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Abstract—Most processors are used in embedded systems,
where the processor architectures are diverse due to optimiza-
tions for different application domains. The main challenge
for embedded system processors is the right balance between
performance and chip size, which directly relates to cost.
An early estimation of the performance for a new design is
of paramount importance. In this paper we propose cross-
profiling for that performance estimation, which can be ac-
complished very early in the design phase. We evaluate our
approach in the context of a Java processor for embedded
systems using cross-profiling on a standard desktop Java
virtual machine. We explore the performance impact of various
processor design choices and optimizations, such as different
caches strategies or pipeline organizations, and come up with
an improved processor design that yields speedups of up to 40%
on standard Java benchmarks. Comparing the generated cross-
profiles with the execution of benchmarks in real hardware
confirms that our approach is sound.

Keywords-processor architecture evaluation, embedded sys-
tems, cross-profiling, Java virtual machine

I. INTRODUCTION

Today, most microprocessors in use are embedded proces-
sors. Embedded systems as well as the employed processor
types are diverse, and architecture research for embedded
systems is a very active area. It is important to estimate the
effects of architectural design choices on the performance,
with domain specific applications, very early in the devel-
opment phase [1].

In this paper we propose cross-profiling for processor
architecture evaluation. With cross-profiling it is possible to
collect evaluation data for realistically sized programs even
before the target hardware is available. Cross-profiling is
also up to 33000 times faster than VHDL simulation [2].

We validate our approach in the context of a Java proces-
sor for embedded systems with cross-profiling on a standard
desktop Java virtual machine (JVM) [3]. While Java is an
emerging language for classic embedded systems (e.g., in the
automotive and airborne domain), almost all mobile phones
already contain a JVM to execute so-called MIDlets.

Java is also considered as future language for safety-
critical applications [4]. Safety-critical applications need to
be certified and the reduction of code size is of primary
importance, as the certification cost directly depends on the

code size. Software certification is performed at the source
code level and includes the whole software stack (operating
system and libraries). A hardware-based JVM simplifies this
process, as only code in one language needs to be considered
for the certification. Furthermore, worst-case execution time
(WCET) for the tasks needs to be known. A Java processor
also simplifies WCET analysis of Java programs as it can
be performed at the bytecode level [5]. All of the processor
enhancements explored in this paper are still analyzable with
respect to the WCET.

Cross-profiling is a technique that executes a program on
a host platform, but collects profiling information for the
target platform. Cross-profiling not only eases the detection
of performance bottlenecks in embedded Java software in
an early development phase without the need to deploy
any software on the embedded device (which may not be
available in an early stage of system development), but it
also allows estimating the performance of different Java
processor designs without requiring these designs to be
implemented. That is, cross-profiling enables rapid design
space exploration for embedded Java processors. Instead of
implementing a new processor in hardware, it is sufficient to
model its cycle consumption and to evaluate the performance
on various workloads. Only the best performing model is
afterwards implemented in hardware.

One important advantage of our approach to explor-
ing the design space of Java processors is the applicabil-
ity of cross-profiling to standard workloads, such as the
SPEC JVM98 [6] or DaCapo [7] benchmark suites. That is,
there are lots of benchmarks that can be used for evaluating
processor design options, whereas most of these standard
workloads could not execute on an embedded system, for
example, because of memory limitations or because of the
lack of a file system.

In summary, the availability of accurate cross-profiling
techniques allows us to quantitatively explore many different
processor design options on a large number of standard
workloads in a short period of time, and to spend im-
plementation effort only on the most promising design
alternative. In this way, cross-profiling significantly increases
the productivity of the embedded processor architect. The
original, scientific contributions of this paper are two-fold:



1) We apply cross-profiling as an efficient tool for Java
processor architecture evaluation.

2) The soundness and benefits of our approach are
demonstrated in the context of a Java processor for
embedded real-time systems.

