
Message Passing on a Time-predictable
Multicore Processor

Rasmus Bo Sørensen, Wolfgang Puffitsch, Martin Schoeberl, and Jens Sparsø
Department of Applied Mathematics and Computer Science

Technical University of Denmark, Kgs. Lyngby

Email: [rboso, wopu, masca, jspa]@dtu.dk

Abstract—Real-time systems need time-predictable computing
platforms. For a multicore processor to be time-predictable, com-
munication between processor cores needs to be time-predictable
as well. This paper presents a time-predictable message-passing
library for such a platform. We show how to build up abstraction
layers from a simple, time-division multiplexed hardware push
channel. We develop these time-predictable abstractions and
implement them in software. To prove the time-predictability
of these functions we analyze their worst-case execution time
(WCET) with the aiT WCET analysis tool. We combine these
WCET numbers with the calculation of the network latency of
a message and then provide a statically computed end-to-end
latency for this core-to-core message.

I. INTRODUCTION

In hard real-time systems, all tasks must meet their deadlines

to avoid catastrophic consequences. Therefore, execution times

of tasks, including communication timings, must have a

provable upper bound. This provable upper bound is the worst-

case execution time (WCET). The WCET is a major concern

when the designer analyzes the performance of the system.

Inter-core communication via external shared memory

quickly becomes a performance bottleneck in multicore pro-

cessors as the number of cores grows. With a shared cache

caching the external memory, this single resource still is a

bottleneck. Access to a shared cache and cache-coherence

traffic will not scale to more than a few processors. Using

message passing between cores via a network-on-chip (NoC)

promises to eliminate this bottleneck [1], [2]. Hardware support

for on-chip message passing is also beneficial when added to

a standard multicore architecture to reduce the cache traffic.

Furthermore, the message passing NoC shall be visible and

directly accessible to the application programmer for efficient

and predictable use of the communication infrastructure.

The T-CREST project [3] developed a time-predictable mul-

ticore processor, consisting of the time-predictable processor

Patmos [4], a time-predictable memory NoC [5], [6], a time-

predictable memory controller [7], [8], and the time-predictable

message passing NoC Argo [9], [10].

This paper mainly addresses the software layer for Argo.

Argo uses time-division multiplexed (TDM) scheduling, which

allows deriving upper bounds of message latencies [11], [12].

Furthermore, as the TDM schedule is static and precomputed

[13], the routers and network interfaces are small. The network

interfaces include direct memory access (DMA) controllers

to transfer data from a local scratchpad memory (SPM) to a

remote SPM. A processor can only setup a DMA to transfer

data to a remote processor; this type of communication is

called push communication. However, using the NoC for more

general message passing between cores requires a detailed

understanding of the hardware and its capabilities.

This paper presents a time-predictable message-passing

(TPMP) library that abstracts from the details of the T-CREST

platform and makes the platform’s time-predictable features

available to the application developer.

The Message Passing Interface (MPI) standard [14] – the

de-facto standard for message passing in distributed memory

systems – inspired the TPMP library. We used MPI as

inspiration to provide an interface that is easy to use for

developers that are already familiar with message passing.

However, implementing MPI requires dynamic allocation of

messages, which is usually avoided in real-time applications.

For better analyzability we statically allocate message buffers.

To avoid copying of data and maximize performance, our library

operates on messages placed directly in the communication

SPMs.

We implement flow control in software on top of the push

communication supported in hardware. If we use the cycle

executive model to implement hard real-time programs, one

can argue that the library does not need flow control. However,

the library needs flow control to implement atomic updates

of sample values in state based communication. Flow control

also simplifies communication between tasks that execute at

different periods.

On top of the flow control we implement double buffer-

ing to interleave communication and computation. We need

double buffering at both the sender and the receiver side to

interleave communication and computation. By extending the

double buffering to a queue of buffers we support multi-rate

synchronous programming and asynchronous message passing.

Our library implements a barrier and a broadcast primitive

in addition to the send and receive primitives. We envision that

our platform developed for hard real-time applications will also

support soft real-time and non-real-time application. Therefore,

we explore a broader set of communication primitives including

a barrier. Even though Argo does not provide direct hardware

support for these primitives, the evaluation shows that our

implementation is efficient.

