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Abstract

Architectural advancements in modern processor designs increase average performance with features such as pipelines, caches,
branch prediction, and out-of-order execution. However, these features complicate worst-case execution time analysis and lead
to very conservative estimates. JOP (Java Optimized Processor) tackles this problem from the architectural perspective – by
introducing a processor architecture in which simpler and more accurate WCET analysis is more important than average case
performance.

This paper presents a Java processor designed for time-predictable execution of real-time tasks. JOP is the implementation
of the Java virtual machine in hardware. JOP is intended for applications in embedded real-time systems and the primary
implementation technology is in a field programmable gate array. This paper demonstrates that a hardware implementation of
the Java virtual machine results in a small design for resource-constrained devices.
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1. Introduction

Compared to software development for desktop sys-
tems, current software design practice for embedded
real-time systems is still archaic. C/C++ and even as-
sembly language are used on top of a small real-time
operating system. Many of the benefits of Java, such as
safe object references, the notion of concurrency as a
first-class language construct, and its portability, have
the potential to make embedded systems much safer
and simpler to program. However, Java technology is
seldom used in embedded real-time systems, due to the
lack of acceptable real-time performance.

Traditional implementations of the Java virtual ma-
chine (JVM) as interpreter or just-in-time compiler are
not practical. An interpreting virtual machine is too
slow and therefore waste of processor resources. Just-in-
time compilation has several disadvantages for embed-
ded systems, notably that a compiler (with the intrinsic
memory overhead) is necessary on the target system.

Due to compilation during runtime, execution times are
practically not predictable 1 .

This paper introduces the concept of a Java processor
[51] for embedded real-time systems, in particular the
design of a small processor for resource-constrained de-
vices with time-predictable execution of Java programs.
This Java processor is called JOP – which stands for
Java Optimized Processor –, based on the assumption
that a full native implementation of all Java bytecode
instructions [30] is not a useful approach.

Worst-case execution time (WCET) estimates of
tasks are essential for designing and verifying real-time
systems. Static WCET analysis is necessary for hard
real-time systems. In order to obtain a low WCET
value, a good processor model is necessary. Tradition-
ally, only simple processors can be analyzed using
practical WCET boundaries. Architectural advance-

1 One could add the compilation time of a method to the WCET
of that method. However, in that case we need a WCET analyzable
compiler and the WCET gets impractical high.
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ments in modern processor designs tend to abide by
the rule: ‘Make the average case as fast as possible’.
This is orthogonal to ‘Minimize the worst case’ and
has the effect of complicating WCET analysis. This
paper tackles this problem from the architectural per-
spective – by introducing a processor architecture in
which simpler and more accurate WCET analysis is
more important than average case performance.

JOP is designed from ground up with time predictable
execution of Java bytecode as major design goal. All
function units, and especially the interaction between
them, are carefully designed to avoid any time depen-
dency between bytecodes. The architectural highlights
are:

(i) Dynamic translation of the CISC Java byte-
codes to a RISC, stack based instruction set (the
microcode) that can be executed in a 3 stage
pipeline.

(ii) The translation takes exactly one cycle per byte-
code and is therefore pipelined. Compared to
other forms of dynamic code translation the
proposed translation does not add any variable
latency to the execution time and is therefore
time predictable.

(iii) Interrupts are inserted in the translation stage as
special bytecodes and are transparent to the mi-
crocode pipeline.

(iv) The short pipeline (4 stages) results in short
conditional branch delays and a hard to analyze
branch prediction logic or branch target buffer
can be avoided.

(v) Simple execution stage with the two topmost
stack elements as discrete registers. No write
back stage or forwarding logic is needed.

(vi) Constant execution time (one cycle) for all mi-
crocode instructions. No stalls in the microcode
pipeline. Loads and stores of object fields are han-
dled explicitly.

(vii) No time dependencies between bytecodes result
in a simple processor model for the low-level
WCET analysis.

(viii) Time predictable instruction cache that caches
whole methods. Only invoke and return instruc-
tion can result in a cache miss. All other instruc-
tions are guaranteed cache hits.

(ix) Time predictable data cache for local variables
and the operand stack. Access to local variables
is a guaranteed hit and no pipeline stall can hap-
pen. Stack cache fill and spill is under microcode
control and analyzable.

(x) No prefetch buffers or store buffers that can intro-
duce unbound time dependencies of instructions.

Even simple processors can contain an instruc-
tion prefetch buffer that prohibits exact WCET
values. The design of the method cache and the
translation unit avoids the variable latency of a
prefetch buffer.

(xi) Good average case performance compared to
other non real-time Java processors.

(xii) Avoidance of hard to analyze architectural fea-
tures results in a very small design. Therefore an
available real estate can be used for a chip multi-
processor solution.

In this paper, we will present the architecture of the
real-time Java processor and the evaluation results for
JOP, with respect to WCET, size and performance. We
will show that the execution time of Java bytecodes can
be exactly predicted in terms of the number of clock
cycles. We will also evaluate the general performance
of JOP in relation to other embedded Java systems. Al-
though JOP is intended as a processor with a low WCET
for all operations, its general performance is still impor-
tant. We will see that a real-time processor architecture
does not need to be slow.

In the following section, related work on real-time
Java, Java processors, and issues with the low-level
WCET analysis for standard processors is presented. In
Section 3 a brief overview of the architecture of JOP
is given, followed by a more detailed description of the
microcode. In Section 4 it is shown that our objective
of providing an easy target for WCET analysis has been
achieved. Section 5 compares JOP’s resource usage with
other soft-core processors. In the Section 6, a number
of different solutions for embedded Java are compared
at the bytecode level and at the application level.

2. Related Work

In this section we present arguments for Java in real-
time systems, various Java processors from industry and
academia, and an overview of issues in the low-level
WCET analysis that can be avoided by the proposed
processor design.

2.1. Real-Time Java

Java is a strongly typed, object oriented language,
with safe references, and array bounds checking. Java
shares those features with Ada, the main language for
safety critical real-time systems. It is even possible, and
has been done [60,8], to compile Ada 95 for the JVM. In
contrast to Ada, Java has a large user and open-source
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code base. In [64] it is argued that Java will become the
better technology for real-time systems.

The object references replace error-prone C/C++
style pointers. Type checking is enforced by the com-
piler and performed at runtime. Those features greatly
help to avoid program errors. Therefore Java is an at-
tractive choice for safety critical and real-time systems
[56,26]. Furthermore, threads and synchronization,
common idioms in real-time programming, are part of
the language.

An early document published by the NIST [33] de-
fines the requirements for real-time Java. Based on
those requirements the Real-Time Specification for
Java (RTSJ) [7] started as first Java Specification Re-
quest (JSR). In the expert group of the RTSJ garbage
collection was considered as the main issue of Java in
real-time systems. Therefore the RTSJ defines, besides
other idioms, new memory areas (scoped memory)
and a NoHeapRealtimeThread that can interrupt the
garbage collector. However, real-time garbage collec-
tion is an active research area (e.g., [5]). In [44] and
[52] it is shown that a correctly scheduled garbage
collector can be used even in hard real-time systems.

Discussion of the RTSJ, platforms for embedded Java
and the definition and implementation of a real-time
profile for embedded Java on JOP can be found in [48].

Java bytecode generation has to follow stringent
rules [30] in order to pass the class file verification of
the JVM. Those restrictions lead to an analysis friendly
code, e.g. the stack size is known at each instruc-
tion. The control flow instructions are well defined.
Branches are relative and the destination is within the
same method. In Java class files there is more infor-
mation available than in compiled C/C++ executables.
All links are symbolic and it is possible to reconstruct
the class hierarchy from the class files. Therefore, a
WCET analysis tool can statically determine all possi-
ble targets for a virtual method invocation.