The remainder of this paper is structured as follows.
Section II provides background information on Java proces-
sors and on our cross-profiling technique. In Section III we
discuss related work, comparing our approach to processor
architecture evaluation with other techniques. In Section IV
the evaluation methodology is described. Section V assesses
the accuracy of the generated cross-profiles and confirms the
soundness of our approach. The evaluation of architectural
enhancements in a Java processor is given in Section VI.
The paper is concluded in Section VII.

II. BACKGROUND

In this section we give an overview of the Java Optimized
Processor (JOP) [8], which represents the basic processor
architecture for the evaluation in this paper, and summarize
our cross-profiling techniques [2], [9].

A. The Java Optimized Processor JOP

Several embedded Java processors are available from
academia and industry [8], [10]–[14].

As all these processors execute Java bytecode, a JVM-
based cross-profiling tool is a good match with a Java
processor. We have chosen JOP [8] for our evaluation of
the proposed computer architecture exploration. JOP is a
simple processor, open-source, and the execution timing is
well documented. Furthermore, the JOP design is actually
the root of a family of Java processors. Flavius Gruian has
built a JOP compatible processor, with a different pipeline
organization, with Bluespec Verilog [15]. The SHAP Java
processor [11], although now with a different pipeline struc-
ture and hardware assisted garbage collection, also has its
roots in the JOP design.

JOP was designed as a real-time processor with time-
predictable execution of Java bytecodes. The accurate cycle
timing enabled the development of several worst-case exe-
cution time (WCET) analysis tools for embedded Java [16]–
[19]. The timing model of JOP, which is used by the WCET
analysis tools, simplifies our task of cross-profiling. JOP is
implemented in a field-programmable gate array (FPGA).
Therefore, adaption of the architecture for different domains
is a valuable option.

JOP was the first Java processor featuring a dedicated
instruction cache that caches whole method bodies, the so-
called method cache [20]. A method cache ensures that
instruction cache misses may occur only upon method
invocation and return, easing WCET analysis and also cross-
profiling. The Java processor SHAP [21] and the CarCore
processor [22] also use method caches.

B. Cross-Profiling

Cross-profiling executes applications in a host environ-
ment and yields profiles that estimate dynamic metrics,
such as CPU cycle consumption, for a different target
environment. In the case of the JVM, both the host and
the target environment execute the same instruction set,
JVM bytecodes [3]. However, the JVM may be implemented
in fundamentally different ways on the host and on the
target. We run our cross-profiler in a typical environment
for software development, comprising a standard PC with
any state-of-the-art JVM implementation that relies on just-
in-time compilation and supports dynamic optimization of
executing applications. In contrast, the target environment
is an embedded Java processor that implements most JVM
bytecodes in hardware.

In order to estimate the number of executed CPU cycles
on the target while profiling workloads on the host, we
rely on bytecode instrumentation techniques to intercept
particular “points” in the program execution. More precisely,
we intercept basic block (BB) entries in the code, as well as
method entry and method return. Upon BB entry, a statically
pre-computed CPU cycle estimate for bytecodes in the BB
is added to a counter that keeps track of the number of CPU
cycles that would be consumed on the target if the workload
was executed there.

Method entry and return are specially instrumented, in
order to model variable CPU cycle consumption for method
invocation and return bytecodes. This enables the runtime
simulation of method caches, where the execution time of
method call respectively return depends on whether the
callee respectively the caller method is in the cache. Upon
method entry, the concrete invoke opcode (invokestatic,
invokespecial, invokevirtual, invokeinterface), an identifier of
the callee method, and the size of the callee method (in
bytes) are used for CPU cycle estimation. Conversely, on
method return, the return opcode, an identifier of the caller,
and the size of the caller are used.

Our cross-profiler supports the customization of CPU
cycle estimation and method cache simulation through plug-
gable components. Hence, it eases experimentation with
different bytecode performance models and cache strategies,
which is a prerequisite for an effective processor design
space exploration, as reported in this paper.

