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Abstract 

Java, with its pragmatic approach to object orientation 
and enhancements over C, got very popular for desktop 
and server application development. The productivity in-
crement of up to 40% compared with C++ [1] attracts 
also embedded systems programmers. However, standard 
Java is not practical on these usually small devices. This 
paper presents the status of restricted Java environments 
for embedded and real-time systems. For missing defini-
tions, additional profiles are proposed. Results of the im-
plementation on a Java processor show that it is possible 
to develop applications in pure Java on resource con-
straint devices. 

1. Introduction 
Java was first used in an embedded system. In the early 

’90s Java, which was originally known as Oak, was 
created as a programming tool for a wireless PDA. The 
device (known as *7) was a small SPARC based hardware 
device with a tiny embedded OS. However, *7 was not 
issued as a product and Java was officially released in 
1995 as a new language for the internet (to be integrated 
into Netscape’s browser). Over the years, Java technology 
has become a programming tool for desktop applications 
and web services. With every new release, the library (de-
fined as part of the language) continues to grow. Java for 
embedded systems was clearly out of focus for Sun. With 
the arrival of mobile phones, Sun again became interested 
in this embedded market. Sun defined different subsets of 
Java, which are analyzed in this paper. 

As the language became popular, with easier object 
oriented programming than C++ and threads defined as 
part of the language, its usage in real-time systems was 
considered. Two competing groups began to define how to 
convert Java for use in these systems. Nilsen published the 
first paper on this subject in November 1995 [2] and 
formed the Real-Time Working Group. The other group, 
known as the Real-Time Expert Group, published the 
RTSJ (Real-Time Specification for Java) [3]. RTSJ was 
the first specification request under Suns Java Community 
Process and gained much attention from academic and 
industrial research. This paper will give: 
 

• An extended overview of actual specifications for Java 
for embedded and real-time systems 

• Propose definitions to fill the gap for small embedded 
systems, implemented on JOP (a Java Optimized Pro-
cessor) [4] 

 

This paper is structured as follows. Section 2 summa-
rizes the problems with standard Java on embedded sys-
tems. The various definitions for small devices given by 
Sun are described in Section 3. Section 4 gives an over-
view of the RTSJ and restrictions for high-integrity appli-
cations. If, and how, these specifications are sufficient for 
small embedded systems in general and specifically for 
JOP is analyzed. In Section 5 the missing definition for 
small embedded real-time systems is proposed. Implemen-
tation results of this definition and conclusions are pre-
sented in Section 6 and 7 respectively. 

2. Java Support for Embedded Systems 
Java has a built in model for concurrency, the class 

Thread. All threads share the same heap resulting in a 
shared memory communication model. Mutual exclusion 
can be defined on methods or code blocks with the key-
word synchronized. Synchronized methods acquire a lock 
on the object of the method. For synchronized code blocks, 
the object to be locked is explicitly stated. Every object 
inherits the methods wait(), notify() and notifyAll() from Ob-
ject. These methods in conjunction with synchronization 
on the object support activation. The classes ja-
va.util.TimerTask and java.util.Timer (since JDK 1.3) can 
be used to schedule tasks for future execution in a back-
ground thread. 

Although Java has language features that simplify con-
current programming the definition of these features is too 
vague for real-time systems. Java, as described in [5], de-
fines a very loose behavior of threads and scheduling. For 
example, the specification allows even low priority threads 
to preempt high priority threads. This protects threads from 
starvation in general purpose applications, but is not ac-
ceptable in real-time programming. Even an implementa-
tion without preemption is allowed. Wakeup of a single 
thread with notify() is not precisely defined. It is not man-
datory for a JVM to deal with the priority inversion prob-
lem. Garbage collection greatly simplifies programming 
and helps to avoid classic programming errors (e.g. memo-



ry leaks), but is not suitable for real-time systems and 
problematic in embedded systems. A more conservative 
approach to memory allocation is necessary. Dynamic 
class loading requires the resolution and verification of 
classes. This function is usually too complex (and too 
much memory consuming) for embedded devices. Upper 
bound of execution time for this function is almost imposs-
ible to predict (or too large). This results in complete 
avoidance of dynamic class loading in real-time systems. 
For an implementation to be Java-conformant, it must in-
clude the full library (JDK). The JAR files for this library 
constitutes about 15 MB (in JDK 1.3, without native libra-
ries), far too large for many embedded systems. Since Java 
was designed to be a safe language with a safe execution 
environment, no classes are defined for low-level access to 
hardware features. The standard library was not defined 
and coded with real-time applications in mind. 