2.2. Java Processors

Table 1 lists the relevant Java processors available to
date. Sun introduced the first version of picoJava [36]
in 1997. Sun’s picoJava is the Java processor most often
cited in research papers. It is used as a reference for new
Java processors and as the basis for research into im-
proving various aspects of a Java processor. Ironically,
this processor was never released as a product by Sun.
A redesign followed in 1999, known as picoJava-II that
is now freely available with a rich set of documentation
[58,59]. The architecture of picoJava is a stack-based

Table 1
JOP and various Java processors

Target Size Speed
technology Logic Memory (MHz)

JOP Altera, Xilinx FPGA 2050 LCs 3 KB 100
picoJava [58,59] No realization 128 Kgates 38 KB
aJile [1,19] ASIC 0.25µ 25 Kgates 48 KB 100
Cjip [18,25] ASIC 0.35µ 70 Kgates 55 KB 80
Moon [62,63] Altera FPGA 3660 LCs 4 KB
Lightfoot [9] Xilinx FPGA 3400 LCs 4 KB 40
Komodo [27] Xilinx FPGA 2600 LCs 33
FemtoJava [6] Xilinx FPGA 2710 LCs 0.5 KB 56

CISC processor implementing 341 different instructions
[36] and is the most complex Java processor available.
The processor can be implemented in about 440K gates
[11]. Simple Java bytecodes are directly implemented in
hardware, most of them execute in one to three cycles.
Other performance critical instructions, for instance in-
voking a method, are implemented in microcode. pico-
Java traps on the remaining complex instructions, such
as creation of an object, and emulates this instruction.
A trap is rather expensive and has a minimum overhead
of 16 clock cycles. This minimum value can only be
achieved if the trap table entry is in the data cache and
the first instruction of the trap routine is in the instruc-
tion cache. The worst-case trap latency is 926 clock cy-
cles [59]. This great variation in execution times for a
trap hampers tight WCET estimates.

aJile’s JEMCore is a direct-execution Java processor
that is available as both an IP core and a stand alone
processor [1,19]. It is based on the 32-bit JEM2 Java
chip developed by Rockwell-Collins. Two silicon ver-
sions of JEM exist today: the aJ-80 and the aJ-100. Both
versions comprise a JEM2 core, 48 KB zero wait state
RAM and peripheral components. 16 KB of the RAM
is used for the writable control store. The remaining
32 KB is used for storage of the processor stack. The
aJile processor is intended for real-time systems with
an on-chip real-time thread manager. aJile Systems was
part of the expert group for the RTSJ [7]. However, no
information is available about bytecode execution times.

The Cjip processor [18,25] supports multiple instruc-
tion sets, allowing Java, C, C++ and assembler to co-
exist. Internally, the Cjip uses 72 bit wide microcode
instructions, to support the different instruction sets. At
its core, Cjip is a 16-bit CISC architecture with on-chip
36 KB ROM and 18 KB RAM for fixed and loadable mi-
crocode. Another 1 KB RAM is used for eight indepen-
dent register banks, string buffer and two stack caches.
Cjip is implemented in 0.35-micron technology and can
be clocked up to 80 MHz. The JVM is implemented
largely in microcode (about 88% of the Java bytecodes).
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Java thread scheduling and garbage collection are im-
plemented as processes in microcode. Microcode in-
structions execute in two or three cycles. A JVM byte-
code requires several microcode instructions. The Cjip
Java instruction set and the extensions are described in
detail in [24]. For example: a bytecode nop executes
in 6 cycles while an iadd takes 12 cycles. Conditional
bytecode branches are executed in 33 to 36 cycles. Ob-
ject oriented instructions such getfield, putfield or
invokevirtual are not part of the instruction set.

Vulcan ASIC’s Moon processor is an implementation
of the JVM to run in an FPGA. The execution model
is the often-used mix of direct, microcode and trapped
execution. As described in [62], a simple stack folding
is implemented in order to reduce five memory cycles
to three for instruction sequences like push-push-add.
The Moon2 processor [63] is available as an encrypted
HDL source for Altera FPGAs or as VHDL or Verilog
source code.

The Lightfoot 32-bit core [9] is a hybrid 8/32-bit
processor based on the Harvard architecture. Program
memory is 8 bits wide and data memory is 32 bits wide.
The core contains a 3-stage pipeline with an integer
ALU, a barrel shifter and a 2-bit multiply step unit. Ac-
cording to DCT, the performance is typically 8 times
better than RISC interpreters running at the same clock
speed. The core is provided as an EDIF netlist for ded-
icated Xilinx devices.

Komodo [27] is a multithreaded Java processor with a
four-stage pipeline. It is intended as a basis for research
on real-time scheduling on a multithreaded microcon-
troller. The unique feature of Komodo is the instruc-
tion fetch unit with four independent program counters
and status flags for four threads. A priority manager is
responsible for hardware real-time scheduling and can
select a new thread after each bytecode instruction. Ko-
modos multi-threading is similar to hyper-threading in
modern processors that are trying to hide latencies in
instruction fetching. However, this feature leads to very
pessimistic WCET values (in effect rendering this per-
formance gain useless in hard real-time systems). The
fact that the pipeline clock is only a quarter of the sys-
tem clock also wastes a considerable amount of poten-
tial performance.

FemtoJava [6] is a research project to build an appli-
cation specific Java processor. The bytecode usage of
the embedded application is analyzed and a customized
version of FemtoJava is generated in order to minimize
the resource usage. The resource usage is very high,
compared to the minimal Java subset implemented and
the low performance of the processor.

Besides the real Java processors a FORTH chip

(PSC1000 [38]) is marketed as Java processors. Java
coprocessors (e.g. JSTAR [32]) provide Java execution
speedup for general-purpose processors. Jazelle [4] is
an extension of the ARM 32-bit RISC processor. It
introduces a third instruction set (bytecode), besides
the Thumb instruction set (a 16-bit mode for reduced
memory consumption), to the processor. The Jazelle
coprocessor is integrated into the same chip as the
ARM processor.

So far, all processors described (except Cjip) per-
form weakly in the area of time-predictable execution
of Java bytecodes. However, a low-level analysis of ex-
ecution times is of primary importance for WCET anal-
ysis. Therefore, the main objective is to define and im-
plement a processor architecture that is as predictable as
possible. However, it is equally important that this does
not result in a low performance solution. Performance
shall not suffer as a result of the time-predictable archi-
tecture. In Section 6, the overall performance of various
Java systems, including the aJile processor, Komodo,
and Cjip, is compared with JOP.

2.3. WCET Analysis

WCET Analysis can be divided in high-level and
low-level analysis (see also Section 4). The high-level
analysis is a mature research topic [29,43,40]. The main
issues to be solved are in the low-level analysis. The
processors that can be analyzed are usually several gen-
erations behind actual architectures [14,34,20]. An ex-
ample: Thesing models in his 2004 PhD thesis [61] the
PowerPC 750 (the MPC755 variant). The PowerPC 750
was introduced 1997 and the MPC755 is now (2006)
not recommended for new designs.

The main issues in low-level analysis are many fea-
tures of modern processors that increase average perfor-
mance. All those features, such as multi-level caches,
branch target buffer, out-of-order (OOO) execution, and
speculation, include a lot of state that depends on a large
execution history. Modeling this history for the WCET
analysis leads to a state explosion for the final WCET
calculation. Therefore low-level WCET analysis usu-
ally performs simplifications and uses conservative es-
timates. One example of this conservative estimate is
to classify a cache access, if the outcome of the cache
access is unknown, as a miss to be on the safe side.
In [31] it is shown that this intuitive assumption can
be wrong on dynamically scheduled microprocessors.
An example is provided where a cache hit can cause a
longer execution than a cache miss. In [28] a hypothet-
ical OOO microprocessor is modeled for the analysis.
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However, verification of the proposed approach on a
real processor is missing. Another issue is the missing
or sometimes wrong documentation of the processor in-
ternals [13]. From a survey of the literature we found
that modeling a new version of a microprocessor and
finding all undocumented details is usually worth a full
PhD thesis.

We argue that trying to catch up on the analysis side
with the growing complexity of modern computer ar-
chitectures is not feasible. A paradigm shift is neces-
sary, either on the hardware level or on the application
level. Puschner argues for a single-path programming
style [41] that results in a constant execution time. In
that case execution time can be simply measured. How-
ever, this programming paradigm is quite unusual and
restrictive. We argue in this paper that the computer ar-
chitecture has to be redefined or adapted for real-time
systems. Predictable and analyzable execution time is
of primary importance for this computer architecture.

3. JOP Architecture

JOP is a stack computer with its own instruction set,
called microcode in this paper. Java bytecodes are trans-
lated into microcode instructions or sequences of mi-
crocode. The difference between the JVM and JOP is
best described as the following: “The JVM is a CISC
stack architecture, whereas JOP is a RISC stack archi-
tecture.”

The name JOP stands for Java Optimized Processor
to enforce that the microcode instructions are optimized
for Java bytecode. A direct implementation of all byte-
codes [30] in hardware is not a useful approach. Some
bytecodes are very complex (e.g., new has to interact
with the garbage collector) and the dynamic instruction
frequency is low [36,16]. All available Java processors
implement only a subset of the instructions in hardware.

Figure 1 shows JOP’s major function units. A typ-
ical configuration of JOP contains the processor core,
a memory interface and a number of IO devices. The
module extension provides the link between the proces-
sor core, and the memory and IO modules.

The processor core contains the three microcode
pipeline stages microcode fetch, decode and execute
and an additional translation stage bytecode fetch. The
ports to the other modules are the two top elements of
the stack (A and B), input to the top-of-stack (Data),
bytecode cache address and data, and a number of con-
trol signals. There is no direct connection between the
processor core and the external world.

