
Restrictions of Java for Embedded Real-Time Systems

Martin Schoeberl

JOP.design
martin@jopdesign.com

Abstract

Java, with its pragmatic approach to object orientation
and enhancements over C, got very popular for desktop
and server application development. The productivity in-
crement of up to 40% compared with C++ [1] attracts
also embedded systems programmers. However, standard
Java is not practical on these usually small devices. This
paper presents the status of restricted Java environments
for embedded and real-time systems. For missing defini-
tions, additional profiles are proposed. Results of the im-
plementation on a Java processor show that it is possible
to develop applications in pure Java on resource con-
straint devices.

1. Introduction
Java was first used in an embedded system. In the early

’90s Java, which was originally known as Oak, was
created as a programming tool for a wireless PDA. The
device (known as *7) was a small SPARC based hardware
device with a tiny embedded OS. However, *7 was not
issued as a product and Java was officially released in
1995 as a new language for the internet (to be integrated
into Netscape’s browser). Over the years, Java technology
has become a programming tool for desktop applications
and web services. With every new release, the library (de-
fined as part of the language) continues to grow. Java for
embedded systems was clearly out of focus for Sun. With
the arrival of mobile phones, Sun again became interested
in this embedded market. Sun defined different subsets of
Java, which are analyzed in this paper.

As the language became popular, with easier object
oriented programming than C++ and threads defined as
part of the language, its usage in real-time systems was
considered. Two competing groups began to define how to
convert Java for use in these systems. Nilsen published the
first paper on this subject in November 1995 [2] and
formed the Real-Time Working Group. The other group,
known as the Real-Time Expert Group, published the
RTSJ (Real-Time Specification for Java) [3]. RTSJ was
the first specification request under Suns Java Community
Process and gained much attention from academic and
industrial research. This paper will give:

• An extended overview of actual specifications for Java
for embedded and real-time systems

• Propose definitions to fill the gap for small embedded
systems, implemented on JOP (a Java Optimized Pro-
cessor) [4]

This paper is structured as follows. Section 2 summa-
rizes the problems with standard Java on embedded sys-
tems. The various definitions for small devices given by
Sun are described in Section 3. Section 4 gives an over-
view of the RTSJ and restrictions for high-integrity appli-
cations. If, and how, these specifications are sufficient for
small embedded systems in general and specifically for
JOP is analyzed. In Section 5 the missing definition for
small embedded real-time systems is proposed. Implemen-
tation results of this definition and conclusions are pre-
sented in Section 6 and 7 respectively.

2. Java Support for Embedded Systems
Java has a built in model for concurrency, the class

Thread. All threads share the same heap resulting in a
shared memory communication model. Mutual exclusion
can be defined on methods or code blocks with the key-
word synchronized. Synchronized methods acquire a lock
on the object of the method. For synchronized code blocks,
the object to be locked is explicitly stated. Every object
inherits the methods wait(), notify() and notifyAll() from Ob-
ject. These methods in conjunction with synchronization
on the object support activation. The classes ja-
va.util.TimerTask and java.util.Timer (since JDK 1.3) can
be used to schedule tasks for future execution in a back-
ground thread.

Although Java has language features that simplify con-
current programming the definition of these features is too
vague for real-time systems. Java, as described in [5], de-
fines a very loose behavior of threads and scheduling. For
example, the specification allows even low priority threads
to preempt high priority threads. This protects threads from
starvation in general purpose applications, but is not ac-
ceptable in real-time programming. Even an implementa-
tion without preemption is allowed. Wakeup of a single
thread with notify() is not precisely defined. It is not man-
datory for a JVM to deal with the priority inversion prob-
lem. Garbage collection greatly simplifies programming
and helps to avoid classic programming errors (e.g. memo-

ry leaks), but is not suitable for real-time systems and
problematic in embedded systems. A more conservative
approach to memory allocation is necessary. Dynamic
class loading requires the resolution and verification of
classes. This function is usually too complex (and too
much memory consuming) for embedded devices. Upper
bound of execution time for this function is almost imposs-
ible to predict (or too large). This results in complete
avoidance of dynamic class loading in real-time systems.
For an implementation to be Java-conformant, it must in-
clude the full library (JDK). The JAR files for this library
constitutes about 15 MB (in JDK 1.3, without native libra-
ries), far too large for many embedded systems. Since Java
was designed to be a safe language with a safe execution
environment, no classes are defined for low-level access to
hardware features. The standard library was not defined
and coded with real-time applications in mind.