The cross-profiler yields calling-context-sensitive profiles,
estimating CPU cycle consumption for each executed calling
context. It relies on the Calling Context Tree (CCT) [23] to
store dynamic metrics separately for each calling context.
While the CCT enables a detailed analysis of program
performance and helps locate hotspots in the program code,
for processor architecture design space exploration we are
primarily interested in the total CPU cycle estimation for
given workloads. This information can be easily obtained
from the generated cross-profiles by summing up the CPU



cycle consumption for the calling contexts in the CCT
subtree of interest.

Regarding overhead, our cross-profiler significantly out-
performs the target hardware [2], [9]. It runs standard Java
benchmarks, such as SPEC JVM98 [6] or DaCapo [7],
without any problems, although these benchmarks cannot
execute on the target. Cross-profiling is several orders of
magnitude faster than VHDL simulators.

C. Prior Work

This paper builds on our prior work on cross-profiling.
In [2] we introduced cross-profiling for embedded Java pro-
cessors. The approach presented in [2] is based on constant
cycle estimates for all bytecodes. As a major limitation, it
does not take the presence of hardware caches into account,
which requires a runtime simulation of the cache, resulting
in different cycle estimates depending on cache hit or miss.

In [9] we extend our cross-profiler into the customizable
cross-profiling framework CProf,1 which supports pluggable
CPU cycle estimation models, as well as pluggable method
cache simulation strategies (e.g., for the current JOP pro-
cessor, a FIFO method cache simulation is used). The cycle
consumption of method invocation and return is computed
at runtime depending on the cache state.

In this paper, we leverage the CProf framework for
exploring the design space of embedded Java processors, in
order to select the most promising hardware optimizations
for the next version of the JOP processor.

Another approach to architectural evaluation for designs
implemented in an FPGA is shown in [24]. The execution
time of a bytecode is artificially increased and a new design
synthesized. The actual increase in the execution time can
be used, with some transformations of Amdahl’s law [25],
to estimate the performance when the instruction timing
is enhanced. The microcoded design of JOP simplifies the
increase of the execution time; just no-operation instructions
need to be inserted into the microcode sequences for the
bytecode under evaluation. The turnaround time for those
kinds of experiments is in the range of minutes. However,
this approach is limited to benchmarks that can be executed
on the target hardware. With cross-profiling it is possible to
evaluate architectural changes with larger benchmark suites.

III. RELATED WORK

Quantitative evaluation of computer architectures is
mainly performed by simulation [26]. Skadron et. al argue
that current simulation tools are built in an ad-hoc manner
and that tool development is error-prone. Furthermore, com-
puter architecture research focuses on architectures where
simulation models are available. The authors argue that
research in simulation frameworks and benchmark method-
ologies is needed. In line with their argument, we introduce

1http://www.inf.unisi.ch/projects/ferrari/

the new approach to computer architecture evaluation with
cross-profiling.

Using benchmarks intended to evaluate real hardware
for computer architecture simulation leads to impractical
simulation time on cycle-accurate simulators [27]. The result
is that usually only subsets of the benchmarks are used
to reduce the simulation time. Yi et. al argue that besides
standardizing the subsets, higher level abstractions in the
simulation are a valuable option, especially in an early stage
of design space exploration. Our cross-profiling approach
follows their advice and simulates at the level of basic
blocks, method entry, and return, instead of performing
instruction-level simulation.

For simple processor architectures without caches, the
effects of different instruction timings can be evaluated by
collecting dynamic instruction frequencies [25]. However,
when instruction caches are integrated, the execution time of
the whole program cannot be predicted with instruction fre-
quencies anymore. The dependency of instruction timings on
cache state (different timings for cache hit respectively miss)
is hard to model statically. Therefore, we use cross-profiling
with runtime cache simulation and cycle estimation.