The contributions of this paper are:
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• a message passing library that takes into account the

capabilities of the Patmos multicore processor while

providing an interface that is familiar to developers

• an evaluation that shows efficiently implemented primi-

tives with collective semantics on top of Argo, even though

there is no direct hardware support for them

• an evaluation of the WCET of the implemented commu-

nication primitives

This paper is organized as follows: Section II presents

related work. Section III presents background on the MPI

standard. Section IV presents an overview of the T-CREST

hardware platform. Section V describes the design of the TPMP

library. Section VI describes the implementation of the TPMP

library and provides evidence for its analyzability. Section VII

evaluates the WCET of TPMP library functions. Section VIII

concludes the work presented in this paper.

II. RELATED WORK

Intel created the Single-chip Cloud Computer (SCC) as a

research chip to ease research on many-core architectures [15],

[16]. Along the SCC, Intel provides a library for message

passing via the NoC called RCCE. RCCE provides high-

level functions and “gory” low-level functions for message

passing [17].

Scheller [18] investigates real-time programming on the Intel

SCC. In particular, he describes a message passing interface for

the SCC and evaluates the achievable bandwidth. In contrast,

this paper investigates a message passing library for a hard

real-time platform with time-predictable hardware.

A more detailed evaluation of the Intel SCC reveals that

its NoC can exhibit unbounded timing behavior under high

contention [19]. Due to the TDM scheduling used in Argo,

such behavior would be impossible on the platform considered

in this paper.

Kang et al. [20] present an evaluation of an MPI imple-

mentation for the Tile64 processor platform from Tilera. The

sending primitive loads the message data through the data

cache, causing high cache miss costs for large messages. The

library presented in our paper avoids these costs by placing

messages in the communication SPM.

The CompSOC platform [21] aims at time-predictability,

similarly to the platform we are targeting. While the hardware

implementation of the NoC in CompSOC is more complex than

in our platform, the network interfaces resemble each other

from a software perspective: the application places messages

in a local memory and transfers them through the NoC with a

DMA mechanism. Therefore, the design of the library presented

in this paper should also apply to the CompSOC platform.

There has been an attempt to define a variant of the MPI

standard for real-time systems [22], [23]. However, this real-

time variant of MPI has not found widespread adoption.

To analyze multicore programs using message passing,

Potop-Butucaru et al. [24], describes a method that includes

communication in the control flow graph of the program. The

architecture and library we present in this paper can also use

this method.

III. MPI BACKGROUND

The MPI standard [14] is the de-facto standard interface

for message passing in distributed memory systems. The MPI

standard has eight different communication concepts, where

four of them apply for all versions of the MPI standard and

the remaining four only apply to the MPI-2 version of the

MPI standard. We have decided that the concepts of MPI-2 are

out of scope for this paper, as we focus on the basic message

passing primitives. The four communication concepts that apply

for all the MPI standards are:

1) Communicator

2) Point-to-point basics

3) Collective basics

4) Derived datatypes

The Communicator concept describes a group of processors

that can communicate. The program can reorganize a group

during runtime. We omit the runtime configuration, as it is

not statically analyzable. Instead we setup the communication

channels statically to provide a statically analyzable solution.

The point-to-point concepts describe the send and receive

functions in blocking and non-blocking versions. Point-to-point

communication behaves as a communication channel through

which only one core can send and only one core can receive.

With TPMP we implement the principles of point-to-point

communication of MPI. We provide both blocking and non-

blocking versions of the send and the receive functions.

The concept of collective behavior describes how groups of

processors can communicate. The collective communication

involves both synchronization and exchange of data between

multiple processors. The semantics of collective behavior in

MPI is that they all start with a barrier to synchronize and

then exchange data. By analyzing the sequential pieces of

code between communication points and joining the results

together in a system-level analysis, the designer can analyze the

collective behavior. In this paper we present the implementation

of the base services for collective behavior, the barrier and the

broadcast. The other collective primitives are straightforward

to implement using the principles from the barrier and the

broadcast.

The derived datatypes concept defines some MPI specific

datatypes that can have different implementations on different

architectures. While the derived datatypes are useful on

heterogeneous systems, they are out of scope for this paper

because we focus on a homogeneous hardware platform.