3. Java Micro Edition
The definition of Java also includes the definition of the

class library (JDK). This is a huge library and too large for
some systems. To compensate for this Sun has defined the
Java 2 Platform, Micro Edition (J2ME) [6]. As Sun has
changed the focus of Java targets several times, the speci-
fications reflect this through their slightly chaotic manner.
J2ME reduces the function of the JVM (e.g. no floating
point support) to make implementation easier on smaller
processors. It also reduces the library (API). J2ME defines
three software layers. The Java Virtual Machine is as-
sumed to be implemented on top of a host operating sys-
tem. There are no additional definitions for the J2ME in
this layer. The Configuration defines the minimum set of
JVM features and Java class libraries available on a partic-
ular category of devices. In a way, a configuration defines
the lowest common denominator of the Java platform fea-
tures and libraries that the developers can assume to be
available on all devices. The Profile defines the minimum
set of Application Programming Interfaces (APIs) availa-
ble on a particular family of devices. Profiles are imple-
mented upon a particular configuration. Applications are
written for a particular profile and a device can support
multiple profiles.

3.1. Connected Limited Device Configuration
(CLDC)

CLDC is a configuration for connected devices with at
least 192 kB of total memory and a 16-bit or 32-bit proces-
sor. As the main target devices are cellular phones, this
configuration has become very popular. The CLDC is
composed of the K Virtual Machine (KVM) and core class
libraries. Error handling has been altered so that the JVM
halts in an implementation-specific manner. The following
features have been removed from the JVM:

• Floating point support
• Java Native Interface (JNI)
• Reflection
• Finalization
• Weak references
• User-defined class loaders
• Thread groups and daemon threads
• Asynchronous exceptions
• Data type long is optional

These restrictions are defined in the final version 1.0 of
the CLDC. The CLDC defines a subset of the following
Java class libraries: java.io, java.lang, java.lang.ref and
java.util. An additional library (javax.microedition.io) de-
fines a simpler interface for communication than java.io
and java.net. When implementing CLDC, one may choose
to preload/prelink some classes. A utility (JavaCodeCom-
pact) combines one or more Java class files and produces a
C files that can be compiled and linked directly with the
KVM. There is only one profile defined under CLDC: the
Mobile Information Device Profile (MIDP) defines a user
interface for LC displays, a media player and a game API.

3.2. Connected Device Configuration (CDC)
The CDC defines a configuration for devices with net-

work connection and assumes a minimum of a 32-bit pro-
cessor and 2 MB memory. CDC defines no restrictions for
the JVM. A virtual machine, the CVM, is part of the dis-
tribution. The CVM expects a full featured operating sys-
tem. The existence of JavaCodeCompact implies that pre-
loading of classes is allowed in CDC. Three profiles are
defined for CDC. Foundation Profile is a set of Java APIs
that support resource-constrained devices without a stan-
dards-based GUI system. The basic class libraries from the
Java standard edition (like java.io, java.lang and java.net)
are supported and a connection framework (ja-
vax.microedition.io) is added. Personal Basis Profile is a
set of Java APIs that support resource-constrained devices
with a standards-based GUI framework based on
lightweight components. It adds some parts of the Abstract
Window Toolkit (AWT) support (relative to JDK 1.1
AWT). Personal Profile completes the AWT libraries and
includes support for the applet interface.

3.3. Discussion
Many of the specifications (i.e. configurations and pro-

files) are developed using the Java Community Process
(JCP). JCP is not an open standard nor is it part of the
open source concept. Although the acronym J2ME implies
Java version 2 (i.e. JDK 1.2 and later) almost all technolo-
gies under J2ME are still based on JDK 1.1. Besides Java
Card, CLDC is the ‘smallest’ definition from Sun. It as-
sumes an operating system and is quite large (the JAR file

for the classes is about 450 kB). There are no API defini-
tions for low-level hardware access. CLDC is not suitable
for small embedded devices. Java Card defines a different
JVM instruction set and thus compromises basic ideas of
Java. A more restricted definition with following features
is needed:

• JVM restrictions, such as in CLDC 1.0
• A package for low-level hardware access
• A minimum subset of core libraries
• Additional profiles for application domains

4. Real-Time Extensions
In 1999, a document defining the requirements for real-

time Java was published by NIST [7]. Based on these re-
quirements, two groups defined specifications for real-time
Java. A comparison of these two specifications and as
compared with Ada 95’s Real-Time Annex can be found
in [8]. The Real-Time Core Extension [9] is a specification
published under the J Consortium. It is still in a draft ver-
sion and there is no implementation available.