3. Java Micro Edition 
The definition of Java also includes the definition of the 

class library (JDK). This is a huge library and too large for 
some systems. To compensate for this Sun has defined the 
Java 2 Platform, Micro Edition (J2ME) [6]. As Sun has 
changed the focus of Java targets several times, the speci-
fications reflect this through their slightly chaotic manner. 
J2ME reduces the function of the JVM (e.g. no floating 
point support) to make implementation easier on smaller 
processors. It also reduces the library (API). J2ME defines 
three software layers. The Java Virtual Machine is as-
sumed to be implemented on top of a host operating sys-
tem. There are no additional definitions for the J2ME in 
this layer. The Configuration defines the minimum set of 
JVM features and Java class libraries available on a partic-
ular category of devices. In a way, a configuration defines 
the lowest common denominator of the Java platform fea-
tures and libraries that the developers can assume to be 
available on all devices. The Profile defines the minimum 
set of Application Programming Interfaces (APIs) availa-
ble on a particular family of devices. Profiles are imple-
mented upon a particular configuration. Applications are 
written for a particular profile and a device can support 
multiple profiles. 

3.1. Connected Limited Device Configuration 
(CLDC) 

CLDC is a configuration for connected devices with at 
least 192 kB of total memory and a 16-bit or 32-bit proces-
sor. As the main target devices are cellular phones, this 
configuration has become very popular. The CLDC is 
composed of the K Virtual Machine (KVM) and core class 
libraries. Error handling has been altered so that the JVM 
halts in an implementation-specific manner. The following 
features have been removed from the JVM: 

• Floating point support 
• Java Native Interface (JNI) 
• Reflection 
• Finalization 
• Weak references 
• User-defined class loaders 
• Thread groups and daemon threads 
• Asynchronous exceptions 
• Data type long is optional 
 

These restrictions are defined in the final version 1.0 of 
the CLDC. The CLDC defines a subset of the following 
Java class libraries: java.io, java.lang, java.lang.ref and 
java.util. An additional library (javax.microedition.io) de-
fines a simpler interface for communication than java.io 
and java.net. When implementing CLDC, one may choose 
to preload/prelink some classes. A utility (JavaCodeCom-
pact) combines one or more Java class files and produces a 
C files that can be compiled and linked directly with the 
KVM. There is only one profile defined under CLDC: the 
Mobile Information Device Profile (MIDP) defines a user 
interface for LC displays, a media player and a game API. 

3.2. Connected Device Configuration (CDC) 
The CDC defines a configuration for devices with net-

work connection and assumes a minimum of a 32-bit pro-
cessor and 2 MB memory. CDC defines no restrictions for 
the JVM. A virtual machine, the CVM, is part of the dis-
tribution. The CVM expects a full featured operating sys-
tem. The existence of JavaCodeCompact implies that pre-
loading of classes is allowed in CDC. Three profiles are 
defined for CDC. Foundation Profile is a set of Java APIs 
that support resource-constrained devices without a stan-
dards-based GUI system. The basic class libraries from the 
Java standard edition (like java.io, java.lang and java.net) 
are supported and a connection framework (ja-
vax.microedition.io) is added. Personal Basis Profile is a 
set of Java APIs that support resource-constrained devices 
with a standards-based GUI framework based on 
lightweight components. It adds some parts of the Abstract 
Window Toolkit (AWT) support (relative to JDK 1.1 
AWT). Personal Profile completes the AWT libraries and 
includes support for the applet interface. 