The memory interface provides a connection between

JOP Core Memory Interface

Extension

I/O Interface

Bytecode
Fetch

Fetch

Decode

Stack

Bytecode
Cache

Multiplier

Busy

BC Address

BC Data

Control

Data

A

B

Interrupt

Data

Data

Control

Control

Fig. 1. Block diagram of JOP

the main memory and the processor core. It also con-
tains the bytecode cache. The extension module con-
trols data read and write. The busy signal is used by the
microcode instruction wait 2 to synchronize the pro-
cessor core with the memory unit. The core reads byte-
code instructions through dedicated buses (BC address
and BC data) from the memory subsystem. The request
for a method to be placed in the cache is performed
through the extension module, but the cache hit detec-
tion and load is performed by the memory interface in-
dependently of the processor core (and therefore con-
currently).

The I/O interface contains peripheral devices, such as
the system time and timer interrupt for real-time thread
scheduling, a serial interface and application-specific
devices. Read and write to and from this module are
controlled by the extension module. All external devices
are connected to the I/O interface.

The extension module performs three functions: (a)
it contains hardware accelerators (such as the multiplier
unit in this example), (b) the control for the memory and
the I/O module, and (c) the multiplexer for the read data
that is loaded into the top-of-stack register. The write
data from the top-of-stack (A) is connected directly to
all modules.

The division of the processor into those four modules
greatly simplifies the adaptation of JOP for different
application domains or hardware platforms. Porting JOP

2 The busy signal can also be used to stall the whole processor
pipeline. This was the change made to JOP by Flavius Gruian [17].
However, in this synchronization mode, the concurrency between
the memory access module and the main pipeline is lost.

5



Bytecode

Fetch, translate
and branch

Microcode

Fetch and
branch

Microcode

Decode

Stack

Address
generation

Stack

RAM

bytecode branch condition

microcode branch conditionnext bytecode

bytecode branch

branch
spill,
fill

Microcode

Execute

Fig. 2. Datapath of JOP

to a new FPGA board usually results in changes in
the memory module alone. Using the same board for
different applications only involves making changes to
the I/O module. JOP has been ported to several different
FPGAs and prototyping boards and has been used in
different real-world applications, but it never proved
necessary to change the processor core.

3.1. The Processor Pipeline

JOP is a fully pipelined architecture with single cy-
cle execution of microcode instructions and a novel ap-
proach of translation from Java bytecode to these in-
structions. Figure 2 shows the datapath for JOP, repre-
senting the pipeline from left to right. Blocks arranged
vertically belong to the same pipeline stage.

Three stages form the JOP core pipeline, executing
microcode instructions. An additional stage in the front
of the core pipeline fetches Java bytecodes – the instruc-
tions of the JVM – and translates these bytecodes into
addresses in microcode. Bytecode branches are also de-
coded and executed in this stage. The second pipeline
stage fetches JOP instructions from the internal mi-
crocode memory and executes microcode branches. Be-
sides the usual decode function, the third pipeline stage
also generates addresses for the stack RAM (the stack
cache). As every stack machine microcode instruction
(except nop, wait, and jbr) has either pop or push
characteristics, it is possible to generate fill or spill ad-
dresses for the following instruction at this stage. The
last pipeline stage performs ALU operations, load, store
and stack spill or fill. At the execution stage, opera-
tions are performed with the two topmost elements of
the stack.

A stack machine with two explicit registers for the
two topmost stack elements and automatic fill/spill to
the stack cache needs neither an extra write-back stage
nor any data forwarding. Figure 3 shows the architecture

ALU
Read
Addr.

Write
Addr.

Write
Data

Stack
RAM

A

B

Fig. 3. The execution stage with the two-level stack cache

of the execution stage with the two-level stack cache.
The operands for the ALU operation reside in the two
registers. The result is written in the same cycle into
register A again. That means execute and write back is
performed in a single pipeline stage.

We will show that all operations can be performed
with this architecture. Let A be the top-of-stack (TOS)
and B the element below TOS. The memory that serves
as the second level cache is represented by the array
sm. Two indices in this array are used: p points to the
logical third element of the stack and changes as the
stack grows or shrinks, v points to the base of the local
variables area in the stack and n is the address offset of
a variable. op is a two operand stack operation with a
single result (i.e. a typical ALU operation).
Case 1: ALU operation

A← A op B
B← sm[p]
p← p – 1
The two operands are provided by the two top level
registers. A single read access from sm is necessary
to fill B with a new value.

Case 2: Variable load (Push)
A← sm[v+n]
B← A
sm[p+1]← B
p← p + 1
One read access from sm is necessary for the variable
read. The former TOS value moves down to B and
the data previously in B is written to sm.

Case 3: Variable store (Pop)
sm[v+n]← A
A← B
B← sm[p]
p← p - 1
The TOS value is written to sm. A is filled with B and
B is filled in an identical manner to Case 1, needing
a single read access from sm.

We can see that all three basic operations can be per-
formed with a stack memory with one read and one
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write port. Assuming a memory is used that can handle
concurrent read and write access, there is no structural
access conflict between A, B and sm. That means that
all operations can be performed concurrently in a single
cycle. Further details of this two-level stack architec-
ture, and that there are no RAW conflicts, are described
in [50].

The short pipeline results in a short delay for a con-
ditional branch. Therefore, a hard to analyze (with re-
spect to WCET) branch prediction logic can be avoided.
One question remains: Is the pipeline well balanced?
Compared to other FPGA designs (see Section 5) the
maximum frequency is quite high. To evaluate if we
could do better we performed some experiments by
adding pipeline stages in the critical path. In the 4-stage
pipeline the critical path is in the first stage, the byte-
code fetch and translation stage (100 MHz). Pipelining
this unit increased the maximum frequency to 106 MHz
and moved the critical path to the execution stage (the
barrel shifter). Pipelining this barrel shifter resulted in
111 MHz and the critical path moved to the feedback
of the branch condition (located in the microcode fetch
stage). Pipelining this path moved the critical path to
the microcode decode stage. That means that not a sin-
gle stage dominates the critical path. From these exper-
iments we conclude that the design with four pipeline
stages result in a well balanced design.

3.2. Interrupt Logic

Interrupts and (precise) exceptions are considered
hard to implement in a pipelined processor [21], mean-
ing implementation tends to be complex (and therefore
resource consuming). In JOP, the bytecode-microcode
translation is used cleverly to avoid having to handle in-
terrupts and exceptions (e.g., stack overflow) in the core
pipeline. Interrupts are implemented as special byte-
codes. These bytecodes are inserted by the hardware in
the Java instruction stream. When an interrupt is pend-
ing and the next fetched byte from the bytecode cache
is an instruction, the associated special bytecode is used
instead of the instruction from the bytecode cache. The
result is that interrupts are accepted at bytecode bound-
aries. The worst-case preemption delay is the execution
time of the slowest bytecode that is implemented in mi-
crocode. Bytecodes that are implemented in Java (see
Section 3.4.3) can be interrupted.

The implementation of interrupts at the bytecode-
microcode mapping stage keeps interrupts transparent
in the core pipeline and avoids complex logic. Interrupt
handlers can be implemented in the same way as stan-

dard bytecodes are implemented i.e. in microcode or
Java.

This special bytecode can result in a call of a JVM
internal method in the context of the interrupted thread.
This mechanism implicitly stores almost the complete
context of the current active thread on the stack. This
feature is used to implement the preemptive, fixed pri-
ority real-time scheduler in Java [47].

3.3. Cache

A pipelined processor architecture calls for higher
memory bandwidth. A standard technique to avoid pro-
cessing bottlenecks due to the lower available memory
bandwidth is caching. However, standard cache orga-
nizations improve the average execution time but are
difficult to predict for WCET analysis [20]. Two time-
predictable caches are proposed for JOP: a stack cache
as a substitution for the data cache and a method cache
to cache the instructions.

As the stack is a heavily accessed memory region,
the stack – or part of it – is placed in on-chip memory.
This part of the stack is referred to as the stack cache
and described in [50]. The stack cache is organized in
two levels: the two top elements are implemented as
registers, the lower level as a large on-chip memory.
Fill and spill between these two levels is done in hard-
ware. Fill and spill between the on-chip memory and
the main memory is subjected to microcode control and
therefore time-predictable. The exchange of the on-chip
stack cache with the main memory can be either done
on method invocation and return or on a thread switch.

In [49], a novel way to organize an instruction cache,
as method cache, is given. The idea is to cache com-
plete methods. A cache fill from main memory is only
performed on a miss on method invocation or return.
Therefore, all other bytecodes have a guaranteed cache
hit. That means no instruction can stall the pipeline.