The Real-Time Specification for Java (RTSJ) defines a
new API with support from the JVM [3]. A Reference Im-
plementation (RI) of RTSJ forms part of the specification.
RTSJ is backward compatible with existing non-real-time
Java programs, which implies that RTSJ is intended to run
on top of J2SE (and not on J2ME). The following section
presents an overview of the RTSJ.

4.1. Threads and Scheduling
A priority-based, preemptive scheduler with at least 28

real-time priorities is defined as base scheduler. Additional
levels (ten) for the traditional Java threads need to be
available. Threads with the same priority are queued in
FITO order. Additional schedulers (e.g. EDF) can be dy-
namically loaded. The class Scheduler and associated
classes provide optional support for feasibility analysis.

Any instances of classes that implement the interface
Schedulable are scheduled. In RTSJ RealtimeThread, No-
HeapRealtimeThread, and AsyncEventHandler are sche-
dulable objects. NoHeapRealtimeThread has and AsyncE-
ventHandler can have a priority higher than the garbage
collector. As the available release-parameters indicate,
threads are ether periodic or asynchronous events. Threads
can be grouped together to bind the execution cost and
deadline for a period.

4.2. Memory
As garbage collection is problematic in real-time appli-

cations, RTSJ defines new memory areas. Scoped memory
is a memory area with bound lifetime. When a scope is
entered (with a new thread or through enter()), all new
objects are allocated in this memory area. Scoped memory

areas can be nested and shared among threads. On exit of
the last thread from a scope, all finalizers of the allocated
objects are invoked and the memory area is freed. Physical
memory is used to control allocation in memories with
different access time. Raw memory allows byte-level
access to physical memory or memory-mapped I/O. Im-
mortal memory is a memory shared between all threads
without a garbage collector. All objects created in this
memory area have the same live time as the application (a
new definition of immortal). Heap memory is the tradition-
al garbage collected memory. Maximum memory usage
and the maximum allocation rate per thread can be limited.
Strict assignment rules between the different memory areas
have to be checked by the implementation.

4.3. Synchronization
The implementation of synchronized has to include an

algorithm to prevent priority inversion. Priority inheritance
is the default and priority ceiling emulation protocol can be
used on request. Threads waiting to enter a synchronized
block are priority and FIFO within priority ordered. Wait
free queues are provided for communication between in-
stances of java.lang.Thread and RealtimeThread.

4.4. Time and Timers
Classes to represent relative and absolute time with na-

nosecond accuracy are defined. All time parameters are
split to a long for milliseconds and an int for nanoseconds
within those milliseconds. Each time object has an asso-
ciated Clock object. Multiple clocks can represent different
sources of time and resolution. This allows reduction of
queue management overheads for tasks with different to-
lerance for jitter. A new type, rationale time, can be used
to describe periods with a requested resolution over a
longer period (i.e. allowing release jitter between the
points of the outer period). Timer classes can generate
time-triggered events (one shot and periodic).

4.5. Asynchrony
Program logic representing external world events is

scheduled and dispatched by the scheduler. An AsyncEvent
object represents an external event (such as a POSIX sig-
nal or a hardware interrupt) or an internal event (through
call of fire()). Event handlers are associated to these events
and can be bound to a regular real-time thread or represent
something similar to a thread. The relationship between
events and handlers can be many-to-many. Release of han-
dlers can be restricted to a minimum interarrival time.

The exception handling of Java is extended to represent
asynchronous transfer of control (ATC). RealtimeThread
overloads interrupt() to generate an AsynchronousInterrup-
tedException (AIE). The AIE is deferred until the execu-
tion of a method that is willing to accept ATC. The method

indicates this by including AIE in its throw clause. The
semantics of catch is changed so that, even when it catches
an AIE, the AIE is still propagated until the happened()
method of the AIE is invoked. Timed, a subclass of AIE,
simplifies the programming of timeouts.

4.6. Discussion of the RTSJ
RTSJ is a complex specification leading to a big memo-

ry footprint. The core classes and the JVM executable of
the RI on Linux constitute about 5 MB. RTSJ assumes a
RTOS and the RI runs on a heavyweight RT-Linux sys-
tem. RTSJ is too complex for low-end embedded systems.
This complexity also hampers programming of high-
integrity applications. Runtime memory allocation of the
RTSJ classes is not documented.