3.3. Discussion 
Many of the specifications (i.e. configurations and pro-

files) are developed using the Java Community Process 
(JCP). JCP is not an open standard nor is it part of the 
open source concept. Although the acronym J2ME implies 
Java version 2 (i.e. JDK 1.2 and later) almost all technolo-
gies under J2ME are still based on JDK 1.1. Besides Java 
Card, CLDC is the ‘smallest’ definition from Sun. It as-
sumes an operating system and is quite large (the JAR file 



for the classes is about 450 kB). There are no API defini-
tions for low-level hardware access. CLDC is not suitable 
for small embedded devices. Java Card defines a different 
JVM instruction set and thus compromises basic ideas of 
Java. A more restricted definition with following features 
is needed: 
 

• JVM restrictions, such as in CLDC 1.0 
• A package for low-level hardware access 
• A minimum subset of core libraries 
• Additional profiles for application domains 

4. Real-Time Extensions 
In 1999, a document defining the requirements for real-

time Java was published by NIST [7]. Based on these re-
quirements, two groups defined specifications for real-time 
Java. A comparison of these two specifications and as 
compared with Ada 95’s Real-Time Annex can be found 
in [8]. The Real-Time Core Extension [9] is a specification 
published under the J Consortium. It is still in a draft ver-
sion and there is no implementation available. 

The Real-Time Specification for Java (RTSJ) defines a 
new API with support from the JVM [3]. A Reference Im-
plementation (RI) of RTSJ forms part of the specification. 
RTSJ is backward compatible with existing non-real-time 
Java programs, which implies that RTSJ is intended to run 
on top of J2SE (and not on J2ME). The following section 
presents an overview of the RTSJ. 

4.1. Threads and Scheduling 
A priority-based, preemptive scheduler with at least 28 

real-time priorities is defined as base scheduler. Additional 
levels (ten) for the traditional Java threads need to be 
available. Threads with the same priority are queued in 
FITO order. Additional schedulers (e.g. EDF) can be dy-
namically loaded. The class Scheduler and associated 
classes provide optional support for feasibility analysis. 

Any instances of classes that implement the interface 
Schedulable are scheduled. In RTSJ RealtimeThread, No-
HeapRealtimeThread, and AsyncEventHandler are sche-
dulable objects. NoHeapRealtimeThread has and AsyncE-
ventHandler can have a priority higher than the garbage 
collector. As the available release-parameters indicate, 
threads are ether periodic or asynchronous events. Threads 
can be grouped together to bind the execution cost and 
deadline for a period. 

4.2. Memory 
As garbage collection is problematic in real-time appli-

cations, RTSJ defines new memory areas. Scoped memory 
is a memory area with bound lifetime. When a scope is 
entered (with a new thread or through enter()), all new 
objects are allocated in this memory area. Scoped memory 

areas can be nested and shared among threads. On exit of 
the last thread from a scope, all finalizers of the allocated 
objects are invoked and the memory area is freed. Physical 
memory is used to control allocation in memories with 
different access time. Raw memory allows byte-level 
access to physical memory or memory-mapped I/O. Im-
mortal memory is a memory shared between all threads 
without a garbage collector. All objects created in this 
memory area have the same live time as the application (a 
new definition of immortal). Heap memory is the tradition-
al garbage collected memory. Maximum memory usage 
and the maximum allocation rate per thread can be limited. 
Strict assignment rules between the different memory areas 
have to be checked by the implementation. 

4.3. Synchronization 
The implementation of synchronized has to include an 

algorithm to prevent priority inversion. Priority inheritance  
is the default and priority ceiling emulation protocol can be 
used on request. Threads waiting to enter a synchronized 
block are priority and FIFO within priority ordered. Wait 
free queues are provided for communication between in-
stances of java.lang.Thread and RealtimeThread. 

4.4. Time and Timers 
Classes to represent relative and absolute time with na-

nosecond accuracy are defined. All time parameters are 
split to a long for milliseconds and an int for nanoseconds 
within those milliseconds. Each time object has an asso-
ciated Clock object. Multiple clocks can represent different 
sources of time and resolution. This allows reduction of 
queue management overheads for tasks with different to-
lerance for jitter. A new type, rationale time, can be used 
to describe periods with a requested resolution over a 
longer period (i.e. allowing release jitter between the 
points of the outer period). Timer classes can generate 
time-triggered events (one shot and periodic). 

4.5. Asynchrony 
Program logic representing external world events is 

scheduled and dispatched by the scheduler. An AsyncEvent 
object represents an external event (such as a POSIX sig-
nal or a hardware interrupt) or an internal event (through 
call of fire()). Event handlers are associated to these events 
and can be bound to a regular real-time thread or represent 
something similar to a thread. The relationship between 
events and handlers can be many-to-many. Release of han-
dlers can be restricted to a minimum interarrival time. 