The cache is organized in blocks, similar to cache
lines. However, the cached method has to span contin-
uous 3 blocks. The method cache can hold more than
one method. Cache block replacement depends on the
call tree, instead of instruction addresses. This method
cache is easy to analyze with respect to worst-case be-
havior and still provides substantial performance gain
when compared against a solution without an instruc-
tion cache. The average case performance of this method
cache is similar to a direct mapped cache [49]. The

3 The cache addresses wrap around at the end of the on-chip
memory. Therefore, a method is also considered continuous when
it spans from the last to the first block.
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Fig. 4. Data flow from the Java program counter to JOP microcode

maximum method size is restricted by the size of the
method cache. The pre-link tool verifies that the size
restriction is fulfilled by the application.

3.4. Microcode

The following discussion concerns two different in-
struction sets: bytecode and microcode. Bytecodes are
the instructions that make up a compiled Java program.
These instructions are executed by a Java virtual ma-
chine. The JVM does not assume any particular imple-
mentation technology. Microcode is the native instruc-
tion set for JOP. Bytecodes are translated, during their
execution, into JOP microcode. Both instruction sets are
designed for an extended 4 stack machine.

3.4.1. Translation of Bytecodes to Microcode
To date, no hardware implementation of the JVM

exists that is capable of executing all bytecodes in
hardware alone. This is due to the following: some
bytecodes, such as new, which creates and initializes a
new object, are too complex to implement in hardware.
These bytecodes have to be emulated by software.

To build a self-contained JVM without an underlying
operating system, direct access to the memory and I/O
devices is necessary. There are no bytecodes defined for
low-level access. These low-level services are usually
implemented in native functions, which mean that an-
other language (C) is native to the processor. However,
for a Java processor, bytecode is the native language.

One way to solve this problem is to implement simple
bytecodes in hardware and to emulate the more com-
plex and native functions in software with a different
instruction set (sometimes called microcode). However,
a processor with two different instruction sets results in
a complex design.

4 An extended stack machine contains instructions that make it
possible to access elements deeper down in the stack.

Another common solution, used in Sun’s picoJava
[58], is to execute a subset of the bytecode native and
to use a software trap to execute the remainder. This
solution entails an overhead (a minimum of 16 cycles
in picoJava) for the software trap.

In JOP, this problem is solved in a much simpler way.
JOP has a single native instruction set, the so-called
microcode. During execution, every Java bytecode is
translated to either one, or a sequence of microcode
instructions. This translation merely adds one pipeline
stage to the core processor and results in no execution
overheads (except for a bytecode branch that takes 4
instead of 3 cycles to execute). The area overhead of
the translation stage is 290 LCs, or about 15% of the
LCs of a typical JOP configuration. With this solution,
we are free to define the JOP instruction set to map
smoothly to the stack architecture of the JVM, and to
find an instruction coding that can be implemented with
minimal hardware.

Figure 4 gives an example of the data flow from the
Java program counter to JOP microcode. The figure rep-
resents the two pipeline stages bytecode fetch/translate
and microcode fetch. The fetched bytecode acts as an
index for the jump table. The jump table contains the
start addresses for the bytecode implementation in mi-
crocode. This address is loaded into the JOP program
counter for every bytecode executed. JOP executes the
sequence of microcode until the last one. The last one
is marked with nxt in microcode assembler. This nxt bit
in the microcode ROM triggers a new translation i.e.,
a new address is loaded into the JOP program counter.
In Figure 4 the implementation of bytecode idiv is an
example of a longer sequence that ends with microcode
instruction ldm c nxt.

Some bytecodes, such as ALU operations and the
short form access to locals, are directly implemented
by an equivalent microcode instruction. Additional in-
structions are available to access internal registers, main
memory and I/O devices. A relative conditional branch
(zero/non zero of the top-of-stack) performs control
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dup: dup nxt // 1 to 1 mapping

// a and b are scratch variables at
// the microcode level.

dup_x1: stm a // save TOS
stm b // and TOS-1
ldm a // duplicate former TOS
ldm b // restore TOS-1
ldm a nxt // restore TOS and fetch

// the next bytecode

Fig. 5. Implementation of dup and dup x1

flow decisions at the microcode level. A detailed de-
scription of the microcode instructions can be found in
[51].

The difference to other forms of instruction transla-
tion in hardware is that the proposed solution is time pre-
dictable. The translation takes one cycle (one pipeline
stage) for each bytecode, independent from the execu-
tion history. Instruction folding, e.g., implemented in
picoJava [36,58], is also a form of instruction transla-
tion in hardware. Folding is used to translate several
(stack oriented) bytecode instructions to a RISC type
instruction. This translation needs an instruction buffer
and the fill level of this instruction buffer depends on
the execution history. The length of this history that has
to be considered for analysis is not bounded. Therefore
this form of instruction translation is not exactly time
predictable.

3.4.2. Bytecode Example
The example in Figure 5 shows the implementation

of a single cycle bytecode and an infrequent bytecode
as a sequence of JOP instructions. The suffix nxt marks
the last instruction of the microcode sequence. In this
example, the dup bytecode is mapped to the equivalent
dup microcode and executed in a single cycle, whereas
dup x1 takes five cycles to execute, and after the last
instruction (ldm a nxt), the first instruction for the next
bytecode is executed. The scratch variables, as shown in
the second example, are stored in the on-chip memory
that is shared with the stack cache.

Some bytecodes are followed by operands of between
one and three bytes in length (except lookupswitch
and tableswitch). Due to pipelining, the first operand
byte that follows the bytecode instruction is available
when the first microcode instruction enters the execution
stage. If this is a one-byte long operand, it is ready to
be accessed. The increment of the Java program counter
after the read of an operand byte is coded in the JOP
instruction (an opd bit similar to the nxt bit).

In Listing 6, the implementation of sipush is shown.

sipush: nop opd // fetch next byte
nop opd // and one more
ld_opd_16s nxt // load 16 bit operand

Fig. 6. Bytecode operand load

The bytecode is followed by a two-byte operand. Since
the access to bytecode memory is only one 5 byte per
cycle, opd and nxt are not allowed at the same time.
This implies a minimum execution time of n+1 cycles
for a bytecode with n operand bytes.

3.4.3. Flexible Implementation of Bytecodes
As mentioned above, some Java bytecodes are very

complex. One solution already described is to emu-
late them through a sequence of microcode instructions.
However, some of the more complex bytecodes are very
seldom used. To further reduce the resource implica-
tions for JOP, in this case local memory, bytecodes can
even be implemented by using Java bytecodes. That
means bytecodes (e.g., new or floating point operations)
can be implemented in Java. This feature also allows
for the easy configuration of resource usage versus per-
formance.

During the assembly of the JVM, all labels that rep-
resent an entry point for the bytecode implementation
are used to generate the translation table. For all byte-
codes for which no such label is found, i.e. there is no
implementation in microcode, a not-implemented ad-
dress is generated. The instruction sequence at this ad-
dress invokes a static method from a system class. This
class contains 256 static methods, one for each possible
bytecode, ordered by the bytecode value. The bytecode
is used as the index in the method table of this system
class. A single empty static method consumes three 32-
bit words in memory. Therefore, the overhead of this
special class is 3 KB, which is 9% of a minimal hello
world program (34 KB memory footprint).

3.5. Architecture Summary

In this section, we have introduced JOP’s architec-
ture. In order to handle the great variation in the com-
plexity of Java bytecodes we have proposed a translation
to a different instruction set, the so-called microcode.
This microcode is still an instruction set for a stack
machine, but more RISC-like than the CISC-like JVM
bytecodes. The core of the stack machine constitutes
a three-stage pipeline. An additional pipeline stage in
front of this core pipeline stage performs bytecode fetch

5 The decision is to avoid buffers that would introduce time depen-
dencies over bytecode boundaries.
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and the translation to microcode. This organization has
no execution time overheads for more complex byte-
codes and results in the short pipeline that is necessary
for any processor without branch prediction. The addi-
tional translation stage also presents an elegant way of
incorporating interrupts virtually for free. Only a mul-
tiplexor is needed in the path from the translation stage
to the microcode decode stage. The microcode scratch
variables are only valid during a microcode sequence
for a bytecode and need not be saved on an interrupt.

At the time of this writing 43 of the 201 different
bytecodes are implemented by a single microcode in-
struction, 93 by a microcode sequence, and 40 byte-
codes are implemented in Java.

4. Worst-Case Execution Time

Worst-case execution time (WCET) estimates of tasks
are essential for designing and verifying real-time sys-
tems. WCET estimates can be obtained either by mea-
surement or static analysis. The problem with using
measurements is that the execution times of tasks tend
to be sensitive to their inputs. As a rule, measurement
does not guarantee safe WCET estimates. Instead, static
analysis is necessary for hard real-time systems. Static
analysis is usually divided into a number of different
phases:
Path analysis generates the control flow graph (a di-

rected graph of basic blocks) of the program and an-
notates (manual or automatic) loops with bounds.