The TPMP environment differs from the MPI standard in

four ways: (1) TPMP only addresses on-chip communication.

Therefore, the communication stack of our platform and TPMP

can be much shallower than the communication stack of

the MPI standard. (2) The T-CREST platform uses TDM to

communicate through the NoC. Therefore, the latency and

bandwidth of the communication channels can be guaranteed

and are easy to compute. (3) The data structures should

be statically allocated in the initialization phase before the

application switches into hard real-time mode. (4) The shared

memory bandwidth is the bottleneck of the system, so TPMP
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Fig. 1. Block diagram of a node in the T-CREST multicore processor and its
connections to the memory tree NoC and the message passing NoC.

should force the programmer to keep data locally, reducing the

use of the shared memory as much as possible.

IV. THE T-CREST PLATFORM

This section gives an overview of the T-CREST multicore

platform and a more in-depth presentation of the hardware

functionality of the message passing NoC and the associated

TDM scheduler.

A. Platform Overview

The Patmos multiprocessor is a time-predictable homoge-

neous multiprocessor platform. It is designed to be a general-

purpose platform for real-time systems, but it is also possible

to instantiate application-specific FPGA implementations.

Figure 1 shows the structure of a Patmos processor node.

Each processor node contains three caches and three SPMs: a

method cache (M$), a stack cache (S$) for stack allocated data,

a data cache (D$) for heap allocated and static data, and SPMs

for instructions, data, and message passing communication.

Patmos can also bypass caches and directly access the shared

memory. The platform has two NoCs, one that provides

access to a shared memory, and one that supports inter-core

communication. We refer to these NoCs as the memory tree
NoC (due to its structure) and the message passing NoC. Both
NoCs use TDM to guarantee latency and bandwidth.

The processor has two address spaces: (i) a globally shared

address space, and (ii) a local I/O address space for I/O devices

and local SPM data. Accesses to the globally shared address

space go through the memory tree NoC.

B. The Message Passing NoC

The Argo packet switched NoC for message passing imple-

ments end-to-end virtual channels and DMA controllers in the

processor nodes. The processor can set up a DMA controller

to push a block of data from the local SPM into the SPM of

a remote processor core. This is the fundamental hardware

mechanism underlying our message-passing library. A range

of multicore platforms including [25], [21] provide similar

functionality to Argo.

The processor needs to set up a communication channel to

communicate between two processors. The Argo NoC uses

static TDM scheduling for routing communication channels in

routers and on links. The repeating schedule is an assignment

between communication channels, DMA controllers, and TDM

slots. In every time slot the NI can transmit a short packet

with a two-word payload. The NI sends larger blocks of data

(i.e., messages) as a sequence of packets. In this way all the

outgoing channels from a processor node can be active at the

same time in a time-multiplexed fashion.

In contrast to other TDM based NoCs that require credit-

based flow control across the virtual channels, we have been

able to avoid all forms of flow control and buffering in hardware.

We achieve this by a novel network interface (NI) design [10]

that integrates the DMA controllers with the TDM scheduling

in the NIs as illustrated in Figure 1. In a given time slot of the

TDM schedule, the corresponding DMA controller reads two

words of payload data from the SPM and injects a packet into

the NoC. This packet traverses the NoC and when it arrives at

the destination the NI writes it directly to the SPM.

We have implemented the DMA controllers in a single

time-shared DMA state machine, because only one controller

is active in each TDM slot. The design stores the address

pointers and the word count corresponding to one logical

DMA controller in a table. This sharing of the DMA controller

hardware, and the absence of flow control and buffering,

results in an extremely small hardware implementation; the

NI is 2-3 times smaller than existing designs offering similar

functionality [10]. At the same time the design supports a

globally-asynchronous locally-synchronous platform with a

minimum of clock-domain crossings.

C. The Scheduler

The off-line scheduler [13] generates a TDM schedule for a

given application. Input to the scheduler is a communication

graph that specifies groups of tasks mapped to the same

processor (nodes in the graph), and the communication channels

(edges annotated with the required bandwidth) along with

a mapping of groups of tasks to specific processors in the

platform.