The exception handling of Java is extended to represent 
asynchronous transfer of control (ATC). RealtimeThread 
overloads interrupt() to generate an AsynchronousInterrup-
tedException (AIE). The AIE is deferred until the execu-
tion of a method that is willing to accept ATC. The method 



indicates this by including AIE in its throw clause. The 
semantics of catch is changed so that, even when it catches 
an AIE, the AIE is still propagated until the happened() 
method of the AIE is invoked. Timed, a subclass of AIE, 
simplifies the programming of timeouts. 

4.6. Discussion of the RTSJ 
RTSJ is a complex specification leading to a big memo-

ry footprint. The core classes and the JVM executable of 
the RI on Linux constitute about 5 MB. RTSJ assumes a 
RTOS and the RI runs on a heavyweight RT-Linux sys-
tem. RTSJ is too complex for low-end embedded systems. 
This complexity also hampers programming of high-
integrity applications. Runtime memory allocation of the 
RTSJ classes is not documented. 

Threads and Scheduling: If a real-time thread is 
preempted by a higher priority thread, it is not defined if 
the preempted thread is placed in front or back of the wait-
ing queue.  It is not specified whether the default scheduler 
performs, or has to perform, time slicing between threads 
of equal priority. 

Memory: It would be ideal if real-time systems were able 
to allocate all memory at the initialization phase and forbid 
dynamic memory in the mission phase. However, this is 
too restrictive for some library functions. The solution to 
this problem in RTSJ is ScopedMemory, a memory space 
with limited lifetime. However, it can only be used as a 
parameter for thread creation or with enter(Runnable r). In 
a system without dynamic thread creation, using scoped 
memory at creation time of the thread leads to the same 
behavior as using immortal memory. The syntax with en-
ter() leads to a cumbersome programming style: for each 
code part where limited lifetime memory is needed a new 
class has to be defined and a single instance of this class 
allocated at initialization time. A simpler syntax is shown 
in Figure 1. The main drawback of this syntax is that the 
programmer is responsible for its correct usage.  
 
public void run() { 
    ... 
    myMem.enter(); 
    {   // new code block disables access 
        // to new objects in outer scope. 
        Abc a = new Abc(); 
    } 
    myMem.exit(); 
    ... 
} 

Figure 1: Simpler syntax for scoped memory 

Time and Timers: Why is the time split into milliseconds 
and nanoseconds? In the RI, it is converted to ns for 
add/subtract. After all mapping and converting (Absolute-
Time, HighResolutionTime, Clock and RealTimeClock) the 
System.currentTimeMillis() time is used. Since time trig-

gered release of tasks can be modeled with periodic 
threads, the additional concept of timers is superfluous. 

Asynchrony: An unbound AsyncEventHandler is not al-
lowed to enter() a scoped memory. However, it is not clear 
if scoped memory is allowed as a parameter in the con-
struction of a handler. An unbound AsyncEventHandler 
leads to the implicit start of a thread on an event. This can 
lead to substantial overheads. From the application pers-
pective, bound and unbound event handlers behave in the 
same way. This is an implementation hint expressed 
through different classes. A consistent way to express the 
importance of events would be a scheduling parameter for 
the minimum allowed latency of the handler. The syntax 
that is used in the throws clause of a method to state that 
ATC will be accepted is misleading. Exceptions in throws 
clauses are usually generated in a method and not ac-
cepted. 

J2SE Library: It is not specified which classes are safe to 
be used in RealTimeThread and NoHeapRealTimeThread. 
Several operating system functions can cause unbound 
blocking and their usage should be avoided. The memory 
allocation in standard JDK methods is not documented and 
the use in immortal memory can lead to memory leaks. 

Missing Features: There is no concept such as start mis-
sion. Changing scheduling parameters during runtime can 
lead to inconsistent scheduling behavior. There is no pro-
vision for low-level blocking such as disabling interrupts. 
This is a common technique in device drivers where some 
hardware operations have to be atomic without affecting 
the priority level of the requesting thread. 

On Small Systems: Many embedded systems are still built 
with 8 or 16-bit CPUs. 32-bit processors are seldom used. 
The default integer type of Java is 32-bit, still large enough 
for almost all data types needed in embedded systems. 
Why are, often expensive, longs (64 bit integer) used in 
the RTSJ? 

