bit. On a commit only
the entries where the write bit is set are written back to the
memory.



6. CONCLUSION
This work represents the first steps towards a new syn-

chronization paradigm for hard real-time systems. We have
introduced real-time transactional memory and explored de-
sign issues on chip-multiprocessors. We showed that the
maximum number of retries of this optimistic concurrency
protocol can be bounded for periodic threads. Our simu-
lation results and first analysis results are encouraging and
show that a simplified programming model with bounds on
the number of transaction aborts and time predictability is
achievable.

Tightening the worst-case transaction resolution time
with individual transaction times is considered future work.
The implementation of the proposed RTTM in the context
of a CMP version of JOP is currently under development.
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