
Scala for Real-Time Systems?

Martin Schoeberl
Department of Applied Mathematics and Computer Science

Technical University of Denmark
masca@dtu.dk

ABSTRACT
Java served well as a general-purpose language. However, during
its two decades of constant change it has gotten some weight and
legacy in the language syntax and the libraries. Furthermore, Java’s
success for real-time systems is mediocre.

Scala is a modern object-oriented and functional language with in-
teresting new features. Although a new language, it executes on a
Java virtual machine, reusing that technology. This paper explores
Scala as language for future real-time systems.

Categories and Subject Descriptors
D.3 [Programming Languages]: Language Classifications —Mul-
tiparadigm languages

Keywords
Real-time systems, Scala, real-time Java

1. INTRODUCTION
Java has served now for two decades as a successful general pur-
pose programming language. Like many “modern” programming
languages it evolves and changes over time. However, these changes
have to be introduced gradually to not disrupt current use. Further-
more, two decades of changes result in quite some legacy in the
language and the library.

For more radical changes a clean cut is needed with a new lan-
guage definition. Scala is such a new language [7]. Scala is a new
language, but keeps the successful runtime system of Java, the Java
virtual machine (JVM).

Java has been in widespread use and many domains and niches
have been explored with Java. For example, Java was the main
programming language for mobile phones, before the arrival of
smartphones. Java has been, and still is, considered as language
for real-time systems [4] and safety-critical systems [6]. However,
we are still waiting on the success stories of Java for real-time sys-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
JTRES ’15, October 07-08, 2015, Paris, France
Copyright 2015 ACM 978-978-1-4503-3644-4/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2822304.2822313.

tems. Maybe it is now time to reconsider new languages for future
real-time systems.

This paper explores possibilities of use of Scala for real-time sys-
tems. It looks at new features from a real-time systems program-
mer’s point of view.

Scala’s aim is to be a scalable language. It can be used for scripting
backed up by a very rich library. But Scala is also used for vary
large concurrent systems such as Twitter.

Scala supports a smooth migration from Java to Scala. It executes
on the Java virtual machine and Scala code can access Java meth-
ods, fields and can even inherit from Java classes. Scala reuses
types from Java (e.g., String), but also dresses those types up with
additional functionality.

Modern scripting languages with dynamic typing, e.g., Python, are
becoming quite popular. The argument is that dynamic typing and
the type inference at runtime results in more concise code. How-
ever, static typing, as in Java and Scala, provides type checks at the
compile time and not during unit testing. To circumvent the boiler-
plate of Java, Scala provides a smart compiler that very often can
infer the type automatically, as shown in the following example:

val x = sqrt(10)

The above code avoids any type information as the compiler can
infer the correct type of x from the return value of sqrt(). Note
also that there are no semicolons needed.

Simple classes with private members and a single constructor can
be defined in a single line of code:

class Simple(a: Int, s: String)

Adding functional programming to an object-oriented language rises
the level of abstraction and therefore Scala is a high-level language.
The notion of higher-level sequences, as a Scala String is, can pro-
vide simple control abstractions that take a function as parameter
to be applied to this sequence.

Scala is statically typed. The decision between using a dynamic
typed language or a static typed one for general purpose program-
ming might be a matter of taste and preferences. However, in real-
time and safety-critical applications we want to have as much sup-
port from the compiler for checks as possible. With a static type

system in the language the compiler can verify the absence of type
related runtime errors. Static types also improve the documenta-
tion of the code—no guessing what type a function might return,
depending on types of parameters.

This paper is organized in 7 sections: Section 2 discusses the object
oriented nature of Scala and explores with a tiny example how to
build safe unit objects. Section 3 discusses the functional side of
Scala. Section 4 presents actors, the Scala notion for future con-
current applications. Section 5 sketches the usage of Scala on top
of the RTSJ [4]. Section 6 discusses the notion of domain specific
languages that are supported by Scala. Section 7 concludes.

2. SCALA IS OBJECT ORIENTED
Scala builds on the success of object-oriented languages such as
Java (and to some extent C++) and is object oriented. Compared
to Java it is a “clean” object-oriented language. That means there
are no non-objects such as primitive types. For example, integer
values are of type Int and are full types. However, for performance
reasons the Scala compiler maps those integer types to primitive
int types of the JVM.