The probably most popular processor performance simula-
tor is SimpleScalar [28]. SimpleScalar contains, besides the
simulator, the full tool chain (GCC compiler, libraries, as-
sembler, and linker). SimpleScalar models a five-stage, out-
of-order pipeline and is highly configurable. SimpleScalar
models the microarchitecture, but not an entire system to run
an operating system (OS). With our cross-profiling approach,
we also omit the low-level functions of the OS, but include
the rich standard Java class library.

A architecture description languages (ADL) enables an
integrated approach to computer architecture evaluation. A
single specification of the architecture can be used to au-
tomatically generate tools, such as compiler backends [29],
assemblers, and linkers; even hardware descriptions can be
synthesized. A simulation tool based on an ADL is presented
in [30]. Although the reported simulation speed peaks at
800 MHz for a 5-stage MIPS R2000 core, the average
simulation frequency is only 47 MHz on a 2200 MHz AMD
Athlon processor.

Cross-profiling techniques have been used to simulate
parallel computers [31]. As the host processor may have
a different instruction set than the target processor, cross-
profiling tries to match up the basic blocks on the host and
on the target machines, changing the estimates on the host to
reflect the simulated target. Our approach follows a similar
principle, but uses precise cycle estimates at the instruction-
level, because both the target and the host instructions are
JVM bytecodes.

IV. EVALUATION METHODOLOGY

The cross-profiler CProf relies on the same bytecode
timing information of JOP that is also used for WCET



analysis [16]. In JOP most bytecodes are implemented in
microcode, either as single microcode instructions or as
short sequences of microcode instructions. For these byte-
codes, the execution time is known cycle-accurately. A few
bytecodes (e.g., the new bytecode for object allocation) are
implemented as special static methods in Java; we call them
system methods. Some system methods make use of certain
low-level JOP primitives to directly access memory loca-
tions. The WCET analysis tool models the execution time for
the bytecodes implemented as system methods by replacing
the bytecodes with invocations of the corresponding system
methods. This is possible, because the WCET analysis tool
abstractly interprets code, but does not actually execute it.
However, because we cannot execute system methods on
a standard JVM (because of the usage of low-level JOP
primitives), our cross-profiler relies on CPU cycle estimates
for the bytecodes implemented as system methods. Nonethe-
less, the cross-profiler achieves good accuracy, because the
bytecodes suffering from possibly imprecise CPU cycle
estimates are executed relatively infrequently. To evaluate
the impact of an architectural change on JOP, the timing
information of the bytecodes and the cache configuration
are specified accordingly.

Our evaluation is based on 3 embedded benchmarks,
Kfl, Lift, and UdpIp, as well as on 6 benchmarks from the
SPEC JVM98 suite [6].

The embedded benchmarks Kfl and Lift are based on
real-world applications [32]. The benchmark UdpIp uses a
TCP/IP stack, implemented in Java, in order to simulate a
UDP-based client/server application. Each embedded bench-
mark is executed 10000 times, and in the generated cross-
profile the cumulative CPU cycle estimate of the benchmark
harness (the method test()) is taken, effectively excluding the
execution of startup code on the host.

From SPEC JVM98, we consider the benchmarks
201 compress, 202 jess, 209 db, 213 javac,
222 mpegaudio, and 228 jack. As with the embedded

benchmarks, in the generated cross-profiles the startup code
is excluded and the cumulative CPU cycle estimate of the
method SpecApplication.main() is used.

All chosen benchmarks are single-thread. We exclude the
multi-threaded SPEC JVM98 benchmark 227 mtrt from
our evaluation, in order to avoid drawing any false conclu-
sions because of possible inaccuracies in the cross-profiles
caused by the different thread-scheduling on the cross-
profiling host JVM and on the JOP target.