Low-level analysis determines the execution time of
basic blocks obtained by the path analysis. A model
of the processor and the pipeline provides the execu-
tion time for the instruction sequence.

Global low-level analysis determines the influence of
hardware features such as caches on program execu-
tion time. This analysis can use information from the
path analysis to provide less pessimistic values.

WCET Calculation collapses the control flow graph
to provide the final WCET estimate. Alternative paths
in the graph are collapsed to a single value (the largest
of the alternatives) and loops are collapsed once the
loop bound is known.
For the low-level analysis, a good timing model of

the processor is needed. The main problem for the low-
level analysis is the execution time dependency of in-
structions in modern processors that are not designed for
real-time systems. JOP is designed to be an easy target
for WCET analysis. The WCET of each bytecode can
be predicted in terms of number of cycles it requires.
There are no dependencies between bytecodes.

Each bytecode is implemented by microcode. We can
obtain the WCET of a single bytecode by performing
WCET analysis at the microcode level. To prove that
there are no time dependencies between bytecodes, we
have to show that no processor states are shared between
different bytecodes.

WCET analysis has to be done at two levels: at the mi-
crocode level and at the bytecode level. The microcode
WCET analysis is performed only once for a processor
configuration and described in the next sections. The
result from this microcode analysis is the timing model
of the processor. The timing model is the input for the
WCET analysis at the bytecode level (i.e. the Java ap-
plication) as shown in the example in Section 4.5.1 and
in the WCET tool description in Section 4.5.2.

It has to be noted that we cannot provide WCET
values for the other Java systems from Section 6, e.g.
the aJile Java processor, as there is no information on
the instruction timing available.

4.1. Microcode Path Analysis

To obtain the WCET values for the individual byte-
codes we perform the path analysis at the microcode
level. First, we have to ensure that a number of restric-
tions (from [42]) of the code are fulfilled:
– Programs must not contain unbounded recursion.

This property is satisfied by the fact that there exists
no call instruction in microcode.

– Function pointers and computed gotos complicate
the path analysis and should therefore be avoided.
Only simple conditional branches are available at the
microcode level.

– The upper bound of each loop has to be known. This
is the only point that has to be verified by inspection
of the microcode.

To detect loops in the microcode we have to find all
backward branches (e.g. with a negative branch off-
set) 6 . The branch offsets can be found in a VHDL file
(offtbl.vhd) that is generated during microcode as-
sembly. In the current implementation of the JVM there
are ten different negative offsets. However, not each off-
set represents a loop. Most of these branches are used
to share common code. Three branches are found in
the initialization code of the JVM. They are not part
of a bytecode implementation and can be ignored. The
only loop that is found in a regular bytecode is in the

6 The loop branch can be a forward branch. However, the basic
blocks of the loop contain at least one backward branch. Therefore
we can identify all loops by searching for backward branches only.
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implementation of imul to perform a fixed delay. The
iteration count for this loop is constant.

A few bytecodes are implemented in Java 7 and can
be analyzed in the same way as application code. The
bytecodes idiv and irem contain a constant loop. The
bytecodes new and anewarray contain loops to initial-
ize (with zero values) new objects or arrays. The loop is
bound by the size of the object or array. The bytecode
lookupswitch 8 performs a linear search through a ta-
ble of branch offsets. The WCET depends on the table
size that can be found as part of the instruction.

As the microcode sequences are very short, the cal-
culation of the control flow graph for each bytecode is
done manually.

4.2. Microcode Low-level Analysis

To calculate the execution time of basic blocks in the
microcode, we need to establish the timing of microcode
instructions on JOP. All microcode instructions except
wait execute in a single cycle, reducing the low-level
analysis to a case of merely counting the instructions.

The wait instruction is used to stall the processor
and wait for the memory subsystem to finish a memory
transaction. The execution time of the wait instruction
depends on the memory system and, if the memory sys-
tem is predictable, has a known WCET. A main mem-
ory consisting of SRAM chips can provide this pre-
dictability and this solution is therefore advised. The
predictable handling of DMA, which is used for the in-
struction cache fill, is explained in [49]. The wait in-
struction is the only way to stall the processor. Hard-
ware events, such as interrupts (see [46]), do not stall
the processor.

Microcode is stored in on-chip memory with sin-
gle cycle access. Each microcode instruction is a sin-
gle word long and there is no need for either caching
or prefetching at this stage. We can therefore omit per-
forming a low-level analysis. No pipeline analysis [13],
with its possible unbound timing effects, is necessary.

4.3. Bytecode Independency

We have seen that all microcode instructions except
wait take one cycle to execute and are therefore in-

7 The implementation can be found in the class
com.jopdesign.sys.JVM.
8 lookupswitch is one way of implementing the Java switch
statement. The other bytecode, tableswitch, uses an index in the
table of branch offsets and has therefore a constant execution time.

dependent of other instructions. This property directly
translates to independency of bytecode instructions.

The wait microcode instruction provides a conve-
nient way to hide memory access time. A memory read
or write can be triggered in microcode and the proces-
sor can continue with microcode instructions. When the
data from a memory read is needed, the processor ex-
plicitly waits, with the wait instruction, until it becomes
available.

For a memory store, this wait could be deferred un-
til the memory system is used next (similar to a write
buffer). It is possible to initiate the store in a bytecode
such as putfield and continue with the execution of
the next bytecode, even when the store has not been
completed. In this case, we introduce a dependency over
bytecode boundaries, as the state of the memory system
is shared. To avoid these dependencies that are difficult
to analyze, each bytecode that accesses memory waits
(preferably at the end of the microcode sequence) for
the completion of the memory request.

Furthermore, if we would not wait at the end of the
store operation we would have to insert an additional
wait at the start of every read operation. Since read op-
erations are more frequent than write operations (15%
vs. 2.5%, see [51]), the performance gain from the hid-
den memory store is lost.

4.4. WCET of Bytecodes

The control flow of the individual bytecodes together
with the basic block length (that directly corresponds
with the execution time) and the time for memory access
result in the WCET (and BCET) values of the bytecodes.
These exact values for each bytecode can be found in
[51].

Simple bytecode instructions are executed by either
one microinstruction or a short sequence of microin-
structions. The execution time in cycles equals the num-
ber of microinstructions executed. As the stack is on-
chip it can be accessed in a single cycle. We do not need
to incorporate the main memory timing into the instruc-
tion timing. Table 2 shows examples of the execution
time of such bytecodes.

Object oriented instructions, array access, and in-
voke instructions access the main memory. Therefore
we have to model the memory access time. We assume
a simple SRAM with a constant access time. Access
time that exceeds a single cycle includes additional wait
states (rws for a memory read and wws for a memory
write). The following example gives the execution time
for getfield, the read access of an object field:

tget f ield = 10+2rws
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Table 2
Execution time of simple bytecodes in cycles

Opcode Instruction Cycles Funtion

3 iconst 0 1 load constant 0 on TOS
4 iconst 1 1 load constant 1 on TOS

16 bipush 2 load a byte constant on TOS
17 sipush 3 load a short constant on TOS
21 iload 2 load a local on TOS
26 iload 0 1 load local 0 on TOS
27 iload 1 1 load local 1 on TOS
54 istore 2 store the TOS in a local
59 istore 0 1 store the TOS in local 0
60 istore 1 1 store the TOS in local 1
89 dup 1 duplicate TOS
90 dup x1 5 complex stack manipulation
96 iadd 1 integer addition
153 ifeq 4 conditional branch

However, the memory subsystem performs read and
write parallel to the execution of microcode. Therefore,
some access cycles can be hidden. The following exam-
ple gives the exact execution time of bytecode ldc2 w
in clock cycles:

tldc2 w = 17+
{

rws−2 : rws > 2
0 : rws ≤ 2

+
{

rws−1 : rws > 1
0 : rws ≤ 1

Thus, for a memory with two cycles access time
(rws = 1), as we use it for a 100 MHz version of JOP
with a 15 ns SRAM, the wait state is completely hidden
by microcode instructions for this bytecode.