Using a meta-heuristic optimization algorithm, the scheduler

minimizes the period length of the generated schedule. In

general, the schedule period depends on the number of

processor nodes and channels. It is interesting to note that

a schedule for a fully connected communication graph with

the same bandwidth requirement on all channels is 19 slots

for a 16-node platform and 85 slots for a 64-node platform.
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The scheduler supports arbitrary NoC topologies, arbitrary

pipelining in the individual routers and links, and different

sized packets on different channels.

V. DESIGN

A user-friendly message passing library shall hide all

the complicated and the platform-specific details from the

programmer, such that the programmer can concentrate on the

application design. The programmer should not have to take

care of hiding communication latency or preventing message

buffers from overflowing. The library should hide these details

from the programmer without inferring significant overhead

and while maintaining the analyzability of the whole system.

When we designed the TPMP library we assumed a platform

similar to the T-CREST platform, with simple DMA-driven

NIs [10].

A. Requirements

The overall requirements to the TPMP library are time-

predictability, ease-of-use, and low overhead. To be time-

predictable it shall be possible to compute the end-to-end

latency of a message transfer. This end-to-end latency depends

on the size of the message, the bandwidth allocated for the

communication channel, and the code running on the processors

involved in the communication. The communication primitives

shall be implemented such that they minimize the WCET.

Ease-of-use means that the interface functionality shall be

designed to fit many different applications. The interface shall

provide communication primitives with different levels of

configurability, such that the application developer can choose

which runtime checks to perform in the application.

In a low overhead design it is important to avoid unnecessary

movement of data. If the message data is moved to the shared

memory it might be evicted from the caches, which can lead to

a very high WCET. Even if the data stays resident in the cache,

WCET analysis might not be able to classify those accesses

as cache hits.

B. Push Communication

To push data to another core we need to setup a DMA transfer.

We need four parameters to setup the DMA transfer: (1) the

local address, (2) the destination core, (3) the remote address,

and (4) the amount of data that the DMA should transfer. After

this setup, the DMA and NoC transfer the message without

any processor interaction. The sender can poll the DMA to

detect the completion of the push message transfer.

On the receiving side the NI moves the message data to the

destination address in the SPM without any interaction between

the processor and the NI. The NoC and NI do not support any

notification of a completed message transfer. Therefore, we

need to implement this notification of the completed message

transfer in software on top of the pure push communication. The

NI transfers the message data in-order, so when the processor

detects the last word of a transfer, it knows that it has received

the complete message. Therefore, we append one word for a

flag to the end of a message that is initially cleared by the

receiver. The message itself has this flag set (by the sender).

The receiver polls this flag to detect when the message has

arrived. Then the flag is reset again.

C. Flow Control

To implement flow control, the receiver needs to acknowl-

edge that it has received the previous message, such that

the sender can send a new message. To avoid flow control

on the acknowledge message, we need an acknowledge-

ment scheme where consecutive acknowledgements can be

overwritten without losing data. Such a scheme can be a

simple counter, counting the number of messages the receiver

has acknowledged. Every time the receiver acknowledges a

message, the library updates the counter and sends the value

of the counter to the sender. The sender can then calculate if

there is any free buffer space at the receiver, by subtracting

the number of acknowledged messages from the number of

messages sent.

The acknowledgment message uses the very same push

communication as described above for the message transfer. It

is not different from a normal data packet.

D. Point-to-Point Primitives

Point-to-point communication involves two processors, the

sender and the receiver. To make point-to-point communication

efficient, the library needs to double buffer the messages to

interleave communication and computation. To take advantage

of the overlapping in both ends of the point-to-point commu-

nication channel, both the sender and receiver need to have

two buffers. These four buffers comprise one for the sender to

write into, two for the network to operate on, and one for the

receiver to read from. The sender needs to keep track of its

own double buffer and it needs to coordinate with the receiver

where to write into the receiver’s double buffer.

We construct the double buffering as a circular buffer. To

control the circular buffer at the receiver the sender needs a

pointer to the tail of the queue and the receiver needs a pointer

to the head of the queue. With the flow control described in

Subsection V-C, the only check the primitives have to make

is to reset the head or tail pointer when they reach the end of

the circular buffer space.