Threads and Scheduling: If a real-time thread is
preempted by a higher priority thread, it is not defined if
the preempted thread is placed in front or back of the wait-
ing queue. It is not specified whether the default scheduler
performs, or has to perform, time slicing between threads
of equal priority.

Memory: It would be ideal if real-time systems were able
to allocate all memory at the initialization phase and forbid
dynamic memory in the mission phase. However, this is
too restrictive for some library functions. The solution to
this problem in RTSJ is ScopedMemory, a memory space
with limited lifetime. However, it can only be used as a
parameter for thread creation or with enter(Runnable r). In
a system without dynamic thread creation, using scoped
memory at creation time of the thread leads to the same
behavior as using immortal memory. The syntax with en-
ter() leads to a cumbersome programming style: for each
code part where limited lifetime memory is needed a new
class has to be defined and a single instance of this class
allocated at initialization time. A simpler syntax is shown
in Figure 1. The main drawback of this syntax is that the
programmer is responsible for its correct usage.

public void run() {
 ...
 myMem.enter();
 { // new code block disables access
 // to new objects in outer scope.
 Abc a = new Abc();
 }
 myMem.exit();
 ...
}

Figure 1: Simpler syntax for scoped memory

Time and Timers: Why is the time split into milliseconds
and nanoseconds? In the RI, it is converted to ns for
add/subtract. After all mapping and converting (Absolute-
Time, HighResolutionTime, Clock and RealTimeClock) the
System.currentTimeMillis() time is used. Since time trig-

gered release of tasks can be modeled with periodic
threads, the additional concept of timers is superfluous.

Asynchrony: An unbound AsyncEventHandler is not al-
lowed to enter() a scoped memory. However, it is not clear
if scoped memory is allowed as a parameter in the con-
struction of a handler. An unbound AsyncEventHandler
leads to the implicit start of a thread on an event. This can
lead to substantial overheads. From the application pers-
pective, bound and unbound event handlers behave in the
same way. This is an implementation hint expressed
through different classes. A consistent way to express the
importance of events would be a scheduling parameter for
the minimum allowed latency of the handler. The syntax
that is used in the throws clause of a method to state that
ATC will be accepted is misleading. Exceptions in throws
clauses are usually generated in a method and not ac-
cepted.

J2SE Library: It is not specified which classes are safe to
be used in RealTimeThread and NoHeapRealTimeThread.
Several operating system functions can cause unbound
blocking and their usage should be avoided. The memory
allocation in standard JDK methods is not documented and
the use in immortal memory can lead to memory leaks.

Missing Features: There is no concept such as start mis-
sion. Changing scheduling parameters during runtime can
lead to inconsistent scheduling behavior. There is no pro-
vision for low-level blocking such as disabling interrupts.
This is a common technique in device drivers where some
hardware operations have to be atomic without affecting
the priority level of the requesting thread.

On Small Systems: Many embedded systems are still built
with 8 or 16-bit CPUs. 32-bit processors are seldom used.
The default integer type of Java is 32-bit, still large enough
for almost all data types needed in embedded systems.
Why are, often expensive, longs (64 bit integer) used in
the RTSJ?

4.7. Subsets of RTSJ
RTSJ is complex to implement and applications devel-

oped with RTSJ are difficult to analyze (because of some
of the sophisticated features of the RTSJ). Various profiles
have been suggested for high-integrity real-time applica-
tions that result in restrictions of the RTSJ. In [11], a sub-
set of the RTSJ for high-integrity application domain with
hard real-time constraints is proposed. It is inspired by the
Ravenscar profile for Ada [12] and focuses is on exact
temporal predictability.

The application is divided in two different phases: in-
itialization and mission. All non time-critical initialization,
global object allocations, thread creation and startup are
performed in the initialization phase. All classes need to be
loaded and initialized in this phase. The mission phase