Furthermore, Scala can use methods with two parameters in infix
notation and allows to use common operators as method names.
Therefore, the following addition of two integer values

val a = 1
val b = 3
val c = a + b

is in reality a method invocation (+()) on an Int object:

val c = a.+(b)

This allows for definition of new types that feel like being part of
the language. A classic problem in embedded systems, mixing dif-
ferent unit types, has led in 1999 to the loss of NASAs $ 125 million
Mars orbiter. Lockheed Martin used English units while NASA it-
self used the metric system. Therefore, JPL looked into Java (and
real-time Java) to provide a safe abstraction of units [3].

In Scala a new type to represent length values supporting different
units can be defined and used like “normal” numbers. Figure 1
shows a sketch of how such a unit-safe class can be constructed
that would have saved NASA $ 125 million.

This example class uses immutable values instead of variables, a
style preferred for a functional style of programming. Immutable
values further improve safety of the types. An object that extends
App is an executable program where the code of the constructor is
executed. We define two values of our new Length type using me-
ter and feet. Adding those two numbers is safe and the result of
1.6096 m is printed to the console. The class Length is sketched
with a constructor that converts all units to metric units and an ad-
dition method named ’+’.

Note how concise the code is. Just by having parameters in the
class definition a default constructor is defined. Code within the
class definition, here the definition of val m, is already part of this
constructor. A short function, such as +() and toString() in this

object Main extends App {

val a = new Length(1, "m")
val b = new Length(2, "ft")
val c = a + b
println(c)

}

class Length(length: Double, unit: String) {

val m = if (unit.equals("m"))
length else length/3.28084

def +(v: Length): Length =
new Length(m + v.m, "m")

override def toString(): String =
m.toString + " " + unit

}

Figure 1: A simple Unit class to represent length with a unit.

example, can be defined in a single line without any clutter. Types
can often be inferred by the compiler and need not be declared (in
this example for value m). The type of the add function could be
omitted as well, as the compiler can infer it, but it is recommended
programming style to declare the return type of a function as part
of the documentation.

3. SCALA IS A FUNCTIONAL LANGUAGE
Scala is also a functional language. Functional programming has
gained popularity with the rise of multiprocessor and multithreaded
programming. Functional programming does not mutate state and
is therefore easier for parallel code.

Real-time garbage collectors are now standard in every real-time
Java runtime [2, 8, 12]. When the allocation rate and the live-time
of objects is known, a real-time garbage collector can be scheduled
to cleanup the heap before the application runs out of memory [10].

Calculating maximum allocation for a function is similar to worst-
case execution time analysis [9], but considerably easier as no pipeline
analysis, global cache analysis, etc. needs to be considered. How-
ever, the hard part to derive correct scheduling of the collector is
the knowledge of how long objects are live. If objects are used for
communication between threads, i.e., a shared state, the live-time
of objects would need a intra-thread analysis.

Here comes functional style programming as a rescue. Function
code has no side effects and therefore no created objects are shared
between threads. This greatly simplifies the calculation of the max-
imum live time of objects. The temporary created objects are only
live during function execution. This property also fits nicely with
the scoped memory model of the RTSJ. A function is executed
within a temporary scope and after function return exiting the scope
collects all garbage.

However, it has to be noted that it might not be a trivial problem to
statically analyze how much memory is allocated within a function.
As with loop bounds, bounds on the recursion depth need to be
known statically to bound not only the execution time, but also the
memory allocation.

case object Fire
case object Ok
case object NotOk
case object Stop

class Trigger(handler: Actor) extends Actor {
def act() {
handler ! Fire
while (true) {
receive {
case Ok =>
handler ! Fire

case NotOk =>
handler ! Stop
exit()

}
}

}
}

class Handler extends Actor {
def act() {
var cnt = 0
while (true) {
receive {
case Fire =>
if (cnt % 1000 == 0)
Console.println("Handler: fire count " + cnt)

if (cnt < 10000)
sender ! Ok

else
sender ! NotOk

cnt = cnt + 1
case Stop =>
Console.println("Handler: stop")
exit()

}
}

}
}

Figure 2: Two simple actors communicating via messages.