4.7. Subsets of RTSJ 
RTSJ is complex to implement and applications devel-

oped with RTSJ are difficult to analyze (because of some 
of the sophisticated features of the RTSJ). Various profiles 
have been suggested for high-integrity real-time applica-
tions that result in restrictions of the RTSJ. In [11], a sub-
set of the RTSJ for high-integrity application domain with 
hard real-time constraints is proposed. It is inspired by the 
Ravenscar profile for Ada [12] and focuses is on exact 
temporal predictability. 

The application is divided in two different phases: in-
itialization and mission. All non time-critical initialization, 
global object allocations, thread creation and startup are 
performed in the initialization phase. All classes need to be 
loaded and initialized in this phase. The mission phase 



starts after returning from main(), which is assumed to ex-
ecute with maximum priority. The number of threads is 
fixed and the assigned priorities remain unchanged.Two 
types of tasks are defined: Periodic time-triggered activi-
ties execute an infinite loop with at least one call of wait-
ForNextPeriod(). Sporadic activities are modeled with a 
new class SporadicEvent. A SporadicEvent is bound to a 
thread and an external event on creation. Unbound event 
handlers are not allowed. It is not clear if programmatic 
trigger of the event is allowed (invocation of fire()). A re-
striction for a minimum interarrival time of events is not 
defined. Timers are not supported as time-triggered activi-
ties are well supported by periodic threads. Asynchronous 
transfers of control, overrun and miss handles and calls to 
sleep() are not allowed. Synchronized methods with priori-
ty ceiling protocol provide mutual exclusion to shared re-
sources. Threads are dispatched in FIFO order within each 
priority level. Sporadic events are used instead of wait, 
notify and notifyAll for signaling. Since garbage collection 
is still not time predictable, it is not supported. Scoped 
memory (LTMemory) is provided for object allocation dur-
ing the mission phase. LTMemory has to be created during 
the initialization phase with initial size equal maximum 
size. For each thread and for the operations of the JVM 
WCET must be computable. Code is restricted to bound 
loops and bound recursions. Annotations for WCET analy-
sis are suggested. The JVM needs to check the timing of 
events and thread execution. It is not stated how the JVM 
should react to a timing error. 

Ravenscar-Java profile [13] is a restricted subset of RTSJ 
and is based on the work mentioned above. To simplify the 
initialization phase RJ defines Initializer, a class that has to 
be extended by the application class which contains main(). 
The use of time scoped memory is further restricted. 
LTMemory areas are not allowed to be nested nor shared 
between threads. Traditional Java threads are disallowed 
by changing the class java.lang.Thread. The same is true 
for all schedulable objects from the RTSJ. Two new 
classes are defined: 
 

• PeriodicThread where run() gets called periodically, 
removing the loop construct with waitForNextPeriod(). 

• SporadicEventHandler binds a single thread with a sin-
gle event. The event can be an interrupt or a software 
event. 

Criticisms of Subsets of the RTSJ: If a subset of RTSJ is 
implemented and allowed it is harder for programmers to 
find out what is available and what not. This form of com-
patibility causes confusion. The use of different classes for 
a different specification is clearer and less error prone. 
Ravenscar-Java, as a subset of the RTSJ, claims to be 
compatible with the RTSJ, in the sense that programs writ-
ten according to the profile are valid RTSJ programs. 

However, mandatory usages of new classes such as Perio-
dicThread need an emulation layer to run on a RTSJ sys-
tem. In this case, it is better to define complete new classes 
for a subset and provide the mapping to RTSJ. It is not 
necessary to distinguish between heap and immortal mem-
ory. Without a garbage collector, heap implicitly equates 
to immortal memory. 

5. Definitions for Small Embedded Systems 
Restrictions on Java, such as the available configura-

tions and profiles of J2ME and the RTSJ, are still too large 
and complex for small embedded real-time systems. Simp-
ler definitions are therefore proposed: a configuration re-
stricts the function of the JVM and the necessary library. 
Class definitions for low-level I/O are added. On top of 
this configuration, a profile for high-integrity real-time 
applications is defined.  