To increase the flexibility of the point-to-point communi-

cation primitives and to support a larger set of programming

models, we add buffers to the existing double buffer and use

the available handling of the circular buffers. The number of

buffers is configurable on a per channel basis.

We can add additional capacity either to the sender side

or to the receiver side. If we add the buffer capacity to the

sender circular buffer, the sending processor needs to handle

every message twice. Once to enqueue the message and once

to setup the DMA transfer for that message. Therefore, we add

the buffer capacity to the receiver circular buffer where we can

wait for a message and dequeue the message in a single step.

As we already have circular buffers for the double buffering,

it is straightforward to increase the size of the circular buffers.
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Data struct allocated in 
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Read buffer 1
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Read buffer 2
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Read buffer N
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Write buffer 1

Receive flag

Write buffer 2
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Fig. 2. The memory layout of the buffering structure for point-to-point
communication primitives.

The acknowledgement scheme described in Subsection V-C

together with the added buffer capacity allows the receiver to

receive two or more messages before acknowledging any of

these messages.

Figure 2 shows the memory layout of the two communi-

cation data structures allocated in the SPMs. The application

programmer can configure the number of read buffers of the

point-to-point channel to match the needs of the application.

The library hides the communication latency from the sender,

by overlapping computation and communication in two write

buffers. The Acknowledge count in the receiver SPM is the

number of messages that the receiver has acknowledged. The

acknowledge primitive transfers the local Acknowledge count
to the remote Acknowledge count in the sender SPM using push

communication. The sender can compute the number of free

buffers in the receiver side message queue from the number

of messages sent and the number of messages acknowledged.

After using the data in a buffer, the receiver sends the

acknowledgement for this buffer back to the sender. An

acknowledgement means that the point-to-point connection

can reuse the acknowledged receive buffer for new data.

For the point-to-point communication there are three primi-

tives, (1) a send primitive, (2) a receive primitive, and (3) an

acknowledge primitive. For each primitive there is a blocking

and a non-blocking version. The blocking communication

primitives complete when all conditions are meet. The non-

blocking versions check the conditions and return a success or

a failure code depending on the failing condition.

Barrier Flag 1
Barrier Flag 2

Barrier Flag N

Data Exchange Area

Data Exchange Flag

Fig. 3. The memory layout of the collective communication primitives.

The non-blocking send primitive can fail for two reasons,

either there is no free buffer at the receiver end, or there is

no free DMA on the sender side to transfer the data. The

non-blocking receive and acknowledge primitives can each

fail for one reason. If the buffer queue is empty, the non-

blocking receive primitive fails. If there is no free DMA

to transfer the Acknowledge count to the sender, the non-

blocking acknowledge primitive fails. With the error codes the

application programmer can take action depending on the error.

E. Collective Primitives

The basic collective primitive is a barrier. All cores in a group

call the barrier function for synchronization. The semantics of

a barrier is that none of the participating tasks can advance

beyond the barrier before all tasks have called the barrier

function.

Broadcast, all-to-all, reduce, and reduce-all are examples of

extended primitives. The semantics of these extended primitives

are a barrier synchronization followed by a data exchange. The

differences between these extended primitives are the data

exchange patterns. We have implemented the broadcast to

show the basic operation, and with the following ideas we can

easily implement the other extended collective primitives. As

the extended collective primitives start with a barrier, the tasks

have to finish using the data of the previous exchange before

calling the next collective primitive. Therefore, there is no need

for flow control; we only need a packet arrival notification. Or

in other words, the barrier serves as flow control.

a) Barrier: A barrier has two phases: notify and wait.

In the notify phase the task will notify the task group that it

has reached the barrier. In the wait phase the task will wait

for a notification from all the tasks in the group. When a task

has seen all members of its group arrive at the barrier, it can

continue its execution. We can implement a notification to all

members of a group by sending a message to each of them.