starts after returning from main(), which is assumed to ex-
ecute with maximum priority. The number of threads is
fixed and the assigned priorities remain unchanged.Two
types of tasks are defined: Periodic time-triggered activi-
ties execute an infinite loop with at least one call of wait-
ForNextPeriod(). Sporadic activities are modeled with a
new class SporadicEvent. A SporadicEvent is bound to a
thread and an external event on creation. Unbound event
handlers are not allowed. It is not clear if programmatic
trigger of the event is allowed (invocation of fire()). A re-
striction for a minimum interarrival time of events is not
defined. Timers are not supported as time-triggered activi-
ties are well supported by periodic threads. Asynchronous
transfers of control, overrun and miss handles and calls to
sleep() are not allowed. Synchronized methods with priori-
ty ceiling protocol provide mutual exclusion to shared re-
sources. Threads are dispatched in FIFO order within each
priority level. Sporadic events are used instead of wait,
notify and notifyAll for signaling. Since garbage collection
is still not time predictable, it is not supported. Scoped
memory (LTMemory) is provided for object allocation dur-
ing the mission phase. LTMemory has to be created during
the initialization phase with initial size equal maximum
size. For each thread and for the operations of the JVM
WCET must be computable. Code is restricted to bound
loops and bound recursions. Annotations for WCET analy-
sis are suggested. The JVM needs to check the timing of
events and thread execution. It is not stated how the JVM
should react to a timing error.

Ravenscar-Java profile [13] is a restricted subset of RTSJ
and is based on the work mentioned above. To simplify the
initialization phase RJ defines Initializer, a class that has to
be extended by the application class which contains main().
The use of time scoped memory is further restricted.
LTMemory areas are not allowed to be nested nor shared
between threads. Traditional Java threads are disallowed
by changing the class java.lang.Thread. The same is true
for all schedulable objects from the RTSJ. Two new
classes are defined:

• PeriodicThread where run() gets called periodically,
removing the loop construct with waitForNextPeriod().

• SporadicEventHandler binds a single thread with a sin-
gle event. The event can be an interrupt or a software
event.

Criticisms of Subsets of the RTSJ: If a subset of RTSJ is
implemented and allowed it is harder for programmers to
find out what is available and what not. This form of com-
patibility causes confusion. The use of different classes for
a different specification is clearer and less error prone.
Ravenscar-Java, as a subset of the RTSJ, claims to be
compatible with the RTSJ, in the sense that programs writ-
ten according to the profile are valid RTSJ programs.

However, mandatory usages of new classes such as Perio-
dicThread need an emulation layer to run on a RTSJ sys-
tem. In this case, it is better to define complete new classes
for a subset and provide the mapping to RTSJ. It is not
necessary to distinguish between heap and immortal mem-
ory. Without a garbage collector, heap implicitly equates
to immortal memory.

5. Definitions for Small Embedded Systems
Restrictions on Java, such as the available configura-

tions and profiles of J2ME and the RTSJ, are still too large
and complex for small embedded real-time systems. Simp-
ler definitions are therefore proposed: a configuration re-
stricts the function of the JVM and the necessary library.
Class definitions for low-level I/O are added. On top of
this configuration, a profile for high-integrity real-time
applications is defined.

5.1. Small Embedded Devices Configuration
SEDC is a configuration that fits into the J2ME layer

model. It is intended for small embedded devices with a
16-bit (or even 8-bit) microprocessor and a low memory
budget (below 128 kB).

Restrictions of the JVM: The JVM restrictions are simi-
lar to CLDC 1.0. The subset of the Java classes is smaller.
To simplify the JVM the application is preverified and
preloaded (and sometimes also linked with the JVM).
Since small embedded devices have no or only a very sim-
ple user interface (like switches and LEDs), no stream in-
put/output facilities are usually necessary. As memory is
very limited, the Java class library is reduced to the abso-
lute minimum. Only the following classes need to be avail-
able: java.lang.Object and java.lang.String. Threads are not
part of SEDC. We define new thread behavior with real-
time semantics in an extra profile. An additional library is
provided for low-level I/O-access:

Class IOPort: Static methods of this class allow the appli-
cation low-level access to I/O ports:

public static int read(int address)
public static void write(int value, int address)

Class Clock: Almost all microcontrollers have some kind
of timer or counter. The class Clock provides a standard
way of querying counter values. count() returns the current
time in clock ticks. Tick frequency is device dependent
and can be queried. ticksPerSecond() returns the resolution
of the clock. For a system with a clock frequency higher
than 2.15 GHz ticksPerMs() provides the resolution of the
clock per millisecond. resolutionInBits() returns the length
of the internal clock in bits.

Class Interrupt: The interrupt handler must extend the
class Interrupt and register itself for an interrupt. An inter-

rupt causes the object's handle() method to be called. For
simple blocking, all interrupts can be disabled. The indi-
vidual masking of interrupts is device specific and is han-
dled via IOPort.