5.1. Small Embedded Devices Configuration 
SEDC is a configuration that fits into the J2ME layer 

model. It is intended for small embedded devices with a 
16-bit (or even 8-bit) microprocessor and a low memory 
budget (below 128 kB). 

Restrictions of the JVM: The JVM restrictions are simi-
lar to CLDC 1.0. The subset of the Java classes is smaller. 
To simplify the JVM the application is preverified and 
preloaded (and sometimes also linked with the JVM). 
Since small embedded devices have no or only a very sim-
ple user interface (like switches and LEDs), no stream in-
put/output facilities are usually necessary. As memory is 
very limited, the Java class library is reduced to the abso-
lute minimum. Only the following classes need to be avail-
able: java.lang.Object and java.lang.String. Threads are not 
part of SEDC. We define new thread behavior with real-
time semantics in an extra profile. An additional library is 
provided for low-level I/O-access: 

Class IOPort: Static methods of this class allow the appli-
cation low-level access to I/O ports: 
 
public static int read(int address) 
public static void write(int value, int address) 

Class Clock: Almost all microcontrollers have some kind 
of timer or counter. The class Clock provides a standard 
way of querying counter values. count() returns the current 
time in clock ticks. Tick frequency is device dependent 
and can be queried. ticksPerSecond() returns the resolution 
of the clock. For a system with a clock frequency higher 
than 2.15 GHz ticksPerMs() provides the resolution of the 
clock per millisecond. resolutionInBits() returns the length 
of the internal clock in bits. 

Class Interrupt: The interrupt handler must extend the 
class Interrupt and register itself for an interrupt. An inter-



rupt causes the object's handle() method to be called. For 
simple blocking, all interrupts can be disabled. The indi-
vidual masking of interrupts is device specific and is han-
dled via IOPort. 

5.2. A Real-Time Profile for Embedded Java 
A simple real-time profile is defined in the concept of 

the ADA Ravenscar profile [12]. It resembles the ideas 
from [11] and [13] but is not compatible with the RTSJ. 
Since the application domain for RTSJ is different from 
high-integrity systems, it makes sense for it not to be com-
patible with RTSJ. Restrictions can be enforced defining 
new classes (e.g. setting thread priority in the constructor 
of a real-time thread alone, enforcing minimum interarrival 
times for sporadic events). This profile addresses the same 
devices as SEDC (it is not, of course, restricted to small 
devices). With an emulation layer, it should be possible to 
run programs written for this specification on top of RTSJ. 
The guidelines are: 
 

• High-integrity profile. 
• Easy to implement. 
• Low runtime overhead. 
• No syntactic extension of Java. 
• Support for time measurement if WCET analysis tools 

are not available. 
• Known overhead: Documentation of runtime behavior 

and memory requirements of every JVM operation and 
all methods has to be provided. 

• Implementation possible on top of SEDC. 

Application Structure: The following restrictions apply 
to the application: 
 

• Initialization and mission phase. 
• Fixed number of threads. 
• Threads are created at initialization phase. 
• All shared objects are allocated at initialization. 

Threads: Three schedulable objects are defined. RtThread 
represents a periodic task. As usual, task work is coded in 
run() which gets called on missionStart(). A scoped memo-
ry object can be attached to an RtThread at creation. HwE-
vent represents an interrupt with a minimum interarrival 
time. If the hardware generates more interrupts, they get 
lost. SwEvent represents a software-generated event. It is 
triggered by fire() and needs to override handle(). Figure 2 
shows the definition of the basic classes. An example of a 
real-time thread can be found in Figure 3. 

Scheduling: Threads and events are scheduled with fixed 
priority. No real-time threads or events are scheduled dur-
ing the initialization phase. Most real-time systems use a 
fixed-priority preemptive scheduler. Tasks with the same 
priority are usually scheduled in a FIFO order. Two com-

mon ways to assign priorities are rate monotonic or, in a 
more general form, deadline monotonic assignment. When 
two tasks are given the same priority, we can choose one 
of them and assign a higher priority to that task and the 
task set will still be schedulable. This results in a strictly 
monotonic priority order and we do not need to deal with 
FIFO order. This eliminates queues for each priority level 
and results in a single, priority ordered task list with unli-
mited priority levels. Synchronized blocks are executed 
with priority ceiling emulation protocol. With objects for 
which the priority is not set, a top priority is assumed. This 
avoids priority inversions on objects that are not accessible 
from the application (e.g. objects inside a library). In addi-
tion, the scheduler contains methods for worst-case time 
measurement for both the periodic work and handler me-
thods. These measured execution times can be used during 
development when no WCET analysis tool is available. 
 