Memory access time also determines the cache load
time on a miss. For the current implementation the cache
load time is calculated as follows: the wait state cws for
a single word cache load is:

cws =
{

rws−1 : rws > 1
0 : rws ≤ 1

On a method invoke or return the bytecode has to be
loaded into the cache on a cache miss. The load time l
is:

l =
{

6+(n+1)(2+ cws) : cache miss
4 : cach hit

where n is the length of the method in number of 32-
bit words. For short methods the load time of the method
on a cache miss, or part of it, is hidden by microcode
execution. As an example the exact execution time for
the bytecode invokestatic is:

t = 74+ r +
{

rws−3 : rws > 3
0 : rws ≤ 3

+
{

rws−2 : rws > 2
4 : rws ≤ 2

+
{

l−37 : l > 37
0 : l ≤ 37

For invokestatic a cache load time l of up to 37
cycles is completely hidden. For the example SRAM

final static int N = 5;

static void sort(int[] a) {

int i, j, v1, v2;
// loop count = N-1
for (i=N-1; i>0; --i) {

// loop count = (N-1)*N/2
for (j=1; j<=i; ++j) {

v1 = a[j-1];
v2 = a[j];
if (v1 > v2) {

a[j] = v1;
a[j-1] = v2;

}
}

}
}

Fig. 7. Bubble Sort test program for the WCET analysis

timing the cache load of methods up to 36 bytes long
is hidden. The WCET analysis tool, as described in the
next section, knows the length of the invoked method
and can therefore calculate the time for the invoke in-
struction cycle accurate.

4.5. WCET Analysis of the Java Application

We conclude this section with a worst-case analysis
(now at the bytecode level) of Java applications. First we
provide manual analysis on a simple example and than
a brief description of the automation through a WCET
analyzer tool.

4.5.1. An Example
In this section we perform manually a worst and best

case analysis of a classic example, the Bubble Sort al-
gorithm. The values calculated are compared with the
measurements of the execution time on JOP on all per-
mutations of the input data. Figure 7 shows the test pro-
gram in Java. The algorithm contains two nested loops
and one condition. We use an array of five elements to
perform the measurements for all permutations (i.e. 5! =
120) of the input data. The number of iterations of the
outer loop is one less than the array size: c1 = N−1, in
this case four. The inner loop is executed c2 = ∑

c1
i=1 i =

c1(c1 +1)/2 times, i.e. ten times in our example.
The annotated control flow graph (CFG) of the ex-

ample is shown in Figure 8. The edges contain labels
showing how often the path between two nodes is taken.
We can identify the outer loop, containing the blocks
B2, B3, B4 and B8. The inner loop consists of blocks
B4, B5, B6 and B7. Block B6 is executed when the
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Fig. 8. The control flow graph of the Bubble Sort example

Table 3
WCET and BCET in clock cycles of the basic blocks

WCET BCET
Block Addr. Cycles Count Total Count Total

B1 0: 2 1 2 1 2
B2 2: 5 5 25 5 25
B3 6: 2 4 8 4 8
B4 8: 6 14 84 14 84
B5 13: 74 10 740 10 740
B6 30: 73 10 730 0 0
B7 41: 15 10 150 10 150
B8 47: 15 4 60 4 60
B9 53: 1 1

Execution time calculated 1799 1069
Execution time measured 1799 1069

condition of the if statement is true. The path from B5
to B7 is the only path that depends on the input data.

In Table 3 the basic blocks with the start address
(Addr.) and their execution time (Cycles) in clock cycles
and the worst and best case execution frequency (Count)
is given. The values in the forth and sixth columns
(Count) of Table 3 are derived from the CFG and show
how often the basic blocks are executed in the worst and
best cases. The WCET and BCET value for each block
is calculated by multiplying the clock cycles by the exe-
cution frequency. The overall WCET and BCET values
are calculated by summing the values of the individual
blocks B1 to B8. The last block (B9) is omitted, as the
measurement does not contain the return statement.

The execution time of the program is measured using
the cycle counter in JOP. The current time is taken at
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Fig. 9. Execution time in clock cycles of the Bubble Sort program
for all 120 permutations of the input data

both the entry of the method and at the end, resulting in a
measurement spanning from block B1 to the beginning
of block B9. The last statement, the return, is not part
of the measurement. The difference between these two
values (less the additional 8 cycles introduced by the
measurement itself) is given as the execution time in
clock cycles (the last row in Table 3). The measured
WCET and BCET values are exactly the same as the
calculated values.

In Figure 9, the measured execution times for all 120
permutations of the input data are shown. The vertical
axis shows the execution time in clock cycles and the
horizontal axis the number of the test run. The first in-
put sample is an already sorted array and results in the
lowest execution time. The last sample is the worst-case
value resulting from the reversely ordered input data.
We can also see the 11 different execution times that re-
sult from executing basic block B6 (which performs the
element exchange and takes 73 clock cycles) between
0 and 10 times.

4.5.2. WCET Analyzer
In [53] we have presented a static WCET analysis

tool for Java. During the high-level analysis the the
relevant information is extracted from the class files.
The control flow graph (CFG) of the basic blocks 9

is extracted from the bytecodes. Annotations for the
loop counts are extracted from comments in the source.
Furthermore, the class hierarchy is examined to find all
possible targets for a method invoke.

The tool performs the low-level analysis at the byte-
code level. The behavior of the method cache is inte-
grated for a simpler form (a two block cache). The well
known execution times of the different bytecodes (see
Section 4.4) simplifies this part of the WCET analysis,

9 A basic block is a sequence of instructions without any jumps or
jump targets within this sequence.
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Table 4
WCET benchmark examples

Program Description LOC

crc CRC calculation for short messages 8
robot A simple line follower robot 111
Lift A lift controler 635
Kfl Kippfahrleitung application 1366
UdpIp UDP/IP benchmark 1297

Table 5
Measured and estimated WCETs with results in clock cycles

Measured Estimated Pessimism
Program (cycle) (cycle) (ratio)

crc 1552 1620 1.04
robot 736 775 1.05
Lift 7214 11249 1.56
Kfl 13334 28763 2.16
UdpIp 11823 219569 18.57

which is usually the most complex one, to a great ex-
tent. As there are no pipeline dependencies the calcu-
lation of the execution time for a basic block is merely
just adding the individual cycles for each instruction.

The actual calculation of the WCET is transformed to
an integer linear programming problem, a well known
technique for WCET analysis [43,29]. We performed
the WCET analysis on several benchmarks (see Ta-
ble 4). We also measured the WCET values for the
benchmarks. It has to be noted that we actually cannot
measure the real WCET. If we could measure it, we
would not need to perform the WCET analysis at all.
The measurement gives us an idea of the pessimism of
the analyzed WCET. The benchmarks Lift and Kfl are
real-world examples that are in industrial use. Kfl and
UdpIp are also part of an embedded Java benchmark
suit that is used in Section 6.

Table 5 shows the measured execution time and the
analyzed WCET. The last column gives an idea of the
pessimism of the WCET analysis. For very simple pro-
grams, such as crc and robot, the pessimism is quite
low. For the Lift example it is in an acceptable range.
The difference between the measurement and the anal-
ysis in the Kfl example results from the fact that our
measurement does not cover the WCET path. The large
conservatism in UdpIp results from the loop bound in
the IP and UDP checksum calculation. It is set for a 1500
byte packet buffer, but the payload in the benchmark is
only 8 bytes. The last two examples also show the is-
sue when a real-time application is developed without
a WCET analysis tool available.

The WCET analysis tool, with the help of loop an-
notations, provides WCET values for the schedulability
analysis. Besides the calculation of the WCET the tool

provides user feedback by generating bytecode listings
with timing information and a graphical representation
of the CFG with timing and frequency information. This
representation of the WCET path through the code can
guide the developer to write WCET aware real-time
code.

4.6. Discussion

The Bubble Sort example and experiments with the
WCET analyzer tool have demonstrated that we have
achieved our goal: JOP is a simple target for the WCET
analysis. Most bytecodes have a single execution time
(WCET = BCET), and the WCET of a task (the analysis
at the bytecode level) depends only on the control flow.
No pipeline or data dependencies complicate the low-
level part of the WCET analysis.

The same analysis is not possible for other Java pro-
cessors. Either the information on the bytecode exe-
cution time is missing 10 or some processor features
(e.g., the high variability of the latency for a trap in pi-
coJava) would result in very conservative WCET esti-
mates. Another example that prohibits exact analysis is
the mechanism to automatically fill and spill the stack
cache in picoJava. The time when the memory (cache)
is occupied by this spill/fill action depends on a long in-
struction history. Also the fill level of the 16-byte-deep
prefetch buffer, which is needed for instruction folding,
depends on the execution history. All this automatically
buffering features have to be modeled quite conserva-
tive. A pragmatic solution is to assume empty buffers
at the start of a basic block. As basic blocks are quite
short most of the buffering/prefetching does not help to
lower the WCET.

Only for the Cjip processor the execution time is well
documented [24]. However, as seen in Section 6.2, the
measured execution time of some bytecodes is higher
than the documented values. Therefore the documenta-
tion is not complete to provide a safe processor model
of the Cjip for the WCET analysis.