5.2. A Real-Time Profile for Embedded Java
A simple real-time profile is defined in the concept of

the ADA Ravenscar profile [12]. It resembles the ideas
from [11] and [13] but is not compatible with the RTSJ.
Since the application domain for RTSJ is different from
high-integrity systems, it makes sense for it not to be com-
patible with RTSJ. Restrictions can be enforced defining
new classes (e.g. setting thread priority in the constructor
of a real-time thread alone, enforcing minimum interarrival
times for sporadic events). This profile addresses the same
devices as SEDC (it is not, of course, restricted to small
devices). With an emulation layer, it should be possible to
run programs written for this specification on top of RTSJ.
The guidelines are:

• High-integrity profile.
• Easy to implement.
• Low runtime overhead.
• No syntactic extension of Java.
• Support for time measurement if WCET analysis tools

are not available.
• Known overhead: Documentation of runtime behavior

and memory requirements of every JVM operation and
all methods has to be provided.

• Implementation possible on top of SEDC.

Application Structure: The following restrictions apply
to the application:

• Initialization and mission phase.
• Fixed number of threads.
• Threads are created at initialization phase.
• All shared objects are allocated at initialization.

Threads: Three schedulable objects are defined. RtThread
represents a periodic task. As usual, task work is coded in
run() which gets called on missionStart(). A scoped memo-
ry object can be attached to an RtThread at creation. HwE-
vent represents an interrupt with a minimum interarrival
time. If the hardware generates more interrupts, they get
lost. SwEvent represents a software-generated event. It is
triggered by fire() and needs to override handle(). Figure 2
shows the definition of the basic classes. An example of a
real-time thread can be found in Figure 3.

Scheduling: Threads and events are scheduled with fixed
priority. No real-time threads or events are scheduled dur-
ing the initialization phase. Most real-time systems use a
fixed-priority preemptive scheduler. Tasks with the same
priority are usually scheduled in a FIFO order. Two com-

mon ways to assign priorities are rate monotonic or, in a
more general form, deadline monotonic assignment. When
two tasks are given the same priority, we can choose one
of them and assign a higher priority to that task and the
task set will still be schedulable. This results in a strictly
monotonic priority order and we do not need to deal with
FIFO order. This eliminates queues for each priority level
and results in a single, priority ordered task list with unli-
mited priority levels. Synchronized blocks are executed
with priority ceiling emulation protocol. With objects for
which the priority is not set, a top priority is assumed. This
avoids priority inversions on objects that are not accessible
from the application (e.g. objects inside a library). In addi-
tion, the scheduler contains methods for worst-case time
measurement for both the periodic work and handler me-
thods. These measured execution times can be used during
development when no WCET analysis tool is available.

public class RtThread {

 public RtThread(int priority, int period)
 public RtThread(int priority, int period,
 int offset)
 public RtThread(int priority, int period,
 Memory mem)
 public RtThread(int priority, int period,
 int offset, Memory mem)

 public void enterMemory()
 public void exitMemory()

 public void run()
 public boolean waitForNextPeriod()

 public static void startMission()
}

public class HwEvent extends RtThread {

 public HwEvent(int priority, int minTime,
 int number)
 public HwEvent(int priority, int minTime,
 Memory mem, int number)

 public void handle()
}

public class SwEvent extends RtThread {

 public SwEvent(int priority, int minTime)
 public SwEvent(int priority, int minTime,
 Memory mem)

 public final void fire()
 public void handle()
}

Figure 2: Schedulable objects

Memory: The profile does not support a garbage collector.
All memory allocation should be done at initialization
phase. For new objects during the mission phase, a scoped
memory is provided. Every scoped memory area can be
assigned to one RtThread. A scoped memory cannot be
shared between threads. No references from the heap to
scoped memory are allowed. Scoped memory is explicitly

entered and left with calls from the application logic.
Memory areas are cleared on creation and when leaving
the scope (call of exitMemory()) leading to a memory area
with constant allocation time.

public class Worker extends RtThread {

 private SwEvent event;

 public Worker(int p, int t,
 SwEvent ev) {
 super(p, t,
 // create a scoped memory area
 new Memory(10000)
);
 event = ev;
 }

 public void run() {

 for (;;) {
 work(); // do some work
 event.fire(); // and fire an event
 // some work in scoped memory
 enterMemory();
 workWithMem();
 exitMemory();