With an all-to-all TDM schedule in the NoC the bandwidth is

already allocated and the individual communication channels

do not interfere. Therefore, each member in the group sends a

flag to every other member. Figure 3 shows the memory layout

for the collective primitives in each SPM. The barrier uses

only the barrier flags.
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b) Broadcast: With the help of the barrier we can

implement a broadcast. The broadcast starts with a barrier

and then the root process of the broadcast transmits a block of

data to all the other participants in the broadcast. We place the

broadcast data in the data exchange area of the root process,

as seen in Figure 3. The broadcast primitive transfers this data

to the participants’ SPMs by setting up a DMA transfer for

each participant.

VI. ANALYZABLE IMPLEMENTATION

Our main target for the implementation of the TPMP

library is its WCET analyzability. During the development

we use AbsInt’s aiT WCET analysis tool [26] to guide

development decisions. First, we bound all loops to enable

WCET analysis. Second, cache misses are very costly on a

time-predictable multicore processor. Therefore, we tried to

avoid accessing shared memory completely, by allocating as

many data structures as possible in the processor local SPM.

A. Push Communication

The Argo NoC implements push communication in hardware,

but does not generate a notification when a message is received.

We implement the receive notification in a single 32-bit value

at the end of each message. Adding the receive notification

does not change the way we analyze the communication.

B. Flow Control

Our design implements flow control by sending a counter

value from the receiver to the sender. The library sends this

counter value in a single network flit (64 bits of unsigned data),

with no receive flag as notification. Calculating the number of

free buffers is safe across an overflow, as long as the overflow

value is greater than the largest possible difference between the

two unsigned values, i.e., the number of buffers in the queue.

C. Point-to-Point Primitives

Figure 4 shows the interaction between two communicating

threads using the blocking point-to-point primitives. When

mp_send() sets up the DMA, the NI starts to transmit packets to

the receiver. After receiving all packets the blocking mp_recv()
continues. When the receiver finishes using the received

message, it updates the Acknowledge count and sends it to

the sender. Depending on the number of free elements in the

buffer queue, the sender may proceed.

To analyze the blocking primitives, we assume that the

blocking primitives do not have to wait for messages to arrive

or free buffer space. We bounded the unbounded while loops

in the blocking point-to-point primitives with source code

annotations. We set the upper loop bound of the while loops

to one. The analysis method presented in [24] supports this

interaction enabling worst-case response time analysis.

The implementation of the non-blocking point-to-point

primitives is free of unbounded loops. Therefore, the source

code needs no annotations to complete the analysis. We

minimized the WCET for all primitives by looking at the

feedback from the interactive analysis in the aiT tool.

mp_send()

Producing 
data

mp_send()

Producing 
data

mp_recv()

Using data

mp_ack()

Processing

mp_recv()

Using data

ReceiverSender

return
return

return

return

Fig. 4. A model of the implemented point-to-point communication.

Application 
code

Application 
code

Barrier
preamble

Barrier
postamble

Barrier
synchronization

Fig. 5. A model of the implemented barrier primitive.

D. Barrier Primitive

Figure 5 shows the interaction between cores that participate

in a barrier. First, the barrier preamble calculates the addresses

of the flags to send to the other participants. Then, it sends a

message with a flag to all the others. When the primitive has

set up all messages for transfer, the core synchronizes with the

other cores one by one. To separate subsequent barrier calls,

the primitive needs to reset the flag; resetting the flag requires

the cores to synchronize a second time. To avoid resetting the

flag twice, we make use of sense switching, first described by

Hensgen [27]. Sense switching combines an alternating phase

with the flag.

E. Broadcast Primitive

Figure 6 shows the model of the broadcast primitive. The

broadcast primitive starts by synchronizing all cores with a

barrier call. After the barrier call, the root of the broadcast

pushes data to the other cores by setting up one DMA transfer

to each of them. The cores receiving data from the root core

wait for the receive flag.
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Broadcast
data

Fig. 6. A model of the implemented broadcast primitive.

F. Concurrency Issues

The SPM has two independent read/write ports that are used

by the processor and by the NI. The processor and the NI

behave as two truly concurrent threads: a software thread and

a hardware thread. Both threads can access the same memory

cell in the exact same clock cycle. Reading concurrently is

not an issue. Writing concurrently will result in an undefined

value. The TPMP library avoids concurrent writes by design.

The remaining issue is reading and writing concurrently.