4. ACTORS FOR CONCURRENCY
Scala contains the notion of actors to describe concurrency. An
actor provides an easier to use concurrency model than threads and
shared state. Scala’s actors do not share state, but use message-
passing for communication. Using message passing helps to avoid
race conditions.

Furthermore, access to shared state that resides in main memory
(and then in some shared cache) becomes quickly the performance
bottleneck on multicore processors. Therefore, we need to move
towards message passing that can be easier supported with a better
scalable network-on-chip [11]. Therefore, the actor abstraction fits
very well for future multicore processors.

Figure 2 shows two actors interacting by exchanging simple mes-
sages. Actor Trigger sends Fire messages to the Handler actor,
which in turn sends Ok or NotOk messages back. This example ex-
changes 10000 messages as fast as possible, but for a real-time ap-
plication actor Trigger would be a periodic thread with calls to
waitForNextPeriod.

The actor library is basically supporting a Kahn process network [5].
A Kahn process network is a network of processes that use first-
in first-out channels between processes with unbounded capacity.

Therefore, for real-time systems we need to bound the maximum
number of outstanding messages to have a bounded memory con-
sumption for the message buffers.

5. SCALA AND THE RTSJ
Scala can coexist with Java code. As Scala is the richer language
using Java classes from Scala is easy, but it is not always straight-
forward to use Scala classes from Java. In fact Scala makes heavy
use of the Java standard library. For example, Scala’s string type is
Java’s java.lang.Stringwith enhancements through a StringLike
trait.

Therefore, it should be possible to use RTSJ classes and threads
from a Scala program. Whether the Scala library behaves well with
the scoped memory model of RTSJ is a similar issue as using Java
standard library. Actually the functional part of Scala should be
more scope friendly as no state is shared and the allocated garbage
short lived.

We plan to explore Scala on top of the RTSJ implementation of
aicas [13]. As Scala needs a full Java runtime and library we see no
option on how Scala could be used on top of safety-critical Java [6].
Maybe the other way around is an option: have a restricted Scala
(library) for safety-critical systems.

periodic task (10) {
// here is the periodic work

}

Figure 3: A simple and lightweight DSL for real-time program-
ming.

6. DOMAIN SPECIFIC LANGUAGES
Domain specific languages (DSL), e.g., a language for real-time
systems, are usually hard to establish as a lot of infrastructure, i.e.,
compiler and runtime, needs to be developed and maintained. Scala
might be a door opener for a real-time domain language. Scala has
the power to build a DSL within the Scala language. The DSL
can simply be implemented as a Scala library. One example is
Scala’s own actor framework. It feels like a language extension,
but only uses Scala’s powerful language possibilities. Another ex-
ample shows Scala in a very different domain: Chisel is a hardware
description language [1].

These two DSL examples show that the spectrum of possible DSLs
is large. A future direction of research is to define a DSL, or even
a family of DSLs, for future real-time and safety-critical systems.

The RTSJ has become, similar to Java, a heavyweight specification
(e.g., Draft 19 of RTSJ is about 800 pages1). The current version
of the safety-critical Java specification [6] with currently 830 pages
is probably even worse.2 This is clearly not what constitutes a brief
and concise specification for small safety-critical systems that need
certification.

Maybe the definition of a DSL for real-time Java or for safety-
critical Java can change the direction of this trend and provide a
lightweight language and API. Figure 3 shows a very short exam-
ple how a real-time DSL could be used to define a periodic task.
The task construct has a single parameter, the period in millisec-
onds (we can add versions for different time requirements with a
more elaborated syntax). The code for the periodic task follows
immediately between curly braces.

As future work we want to investigate the definition and imple-
mentation of a real-time DSL. We will explore this DSL on top of
a RTSJ runtime, e.g., the JamaicaVM [13].

7. CONCLUSION
Java has over the last 20 years of existence collected some garbage
and legacy. However, the Java virtual machine is a very success-
ful platform for code execution. Scala offers a clean cut from the
language perspective to include modern programming idioms, but
using the Java virtual machine as execution platform. In this paper
we have explored some features of Scala that might be interest-
ing from the real-time programming perspective. The pure object-
oriented approach of Scala can help to write safer programs. The
functional aspect of Scala can help to write parallel code and com-
bined with the actor model for concurrency this may scale well for
future multicore processors.