 // wait for next period
 if (!waitForNextPeriod()) {
 missedDeadline();
 }
 }
 // should never reach this point
 }
}

Figure 3: A periodic real-time thread

Restriction of Java: Only WCET analyzable language
constructs are allowed. Since the definition when to call
the static class initializer is problematic, they are disal-
lowed. This code has to be moved to a static method (e.g.
init()) and called in the initialization phase. finalize() has a
weak definition in Java. Because real-time systems run
forever, objects in the heap, that is implicit immortal
memory in this specification, will never be finalized. Ob-
jects in scoped memory are released on exitMemory().
However, finalizations on these objects complicate WCET
analysis of exitMemory(). Due to the implementation and
WCET analysis complexity dynamic class loading is
avoided. A program analysis tool can greatly help in en-
forcing these restrictions.

6. Implementation Results
The proposed profile is implemented on JOP. In this

section, the implementation of the simple real-time profile
is compared with the RI (Reference Implementation) of
RTSJ on top of Linux. The RI is an interpreting implemen-
tation of the JVM not optimized for performance. A com-
mercial version of the RTSJ, JTime by TimeSys, should
perform better. However, it was not possible to get a li-
cense of JTime for research purpose. JOP is implemented
in a low cost FPGA (Cyclone EP1C6) from Altera clocked

with 100 MHz. The test results for the RI were obtained on
an Intel Pentium MMX 266 MHz, running Linux SuSE 8.2
with the TimeSys GPL Linux 3.1 [14] kernel as recom-
mended by the RI. For each test 500 measurements were
made.

Many activities in real-time systems must be performed
periodically. Low release jitter is of major importance for
tasks such as control loops. The test setting is similar to the
periodic thread test in [15]. A single real-time thread only
calls waitForNextPeriod() in a loop and records the time
between calls that follow. Table 1 shows the average,
standard deviation and extreme values for different period
times on JOP. In Table 2 the same values are shown for the
RI.

 Avg. Std. Dev. Min. Max.
T=80 us 80 us 28 us 52 us 115 us
T=100 us 100 us 0 us 100 us 100 us
T=500 us 500 us 0 us 500 us 500 us

Table 1: Jitter of Periodic Threads with JOP.

 Avg. Std. Dev. Min. Max.
T=5 ms 4.00 ms 7.92 ms 0.017 ms 19.90 ms
T=10 ms 6.64 ms 9.34 ms 0.019 ms 19.94 ms
T=20 ms 20.0 ms 0.015 ms 19.87 ms 20.14 ms
T=30 ms 30.0 ms 0.031 ms 29.69 ms 30.31 ms
T=35 ms 35.0 ms 5.001 ms 29.75 ms 40.25 ms

Table 2: Jitter of Periodic Threads with RI/RTSJ.

Using of a microsecond accurate timer interrupt, pro-
grammed by the scheduler, results in excellent perfor-
mance of periodic threads in JOP. No jitter can be ob-
served with a single thread at periods above 100 us. The RI
performs inaccurately at periods below 20 ms. Larger pe-
riods that are multiples of 10 ms have very low jitter.
However, using a period such as 35 ms shows a standard
deviation of five ms. A detailed look at the collected sam-
ples shows only values of 30 and 40 ms. This implies a
timer tick of 10 ms in the underlying operating system.

Table 3 gives the time for the context switch in proces-
sor clock cycles. The test setting consists of two threads. A
low priority thread continuously stores the current time in
a shared variable. A high priority periodic thread measures
the time difference between this value and the time imme-
diately after waitForNextPeriod().

 Avg. Std. Dev. Min. Max.
JOP 4088 10.29 4083 4116
RI Linux 12923 1145 11529 21090

Table 3: Time for a Thread Switch in Clock Cycles.

In the next test setting, a high priority event handler is
triggered by a low priority periodic thread. As

AsynchEventHandler performs not very well [15], a
BoundAsynchEventHandler is used for the RI test program.
The time elapsed between the invocation of fire() and the
first statement of the event handler is measured. Table 4
shows the elapsed time in clock cycles for JOP and the
RTSJ RI.

 Avg. Std. Dev. Min. Max.
JOP 4283 3.0 4283 4350
RI Linux 69273 7832 63060 101292

Table 4: Dispatch Latency of Event Handlers.