public class RtThread { 
 
    public RtThread(int priority, int period) 
    public RtThread(int priority, int period, 
                    int offset) 
    public RtThread(int priority, int period, 
                    Memory mem) 
    public RtThread(int priority, int period, 
                    int offset, Memory mem) 
 
    public void enterMemory() 
    public void exitMemory() 
 
    public void run() 
    public boolean waitForNextPeriod() 
 
    public static void startMission() 
} 
 
public class HwEvent extends RtThread { 
 
    public HwEvent(int priority, int minTime, 
                   int number) 
    public HwEvent(int priority, int minTime, 
                   Memory mem, int number) 
 
    public void handle() 
} 
 
public class SwEvent extends RtThread { 
 
    public SwEvent(int priority, int minTime) 
    public SwEvent(int priority, int minTime, 
                   Memory mem) 
 
    public final void fire() 
    public void handle() 
} 
 

Figure 2: Schedulable objects 

Memory: The profile does not support a garbage collector. 
All memory allocation should be done at initialization 
phase. For new objects during the mission phase, a scoped 
memory is provided. Every scoped memory area can be 
assigned to one RtThread. A scoped memory cannot be 
shared between threads. No references from the heap to 
scoped memory are allowed. Scoped memory is explicitly 



entered and left with calls from the application logic. 
Memory areas are cleared on creation and when leaving 
the scope (call of exitMemory()) leading to a memory area 
with constant allocation time. 
 
public class Worker extends RtThread { 
 
    private SwEvent event; 
 
    public Worker(int p, int t, 
                  SwEvent ev) { 
        super(p, t,  
            // create a scoped memory area 
            new Memory(10000) 
        ); 
        event = ev; 
    } 
 
    public void run() { 
 
        for (;;) { 
            work();       // do some work 
            event.fire(); // and fire an event 
            // some work in scoped memory 
            enterMemory(); 
            workWithMem(); 
            exitMemory(); 
 
            // wait for next period 
            if (!waitForNextPeriod()) { 
                missedDeadline(); 
            } 
        } 
        // should never reach this point 
    } 
} 

Figure 3: A periodic real-time thread 

Restriction of Java: Only WCET analyzable language 
constructs are allowed. Since the definition when to call 
the static class initializer is problematic, they are disal-
lowed. This code has to be moved to a static method (e.g. 
init()) and called in the initialization phase. finalize() has a 
weak definition in Java. Because real-time systems run 
forever, objects in the heap, that is implicit immortal 
memory in this specification, will never be finalized. Ob-
jects in scoped memory are released on exitMemory(). 
However, finalizations on these objects complicate WCET 
analysis of exitMemory(). Due to the implementation and 
WCET analysis complexity dynamic class loading is 
avoided. A program analysis tool can greatly help in en-
forcing these restrictions. 

6. Implementation Results 
The proposed profile is implemented on JOP. In this 

section, the implementation of the simple real-time profile 
is compared with the RI (Reference Implementation) of 
RTSJ on top of Linux. The RI is an interpreting implemen-
tation of the JVM not optimized for performance. A com-
mercial version of the RTSJ, JTime by TimeSys, should 
perform better. However, it was not possible to get a li-
cense of JTime for research purpose. JOP is implemented 
in a low cost FPGA (Cyclone EP1C6) from Altera clocked 

with 100 MHz. The test results for the RI were obtained on 
an Intel Pentium MMX 266 MHz, running Linux SuSE 8.2 
with the TimeSys GPL Linux 3.1 [14] kernel as recom-
mended by the RI. For each test 500 measurements were 
made. 

Many activities in real-time systems must be performed 
periodically. Low release jitter is of major importance for 
tasks such as control loops. The test setting is similar to the 
periodic thread test in [15]. A single real-time thread only 
calls waitForNextPeriod() in a loop and records the time 
between calls that follow. Table 1 shows the average, 
standard deviation and extreme values for different period 
times on JOP. In Table 2 the same values are shown for the 
RI.  
 