Most FPGA technologies do not define the result of a read

during a write to the same address at the same time. An

undefined value may be a random mix of the old value and

the new value, but the stored value will be the new value [28],

[29]. Reading an undefined value from the SPM might cause

wrong behavior by the communication primitives.

In the design, discussed in Section V, a processor can

read an undefined value when reading the receive flag or the

acknowledge count. The DMA controller of the NI will never

read an undefined value as the processor starts the DMA only

after the processor has written all the data.

If the NI and the processor reside in the same clock domain,

we can solve the problem of reading an undefined value in

hardware by adding forwarding to the SPM, from the network

port to the processor port; but with the implementation of our

TPMP library this is not necessary.

The receive flag arrives only after the NoC has delivered

all the message data. If the processor reads the receive flag

in the same cycle as the flag arrives, the processor reads an

undefined value; 0 or 1. If the processor reads a 1 it correctly

concludes that it has received a message. If it reads a 0 it will

continue waiting and polling at the next try it will read a 1.

This adds only a few cycles to the receive operation.

For the acknowledgment the receiver communicates back to

the sender, the situation is somewhat similar, but more complex.

The count value may signal the availability of one or more

free buffers and the processor may read an arbitrary value.

A key observation is that this only happens if the NI writes

a new value in the same cycle, and that this only happens when

there is at least one free buffer in the receiver. By restricting to

sending only a single message after a read of the count value,

the sending processor can draw one of two conclusions and

both are on the safe side: (i) If a potentially incorrect count

value causes the sender to conclude that the receiver does not

have a free buffer, then the sender will continue waiting and

polling, and at the next read of the count it will read the correct

value. (ii) If the potentially incorrect count value causes the

sender to conclude that the receiver does have at least one

free buffer, then – despite the incorrect count value – this

conclusion is actually correct. In both cases the behavior is

correct, and in the worst case the additional polling operation

adds a few cycles to the latency of the send operation.

If the processor and NI are in different clock domains it is not

only a matter of reading potentially undefined digital values.

It is also a matter of metastability and reading non-digital

signals. Handling of this situation requires synchronization of

signals/flags to the processor clock domains. Implementing this

involves a minor addition to the NI implementation and this

is future work. However, the effect on the WCET analysis as

presented in this paper will be very small.

VII. EVALUATION

For the WCET analysis and the measurements we use a

9-core platform with a 3×3 bi-torus network and a TDM

arbiter for shared memory access. Each core in the platform

is running at 80 MHz and has 4 KB of communication SPM.

The platform is running in an Altera Cyclone IV FPGA with

2 MB of external SRAM. The cache miss time with the TDM

arbiter is 189 clock cycles for a 16-byte burst.

We computed the WCET numbers with the aiT tool from

AbsInt [26], which supports the Patmos processor architecture.

For the average-case execution time (ACET) results, we ran

a test application in the described hardware, reading out the

clock cycle counter to get the timing. For these results we

assume that the functions are resident in the method cache.

We optimized the source code of the TPMP library functions

with respect to WCET by looking at the feedback from the

interactive mode of the aiT tool.

A. Point-to-Point Primitives

Table I shows the measured ACET and the WCET of all

library functions. Each blocking function contains a while loop

that blocks until a condition becomes true. The design section

describes the conditions of each primitive. We assume that the

functions do not wait for any of these conditions to become

true. A system-level analysis will show if our assumption does

not hold and in this case we can add the delay found by the

system level analysis to the WCET. For the WCET analysis

we bounded the loop iteration count to one. As shown in

Table I the WCETs of the blocking function calls are higher

than the WCETs for the non-blocking calls. This is because

the if statement in the non-blocking primitive use predicates,

avoiding a conditional branch.
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TABLE I
AVERAGE-CASE EXECUTION TIME (ACET) AND WORST-CASE EXECUTION

TIME (WCET) FOR EACH POINT-TO-POINT COMMUNICATION PRIMITIVE.

Function ACET (cycles) WCET (cycles)

mp_nbsend() 51 83
mp_send() 74 99
mp_nbrecv() 32 36
mp_recv() 28 43
mp_nback() 55 59
mp_ack() 49 77
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Fig. 7. The measured average-case execution time and the worst-case execution
time of a barrier call as a function of the number of cores participating in the
barrier.