The time to dispatch an asynchronous event is similar to
the context switch time in JOP. The maximum value oc-
curred only on the first event, all following events where
dispatched with the minimum time. In the RI the dispatch
time is about 6 times larger than a context switch. This
indicates that the implementation of fire() and the commu-
nication of the event to the underlying operating system is
not optimal.

To verify that the profile is expressive enough for high-
integrity applications, Ravenscar Java was implemented on
top of it. The only restriction observed is the absence of
support for long in the JVM. This type is mandatory in the
RTSJ for absolute and relative time definitions.

JOP is implemented on a low cost FPGA (EP1C6) con-
suming about 30% of the chip area. The unused area can
be used for custom peripherals or a multi processor solu-
tion on a single chip. This resource usage is similar to Al-
teras NIOS, a 32-bit load/store RISC processor. The basic
JVM with the proposed real-time extension consumes 9
KB of memory, leaving enough room for the application
code and data even in very small devices. The real-time
scheduler needs 0.5 KB per thread at runtime.

7. Conclusion
Some definitions of Java for embedded and real-time

systems do exist. CLDC, as a restriction for embedded
systems, suits small systems best, but is still large. The
most common specification for real-time Java is the RTSJ.
However, this specification is complex and large, making
it not the primary choice for small embedded systems or
high-integrity systems. Restrictions on the RTSJ can trans-
form the definition into a high-integrity profile, but they
inherit the complex API. A very small configuration for
embedded systems and a high-integrity real-time profile
that fits this configuration are proposed. The configuration
and the profile are implemented on top of JOP and used in
a number of real-world applications. Future work will ex-
plore additional hardware support for real-time systems in
JOP. The implementation of JOP and the real-time profile
are available at: http://www.jopdesign.com.

References

[1] E. Quinn and C. Christiansen. Java Technology Pays Posi-
tively. IDC Bulletin #W16212, May 1998.

[2] K. Nilsen. Issues in the Design and Implementation of
Real-Time Java, July 1996. Published June 1996 in Java
Developers Journal, republished in Q1 1998 Real-Time
Magazine

[3] Bollela, Gosling, Brosgol, Dibble, Furr, Hardin and Trun-
bull. The Real-Time Specification for Java, Addison Wesley,
1st edition, 2000.

[4] M. Schoeberl. JOP: a Java Optimized Processor. In Work-
shop on Java Technologies for Realtime and Embedded Sys-
tems (JTRES 2003), Catania, Sicily, Italy, November 2003.

[5] J. Gosling, B. Joy, G. Steele and G. Bracha. The Java Lan-
guage Specification. Addison Wesley, 2nd edition, 1997.

[6] Sun Microsystems. Java 2 Platform, Micro Edition (J2ME),
available at: http://java.sun.com/j2me/docs/

[7] K. Nilsen, L. Carnahan and M. Ruark , editors. Require-
ments for Real-Time Extensions for the Java Platform. Pub-
lished by National Institute of Standards and Technology.
September 1999. Available at http://www.nist.gov/rt-java.

[8] B. Brosgol and B. Dobbing. Real-time convergence of Ada
and Java. In Proc. of the 2001 annual ACM SIGAda interna-
tional conference on Ada, pp.11-26, Bloomington, MN,
2001

[9] International J Consortium Specification. Real-Time Core
Extensions, Draft 1.0.14, September 2nd 2000. Available at
http://www.j-consortium.org/

[10] TimeSys. Real-Time Specification for Java Reference Im-
plementation. http://www.timesys.com/

[11] P. Puschner and A. J. Wellings. A Profile for High Integrity
Real-Time Java Programs. In Proceedings of the 4th IEEE
International Symposium on Object-oriented Real-time dis-
tributed Computing (ISORC), 2001

[12] A. Burns and B. Dobbing. The Ravenscar Tasking Profile
for High Integrity Real-Time Programs. In Proc. of the 1998
annual ACM SIGAda international conference on Ada, pp.
1-6, Washington, D.C., United States, 1998

[13] J. Kwon, A. Wellings and S. King. Ravenscar-Java: a high
integrity profile for real-time Java, In Proc. of the 2002 joint
ACM-ISCOPE conference on Java Grande, pp. 131-140,
Seattle, Washington, USA, 2002

[14] TimeSys. Linux RTOS Standard Edition available at:
http://www.timesys.com/

[15] A. Corsaro, D. Schmidt. Evaluating Real-Time Java Fea-
tures and Performance for Real-Time Embedded Systems.
Appeared at The 8th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, 2002.