JOP’s execution environment is a typical embedded sys-
tem without a filesystem and with only 1 MB memory.
In contrast to the 3 embedded benchmarks, the chosen
SPEC JVM98 benchmarks cannot be executed on the target
hardware. Hence, only the embedded benchmarks can be
used for assessing the accuracy of our cross-profiling ap-
proach to processor design space exploration. Nonetheless,
for assessing the impact of architectural enhancements, we

Table I
BENCHMARK EXECUTION TIME AND CROSS-PROFILING RESULTS IN

CLOCK CYCLES FOR JOP WITH A 4KB/16 METHOD CACHE

Benchmark JOP CProf Error (%)

Kfl 5.023×107 5.021×107 −0.04
Lift 5.282×107 5.262×107 −0.38
UdpIp 1.132×108 1.111×108 −1.81

use all benchmarks.
Our results represent performance differences in percent,

using the following well-known formula [25], where p is the
speedup in percent, tbase the base execution time, and tenh

the execution time of the enhanced architecture:

p = (tbase/tenh − 1)× 100

For example, with a speedup of 200% the enhanced archi-
tecture is three times faster. Also the average clocks per
instruction (CPI) are given in tables where it is relevant.
The CPI value is calculated by dividing the execution time
in clock cycles by the dynamic instruction count.

In order to ease performance comparison, we also com-
pute the geometric mean of the measurements for all bench-
marks. The geometric mean is calculated from the measured
execution times and instruction count, and the other metrics
(speedup respectively CPI) are computed from those values.

V. ACCURACY OF CROSS-PROFILING

To assess that our approach is sound, we compare the CPU
cycle estimates from the generated cross-profiles with the
actual CPU cycle consumption on JOP. With this experiment
the accuracy of execution time estimation through cross-
profiling is validated.

In this experiment, JOP is clocked at 100 MHz in a low-
cost FPGA and the memory access time is 2 clock cycles. It
has a 4 KB FIFO instruction cache organized in 16 blocks.
The three embedded benchmarks Kfl, Lift, and UdpIp are
executed on JOP and the execution time is measured with a
CPU cycle counter. The same benchmarks are profiled with
CProf.

Table I shows the execution times on JOP and cross-
profiling results in clock cycles. The last column shows
the percent error of the cross-profiling estimates. For two
benchmarks, the error is well below 1%, for UdpIp the
error is below 2%. The observed inaccuracies in the cross-
profiles generated by CProf are due to imprecise CPU cycle
estimates for certain (complex) bytecodes and differences
in the Java class libraries between the host and the target.
Nonetheless, for all measured benchmarks that run on the
JOP hardware, the error in the CPU cycle estimates is
below 2%.2 For our purposes, the accuracy of CProf’s cross-
profiles suffices.

2In prior work [9] we reported higher errors. Thanks to improved CPU
cycle estimates for some bytecodes, we were able to reduce the error.



Table II
CROSS-PROFILING RESULTS OF THE BASELINE IN CLOCK CYCLES
(TIME), DYNAMIC INSTRUCTION COUNT (IC), AND CLOCKS PER

INSTRUCTION (CPI)

Benchmark Time (clocks) IC CPI

Kfl 5.02×107 1.09×107 4.62
Lift 5.26×107 1.13×107 4.66
UdpIp 1.11×108 2.06×107 5.39

201 compress 9.28×1010 1.25×1010 7.44
202 jess 2.91×1010 1.74×109 16.72
209 db 4.10×1010 3.61×109 11.33
213 javac 3.24×1010 1.84×109 17.60
222 mpegaudio 2.90×1011 1.15×1010 25.21
228 jack 1.69×1010 1.02×109 16.48

geo. mean 5.57×109 5.46×108 10.20

Although we use WCET values for the bytecode timings,
the cross-profiling results underestimate the execution time.
It has to be noted that most bytecodes on JOP have a
constant execution time. Therefore, their WCET values
equal the best-case execution time. One possibility for the
underestimation, especially in the UdpIp benchmark, is the
write barrier code for incremental garbage collection on JOP.
If the bytecodes putfield and putstatic access a reference
field, they are substituted upon class loading by a special
bytecode that contains the write barrier code. These special
bytecodes are implemented in Java so as to ease data sharing
with the garbage collector that is also programmed in Java.
Consequently, these special bytecodes are slower than the
versions for primitive data. The cross-profiler does not cover
this difference and treats the execution time of putfield and
putstatic as constant, independently of the field type.