 Avg. Std. Dev. Min. Max. 
T=80 us 80 us 28 us 52 us 115 us
T=100 us 100 us 0 us 100 us 100 us
T=500 us 500 us 0 us 500 us 500 us

Table 1: Jitter of Periodic Threads with JOP. 

 Avg. Std. Dev. Min. Max. 
T=5 ms 4.00 ms 7.92 ms 0.017 ms 19.90 ms
T=10 ms 6.64 ms 9.34 ms 0.019 ms 19.94 ms
T=20 ms 20.0 ms 0.015 ms 19.87 ms 20.14 ms
T=30 ms 30.0 ms 0.031 ms 29.69 ms 30.31 ms
T=35 ms 35.0 ms 5.001 ms 29.75 ms 40.25 ms

Table 2: Jitter of Periodic Threads with RI/RTSJ. 

Using of a microsecond accurate timer interrupt, pro-
grammed by the scheduler, results in excellent perfor-
mance of periodic threads in JOP. No jitter can be ob-
served with a single thread at periods above 100 us. The RI 
performs inaccurately at periods below 20 ms. Larger pe-
riods that are multiples of 10 ms have very low jitter. 
However, using a period such as 35 ms shows a standard 
deviation of five ms. A detailed look at the collected sam-
ples shows only values of 30 and 40 ms. This implies a 
timer tick of 10 ms in the underlying operating system. 

Table 3 gives the time for the context switch in proces-
sor clock cycles. The test setting consists of two threads. A 
low priority thread continuously stores the current time in 
a shared variable. A high priority periodic thread measures 
the time difference between this value and the time imme-
diately after waitForNextPeriod(). 
 

 Avg. Std. Dev. Min. Max. 
JOP 4088 10.29 4083 4116
RI Linux 12923 1145 11529 21090

Table 3: Time for a Thread Switch in Clock Cycles. 

In the next test setting, a high priority event handler is 
triggered by a low priority periodic thread. As 



AsynchEventHandler performs not very well [15], a 
BoundAsynchEventHandler is used for the RI test program. 
The time elapsed between the invocation of fire() and the 
first statement of the event handler is measured. Table 4 
shows the elapsed time in clock cycles for JOP and the 
RTSJ RI. 
 

 Avg. Std. Dev. Min. Max. 
JOP 4283 3.0 4283 4350
RI Linux 69273 7832 63060 101292

Table 4: Dispatch Latency of Event Handlers. 

The time to dispatch an asynchronous event is similar to 
the context switch time in JOP. The maximum value oc-
curred only on the first event, all following events where 
dispatched with the minimum time. In the RI the dispatch 
time is about 6 times larger than a context switch. This 
indicates that the implementation of fire() and the commu-
nication of the event to the underlying operating system is 
not optimal. 

To verify that the profile is expressive enough for high-
integrity applications, Ravenscar Java was implemented on 
top of it. The only restriction observed is the absence of 
support for long in the JVM. This type is mandatory in the 
RTSJ for absolute and relative time definitions. 

JOP is implemented on a low cost FPGA (EP1C6) con-
suming about 30% of the chip area. The unused area can 
be used for custom peripherals or a multi processor solu-
tion on a single chip. This resource usage is similar to Al-
teras NIOS, a 32-bit load/store RISC processor. The basic 
JVM with the proposed real-time extension consumes 9 
KB of memory, leaving enough room for the application 
code and data even in very small devices. The real-time 
scheduler needs 0.5 KB per thread at runtime. 

7. Conclusion 
Some definitions of Java for embedded and real-time 

systems do exist. CLDC, as a restriction for embedded 
systems, suits small systems best, but is still large. The 
most common specification for real-time Java is the RTSJ. 
However, this specification is complex and large, making 
it not the primary choice for small embedded systems or 
high-integrity systems. Restrictions on the RTSJ can trans-
form the definition into a high-integrity profile, but they 
inherit the complex API. A very small configuration for 
embedded systems and a high-integrity real-time profile 
that fits this configuration are proposed. The configuration 
and the profile are implemented on top of JOP and used in 
a number of real-world applications. Future work will ex-
plore additional hardware support for real-time systems in 
JOP. The implementation of JOP and the real-time profile 
are available at: http://www.jopdesign.com. 
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