5. Resource Usage

Cost is an important issue for embedded systems.
The cost of a chip is directly related to the die size
(the cost per die is roughly proportional to the square
of the die area [21]). Processors for embedded systems
are therefore optimized for minimum chip size. In this

10 We tried hard to get this information for the aJile processor.
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Fig. 10. Size in logic cells (LC) of different soft-core processors

section, we will compare JOP with different processors
in terms of size.

One major design objective in the development of
JOP was to create a small system that can be imple-
mented in a low-cost FPGA. Figure 10 and Table 6
show the resource usage for different configurations of
JOP and different soft-core processors implemented in
an Altera EP1C6 FPGA [3]. Estimating equivalent gate
counts for designs in an FPGA is problematic. It is there-
fore better to compare the two basic structures, Logic
Cells (LC) and embedded memory blocks. The max-
imum frequency for all soft-core processors is in the
same technology or normalized (SPEAR) to the tech-
nology.

All configurations of JOP contain the on-chip mi-
crocode memory, the 1 KB stack cache, a 1 KB method
cache, a memory interface to a 32-bit static RAM, and
an 8-bit FLASH interface for the Java program and the
FPGA configuration data. The minimum configuration
implements multiplication and the shift operations in
microcode. In the typical configuration, these operations
are implemented as a sequential Booth multiplier and
a single-cycle barrel shifter. The typical configuration
also contains some useful I/O devices such as an UART
and a timer with interrupt logic for multi-threading. The
typical configuration of JOP consumes about 30% of
the LCs in a Cyclone EP1C6, thus leaving enough re-
sources free for application-specific logic.

As a reference, NIOS [2], Altera’s popular RISC soft-
core, is also included in Table 6. NIOS has a 16-bit in-
struction set, a 5-stage pipeline and can be configured
with a 16 or 32-bit datapath. Version A is the mini-
mum configuration of NIOS. Version B adds an external
memory interface, multiplication support and a timer.
Version A is comparable with the minimal configuration
of JOP, and Version B with its typical configuration.

LEON3 [15], the open-source implementation of the
SPARC V8 architecture, has been ported to the exact

Table 6
Size and maximum frequency of FPGA soft-core processors

Processor Resources Memory fmax
(LC) (KB) (MHz)

JOP Minimal 1077 3.25 98
JOP Typical 2049 3.25 100
Lightfoot 11 [9] 3400 4 40
NIOS A [2] 1828 6.2 120
NIOS B [2] 2923 5.5 119
LEON3 [15] 7978 10.9 35
SPEAR 12 [10] 1700 8 80

same hardware that was used for the JOP numbers.
LEON3 is a representative of a RISC processor that is
used in embedded real-time systems (e.g., by ESA for
space missions).

SPEAR [10] (Scalable Processor for Embedded Ap-
plications in Real-time Environments) is a 16-bit pro-
cessor with deterministic execution times. SPEAR con-
tains predicated instructions to support single-path pro-
gramming [39]. SPEAR is included in the list as it is
also a processor designed for real-time systems.

To prove that the VHDL code for JOP is as portable as
possible, JOP was also implemented in a Xilinx Spartan-
3 FPGA [66]. Only the instantiation and initialization
code for the on-chip memories is vendor-specific, whilst
the rest of the VHDL code can be shared for the dif-
ferent targets. JOP consumes about the same LC count
(1844 LCs) in the Spartan device, but has a slower clock
frequency (83 MHz).

From this comparison we can see that we have
achieved our objective of designing a small processor.
The commercial Java processor, Lightfoot, consumes
1.7 times the logic resources of JOP in the typical
configuration (with a lower clock frequency). A typi-
cal 32-bit RISC processor (NIOS) consumes about 1.5
times (LEON about four times) the resources of JOP.
However, the NIOS processor can be clocked 20%
faster than JOP in the same technology. The vendor
independent and open-source RISC processor LEON
can be clocked only with 35% of JOP’s frequency. The
only processor that is similar in size is SPEAR. How-

11 The data for the Lightfoot processor is taken from the data sheet
[9]. The frequency used is that in a Vertex-II device from Xilinx.
JOP can be clocked at 100 MHz in the Vertex-II device, making
this comparison valid.
12 As SPEAR uses internal memory blocks in asynchronous mode it
is not possible to synthesize it without modification for the Cyclone
FPGA. The clock frequency of SPEAR in an Altera Cyclone is
an estimate based on following facts: SPEAR can be clocked at
40 MHz in an APEX device and JOP can be clocked at 50 MHz
in the same device.
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ever, while SPEAR is a 16-bit processor, JOP contains
a 32-bit datapath.

6. Performance

In this section, we will evaluate the performance of
JOP in relation to other embedded Java systems. Al-
though JOP is intended as a processor with a low WCET
for all operations, its general performance is still im-
portant.

6.1. General Performance

Running benchmarks is problematic, both gener-
ally and especially in the case of embedded systems.
The best benchmark would be the application that
is intended to run on the system being tested. To
get comparable results SPEC provides benchmarks
for various systems. However, the one for Java, the
SPECjvm98 [55], needs more functionality than what
is usually available in a CLDC compliant device (e.g.,
a filesystem and java.net). Some benchmarks from
the SPECjvm98 suits also need several MB of heap.

Due to the absence of a standard Java benchmark
for embedded systems, a small benchmark suite that
should run on even the smallest device is provided here.
It contains several micro-benchmarks for evaluating the
number of clock cycles for single bytecodes or short se-
quences of bytecodes, and two application benchmarks.

To provide a realistic workload for embedded sys-
tems, a real-time application was adapted to create the
first application benchmark (Kfl). The application is
taken from one of the nodes of a distributed motor con-
trol system [45] (the first industrial application of JOP).
The application is written as a cyclic executive. A sim-
ulation of both the environment (sensors and actors)
and the communication system (commands from the
master station) forms part of the benchmark, so as to
simulate the real-world workload. The second applica-
tion benchmark is an adaptation of a tiny TCP/IP stack
for embedded Java. This benchmark contains two UDP
server/clients, exchanging messages via a loopback de-
vice. The Kfl benchmark consists of 511 methods and
14 KB code, the UDP/IP benchmark of 508 methods
and 13 KB code (including the supporting library).

As we will see, there is a great variation in process-
ing power across different embedded systems. To cater
for this variation, all benchmarks are ‘self adjusting’.
Each benchmark consists of an aspect that is bench-
marked in a loop and an ‘overhead’ loop that contains
any overheads from the benchmark that should be sub-

tracted from the result (this feature is designed for the
micro-benchmarks). The loop count adapts itself until
the benchmark runs for more than a second. The num-
ber of iterations per second is then calculated, which
means that higher values indicate better performance.

All the benchmarks measure how often a function is
executed per second. In the Kfl benchmark, this function
contains the main loop of the application that is executed
in a periodic cycle in the original application. In the
benchmark the wait for the next period is omitted, so that
the time measured solely represents execution time. The
UDP benchmark contains the generation of a request,
transmitting it through the UDP/IP stack, generating
the answer and transmitting it back as a benchmark
function. The iteration count is the number of received
answers per second.

The accuracy of the measurement depends on the
resolution of the system time. For the measurements
under Linux, the system time has a resolution of 10ms,
resulting in an inaccuracy of 1%. The accuracy of the
system time on leJOS, TINI and the aJile is not known,
but is considered to be in the same range. For JOP, a µs
counter is used for time measurement.

The following list gives a brief description of the Java
systems that were benchmarked:

JOP is implemented in a Cyclone FPGA [3], running
at 100 MHz. The main memory is a 32-bit SRAM (15ns)
with an access time of 2 clock cycles. The benchmarked
configuration of JOP contains a 4 KB method cache
organized in 16 blocks.

leJOS As an example for a low-end embedded de-
vice we use the RCX robot controller from the LEGO
MindStorms series. It contains a 16-bit Hitachi H8300
microcontroller [22], running at 16 MHz. leJOS [54] is
a tiny interpreting JVM for the RCX.

KVM is a port of the Sun’s KVM that is part of the
Connected Limited Device Configuration (CLDC) [57]
to Alteras NIOS II processor on MicroC Linux. NIOS
is implemented on a Cyclone FPGA and clocked with
50 MHz. Besides the different clock frequency this is
a good comparison of an interpreting JVM running in
the same FPGA as JOP.

TINI is an enhanced 8051 clone running a software
JVM. The results were taken from a custom board with
a 20 MHz crystal, and the chip’s PLL is set to a factor
of 2.

Cjip The measured system [23] is a replacement of
the TINI board and contains a Cjip [25] clocked with
80 MHz and 8 MB DRAM.