We assume Scala can be used as an application language to execute
on top of a real-time virtual machine with the RTSJ library. How-
ever, as Scala supports the definition of domain specific languages

1Available at https://www.aicas.com/cms/en/rtsj
2Available at https://github.com/scj-devel/doc

we envision such as domain specific language for real-time systems
that might delegate to the RTSJ for the implementation.

This paper is a starting point for discussion and further research.
There are many topics around Scala that can be explored by the
real-time, object-oriented real-time, and real-time Java research com-
munity. We hope that Scala will appear as a topic in future JTRES
events.

8. REFERENCES
[1] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman,

R. Avizienis, J. Wawrzynek, and K. Asanovic. Chisel:
constructing hardware in a scala embedded language. In
P. Groeneveld, D. Sciuto, and S. Hassoun, editors, The 49th
Annual Design Automation Conference (DAC 2012), pages
1216–1225, San Francisco, CA, USA, June 2012. ACM.

[2] D. F. Bacon, P. Cheng, and V. T. Rajan. The metronome: A
simpler approach to garbage collection in real-time systems.
In R. Meersman and Z. Tari, editors, OTM Workshops,
volume 2889 of Lecture Notes in Computer Science, pages
466–478. Springer, 2003.

[3] E. G. Benowitz and A. F. Niessner. Experiences in adopting
real-time java for flight-like software. In R. Meersman and
Z. Tari, editors, On The Move to Meaningful Internet Systems
2003: OTM 2003 Workshops, OTM Confederated
International Workshops, HCI-SWWA, IPW, JTRES, WORM,
WMS, and WRSM 2003, Catania, Sicily, Italy, November 3-7,
2003, Proceedings, volume 2889 of Lecture Notes in
Computer Science, pages 490–496. Springer, 2003.

[4] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and
M. Turnbull. The Real-Time Specification for Java. Java
Series. Addison-Wesley, June 2000.

[5] G. Kahn. The semantics of a simple language for parallel
programming. In J. L. Rosenfeld, editor, Information
Processing 74: Proceedings of the IFIP Congress 74, pages
471–475. IFIP, North-Holland Publishing Co., Aug. 1974.

[6] D. Locke, B. S. Andersen, B. Brosgol, M. Fulton, T. Henties,
J. J. Hunt, J. O. Nielsen, K. Nilsen, M. Schoeberl, J. Vitek,
and A. Wellings. Safety-critical Java technology
specification, draft, 2014.

[7] M. Odersky, L. Spoon, and B. Venners. Programming in
Scala. Artima Inc, 2008.

[8] F. Pizlo, D. Frampton, E. Petrank, and B. Steensgaard.
Stopless: a real-time garbage collector for multiprocessors.
In ISMM ’07: Proceedings of the 6th international
symposium on Memory management, pages 159–172, New
York, NY, USA, 2007. ACM.

[9] W. Puffitsch, B. Huber, and M. Schoeberl. Worst-case
analysis of heap allocations. In Proceedings of the 4th
International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA 2010),
2010.

[10] M. Schoeberl. Scheduling of hard real-time garbage
collection. Real-Time Systems, 45(3):176–213, 2010.

[11] M. Schoeberl, R. B. Sørensen, and J. Sparsø. Models of
communication for multicore processors. In Proceedings of
the 11th Workshop on Software Technologies for Embedded
and Ubiquitous Systems (SEUS 2015), pages 44–51,
Aukland, New Zealand, April 2015. IEEE.

[12] F. Siebert. Eliminating external fragmentation in a
non-moving garbage collector for Java. In Proceedings of the
2000 international conference on Compilers, architecture,

https://www.aicas.com/cms/en/rtsj
https://github.com/scj-devel/doc

and synthesis for embedded systems (CASES 2000), pages
9–17, New York, NY, USA, 2000. ACM.

[13] F. Siebert and A. Walter. Deterministic execution of Java’s
primitive bytecode operations. In Proceedings of the Java

Virtual Machine Research and Technology Symposium (JVM
’01): April 23–24, 2001, Monterey, California, USA.

Berkeley, CA, pages 141–152. USENIX, 2001.