The WCET is relatively close to the measured average-

case execution time because the platform is optimized for time

predictability. The execution time is a few tens of clock cycles.

The library code is efficient, as no data needs to be copied

between the user program and the message-passing library. All

buffers in the SPM are directly usable for computation and

communication.

B. Barrier Comparison

Figure 7 shows the WCET and the ACET of our message-

passing barrier against a tournament barrier [27]. The hardware

platform is the same for all the measurements; the number of

cores is the number of cores participating in the barrier. This

figure shows that our barrier implementation using message

passing is faster than the shared memory tournament barrier in

both the worst case and the average case. Furthermore, message

passing scales better in the number of cores.

C. End-to-End Latency

We can calculate the end-to-end latency of transmitting a

message from one core to another with our library by adding

the WCET of the executed code and the time it takes the DMA

to transfer the data. We refer to this latency as Lmsg. Gangwal et

al. [30] show how to calculate the latency of a write transaction

through a TDM NoC. With an all-to-all TDM schedule, where

all communication channels have equal bandwidth, this formula

simplifies to what we show below.

TABLE II
THE WORST-CASE LATENCY IN CLOCK CYCLES OF SENDING A MESSAGE,
WITHOUT ACKNOWLEDGEMENT OF MESSAGES, FOR THE BLOCKING AND

NON-BLOCKING COMMUNICATION PRIMITIVES.

Message size (bytes) 8 32 128 512 2048

Blocking 211 301 661 2101 7861
Non-blocking 188 278 678 2078 7838

We assume that the clock frequency of the processors and the

NoC is the same to shorten the formula. One could extend the

formula to account for multiple frequencies, but we omit this

here for space reasons. Lmsg is the worst-case latency in clock

cycles from the time the source processor calls mp_send() to

the time the destination processor returns from mp_recv(),
assuming that the sender does not wait for a free buffer or

a free DMA, and the receiver is ready to call mp_recv().
A system-level analysis can find any delays that break these

assumptions and add them to the worst-case latency.

Lmsg consists of two parts: (1) the WCET of the code running

on the processors and (2) the latency of a write transaction [30].

Table I shows the WCET of the communication primitives and

Equation 1 shows the formula for the latency Lwrite of a write

transaction.

Lwrite =

(⌈
Smsg

Schan

⌉
·PTDM

)
·Cslot+H ·D (1)

Smsg is the size of the transmitted message, Schan is the

number of payload bytes that the NoC can send in one TDM

period from the source processor to the destination processor,

PTDM is the length of the TDM period, Cslot is the number of

clock cycles in a TDM slot, H is the number of hops from

the source to the destination processor, and D is the number

of phits that one router can store.

With our Argo NoC Schan is 8 bytes and Cslot is 3 clock

cycles, meaning that two 32-bit words can transferred every 3

clock cycles. For the synchronous version of the Argo router

D is 3 phits. For the presented 3×3 core platform H is at most

3 hops. With an all-to-all schedule for this platform, PTDM is

10 time slots. Smsg is the message size.

To the latency of a DMA transfer we add the WCET of

sending and receiving the message. The WCET of sending and

receiving does not depend on the size of the message, because it

does not involve moving the data. Table II shows the worst-case

latency of sending a message from a sender to a receiver. The

designer can reduce the latency of transmitting large messages

considerably by generating an application specific schedule

that reduces PTDM.

VIII. CONCLUSION

Real-time systems need time-predictable computing plat-

forms. For a multicore processor not only the processor needs

to be time-predictable, but also the message passing hardware

and software. This paper presented a message-passing library

for a time-division multiplexed network-on-chip. We developed

the library to be time-predictable and we show this by analyzing
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the code with the aiT WCET analysis tool from AbsInt. As the

design carefully avoids access to shared memory in the library

code, the resulting WCET for the message passing primitives

is in the order of tens of clock cycles.

The message passing library and the application code operate

on data allocated in a local scratchpad memory that the network-

on-chip also use for data transmission. Therefore, the message

passing library does not need to copy data and the WCET of

the message passing functions is less than 100 clock cycles,

independent of the message size.
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SOURCE ACCESS
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Ubuntu with the following two commands:
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