The benchmark results of Komodo were obtained by
Matthias Pfeffer [37] on a cycle-accurate simulation of
Komodo.
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Fig. 11. Performance comparison of different Java systems with
application benchmarks. The diagrams show the geometric mean of
the two benchmarks in iterations per second – a higher value means
higher performance. The top diagram shows absolute performance,
while the bottom diagram shows the result scaled to 1 MHz clock
frequency.

aJile’s JEMCore is a direct-execution Java processor
that is available in two different versions: the aJ80 and
the aJ100 [1]. The aJ100 provides a generic 8-bit, 16-
bit or 32-bit external bus interface, while the aJ80 only
provides an 8-bit interface.

The EJC (Embedded Java Controller) platform [12]
is a typical example of a JIT system on a RISC pro-
cessor. The system is based on a 32-bit ARM720T pro-
cessor running at 74 MHz. It contains up to 64 MB
SDRAM and up to 16 MB of NOR flash.

gcj is the GNU compiler for Java. This configuration
represents the batch compiler solution, running on a
266 MHz Pentium MMX under Linux.

MB is the realization of Java on a RISC processor for
an FPGA (Xilinx MicroBlaze [65]). Java is compiled
to C with a Java compiler for real-time systems [35]
and the C program is compiled with the standard GNU
toolchain.

It would be interesting to include the other soft-core
Java processors (Moon, Lightfoot, and FemtoJava) in
this comparison. However, it was not possible to obtain
the benchmark data. The company that produced Moon

Table 7
Application benchmarks on different Java systems. The table shows
the benchmark results in iterations per second – a higher value
means higher performance.

Frequency Kfl UDP/IP Geom. Mean Scaled
(MHz) (Iterations/s)

JOP 100 17111 6781 10772 108
leJOS 16 25 13 18 1.1
TINI 40 64 29 43 1.1
KVM 50 36 16 24 0.5
Cjip 80 176 91 127 1.6
Komodo 33 924 520 693 21
aJ80 74 2221 1004 1493 20
aJ100 103 14148 6415 9527 92
EJC 74 9893 2822 5284 71
gcj 266 139884 38460 73348 276
MB 100 3792

seems to be disappeared and FemtoJava could not run
all benchmarks.

In Figure 11, the geometric mean of the two applica-
tion benchmarks is shown. The unit used for the result
is iterations per second. Note that the vertical axis is
logarithmic, in order to obtain useful figures to show the
great variation in performance. The top diagram shows
absolute performance, while the bottom diagram shows
the same results scaled to a 1 MHz clock frequency. The
results of the application benchmarks and the geometric
mean are shown in Table 7.

It should be noted that scaling to a single clock fre-
quency could prove problematic. The relation between
processor clock frequency and memory access time can-
not always be maintained. To give an example, if we
were to increase the results of the 100 MHz JOP to
1 GHz, this would also involve reducing the memory
access time from 15 ns to 1.5 ns. Processors with 1 GHz
clock frequency are already available, but the fastest
asynchronous SRAM to date has an access time of 10 ns.

6.2. Discussion

When comparing JOP and the aJile processor against
leJOS, KVM, and TINI, we can see that a Java proces-
sor is up to 500 times faster than an interpreting JVM
on a standard processor for an embedded system. The
average performance of JOP is even better than a JIT-
compiler solution on an embedded system, as repre-
sented by the EJC system.

Even when scaled to the same clock frequency, the
compiling JVM on a PC (gcj) is much faster than either
embedded solution. However, the kernel of the applica-
tion is smaller than 4 KB [49]. It therefore fits in the
level one cache of the Pentium MMX. For a compar-
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Table 8
Execution time in clock cycles for various JVM bytecodes

JOP leJOS TINI Cjip Komodo aJ80 aJ100

iload iadd 2 836 789 55 8 38 8
iinc 8 422 388 46 4 41 11
ldc 9 1340 1128 670 40 67 9
if icmplt taken 6 1609 1265 157 24 42 18
if icmplt n/taken 6 1520 1211 132 24 40 14
getfield 22 1879 2398 320 48 142 23
getstatic 15 1676 4463 3911 80 102 15
iaload 36 1082 1543 139 28 74 13
invoke 128 4759 6495 5772 384 349 112
invoke static 100 3875 5869 5479 680 271 92
invoke interface 144 5094 6797 5908 1617 531 148

ison with a Pentium class processor we would need a
larger application.

JOP is about 7 times faster than the aJ80 Java pro-
cessor on the popular JStamp board. However, the aJ80
processor only contains an 8-bit memory interface, and
suffers from this bottleneck. The SaJe system contains
the aJ100 with 32-bit, 10 ns SRAMs. JOP with its 15 ns
SRAMs is about 12% faster than the aJ100 processor.

The MicroBlaze system is a representation of a Java
batch-compilation system for a RISC processor. Mi-
croBlaze is configured with the same cache 13 as JOP
and clocked at the same frequency. JOP is about four
times faster than this solution, thus showing that na-
tive execution of Java bytecodes is faster than batch-
compiled Java on a similar system. However, the results
of the MicroBlaze solution are at a preliminary stage 14 ,
as the Java2C compiler [35] is still under development.

The micro-benchmarks are intended to give insight
into the implementation of the JVM. In Table 8, we can
see the execution time in clock cycles of various byte-
codes. As almost all bytecodes manipulate the stack, it
is not possible to measure the execution time for a sin-
gle bytecode in the benchmark loop. The single byte-
code would trash the stack. As a minimum requirement,
a second instruction is necessary in the loop to reverse
the stack operation.

For JOP we can deduce that the WCET for simple
bytecodes is also the average execution time. We can
see that the combination of iload and iadd executes in
two cycles, which means that each of these two opera-
tions is executed in a single cycle. The iinc bytecode

13 The MicroBlaze with a 8 KB data and 8 KB instruction cache
is about 1.5 times faster than JOP. However, a 16 KB memory is
not available in low-cost FPGAs and is an unbalanced system with
respect to the LC/memory relation.
14 As not all language constructs can be compiled, only the Kfl
benchmark was measured. Therefore, the bars for MicroBlaze are
missing in Fig. 11.

is one of the few instructions that do not manipulate the
stack and can be measured alone. As iinc is not im-
plemented in hardware, we have a total of 8 cycles that
are executed in microcode. It is fair to assume that this
comprises too great an overhead for an instruction that
is found in every iterative loop with an integer index.
However, the decision to implement this instruction in
microcode was derived from the observation that the
dynamic instruction count for iinc is only 2% [51].

The sequence for the branch benchmark (if icmplt)
contains the two load instructions that push the argu-
ments onto the stack. The arguments are then consumed
by the branch instruction. This benchmark verifies that
a branch requires a constant four cycles on JOP, whether
it is taken or not.

The Cjip implements the JVM with a stack oriented
instruction set. It is the only example (except JOP)
where the instruction set is documented including the
execution time [24]. We will therefore check some of
the results with the numbers provided in the documen-
tation. The execution time is given in ns, assuming a
66 MHz clock. The execution time for the basic inte-
ger add operation is given as 180 ns resulting in 12 cy-
cles. The load of a local variable (when it is one of the
first four) takes 35 cycles. In the micro-benchmark we
measure 55 cycles instead of the theoretical 47 (iadd +
iload n). We assume that we have to add some cycles
for the fetch of the bytecodes from memory.

For compiling versions of the JVM, these micro-
benchmarks do not produce useful results. The com-
piler performs optimizations that make it impossible to
measure execution times at this fine a granularity.

7. Conclusion

In this paper, we presented a brief overview of the
concepts for a real-time Java processor, called JOP, and
the evaluation of this architecture. We have seen that
JOP is the smallest hardware realization of the JVM
available to date. Due to the efficient implementation
of the stack architecture, JOP is also smaller than a
comparable RISC processor in an FPGA. Implemented
in an FPGA, JOP has the highest clock frequency of all
known Java processors.

We performed the WCET analysis of the imple-
mented JVM at the microcode level. This analysis
provides the WCET and BCET values for the individ-
ual bytecodes. We have also shown that there are no
dependencies between individual bytecodes. This fea-
ture, in combination with the method cache [49], makes
JOP an easy target for low-level WCET analysis of
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Java applications. As far as we know, JOP is the only
Java processor for which the WCET of the bytecodes
is known and documented.

We compared JOP against several embedded Java
systems and, as a reference, with Java on a standard PC.
A Java processor is up to 500 times faster than an inter-
preting JVM on a standard processor for an embedded
system. JOP is about seven times faster than the aJ80
Java processor and about 12% faster than the aJ100.
Preliminary results using compiled Java for a RISC pro-
cessor in an FPGA, with a similar resource usage and
maximum clock frequency to JOP, showed that native
execution of Java bytecodes is faster than compiled Java.

The proposed processor has been used with success
to implement several commercial real-time applications.
JOP is open-source and all design files are available at
http://www.jopdesign.com/.
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