It has to be noted that for the evaluation of different
architectural changes, the cross-profiling estimates need not
be perfectly accurate [26]. We are interested in the relative
performance differences between the cross-profiling runs for
distinct architectures.

VI. COMPUTER ARCHITECTURE EVALUATION

In this section we evaluate the performance benefit of
various possible architectural improvements for JOP using
CProf. In Section VI-A the performance baseline is estab-
lished with the current JOP design. As a simple enhance-
ment, in Section VI-B the instruction cache size is increased
and the resulting speedup is measured. In the following
subsections more advanced architectural improvements are
measured, such as faster method invocation (Section VI-C),
pipeline reorganization (Section VI-D), and optimized byte-
code fetch (Section VI-E). In Section VI-F we show that
combining all aforementioned architectural enhancements
yields a 40% faster in-order Java processor than the cur-
rent JOP design. Finally, in Section VI-G we explore the
theoretical limit of the performance of an in-order pipelined
Java processor.

A. The Baseline

In order to explore the performance benefit of different
architectural enhancements to JOP, we first establish the
baseline by measuring the performance of the current JOP
design. Hence, we cross-profile the benchmarks using the
current configuration of JOP with a 4 KB instruction cache,
organized in 16 blocks, with FIFO replacement strategy. We
will assess the effects of our architectural optimizations in
comparison with this baseline.

Table II shows the execution time in clock cycles, the
dynamic instruction count (IC), and the resulting clocks per
instruction (CPI) of the benchmarks cross-profiled using the
WCET cycle estimates for JOP.

An interesting result of this first evaluation is the signifi-
cant difference with respect to the CPI values. The embedded
benchmarks Kfl, Lift, and UdpIp, as well as compress, have a
lower CPI than the other SPEC JVM98 benchmarks, where
the higher CPI values result from a more object-oriented
programming style (i.e., shorter methods, more frequent ob-
ject allocation, etc.). Method invocation on JOP is expensive
and shorter methods lead to a higher invocation frequency.
Furthermore, floating point operations and operations on
64 bit integers are expensive as well. Those data types are
avoided in the embedded applications.

For computer architects that work on in-order RISC
pipelines, the CPI values may look excessively high. How-
ever, JVM bytecodes are often much more complex than
RISC instructions. A JIT compiler will generate several
RISC instructions for object-oriented bytecodes, such as
field access or method invocation. In JOP the more complex
bytecodes are mapped to microcode sequences for a RISC-
style stack machine. The microcode instructions (except
memory access) execute in a single cycle. Therefore, the
CPI at the microcode level is about 1.

B. Variation of the Instruction Cache

The first and quite simple change in the architecture is
the variation of the method cache size. The method cache
is split into cache blocks and caches whole methods. The
replacement strategy is FIFO. Table III shows the perfor-
mance differences relative to the standard configuration of
JOP given in Table II.

The third and fourth columns show configurations with
bigger caches of 16 KB and 64 KB with 64 and 256
blocks respectively. A cache of 64 KB is uncommon in
embedded processors, and the performance gain is quite
small. To check whether the method cache has actually some
performance enhancing effect, we also measured a smaller
cache with 1 KB and 4 blocks. With this small cache the
performance decreases considerably. Therefore, we conclude
that, without any other changes in the processor architecture,
a method cache of 4 KB with 16 blocks is a good design
decision.



Table III
INFLUENCE OF THE INSTRUCTION CACHE SIZE ON THE PERFORMANCE

RELATIVE TO A 4KB/16 CACHE

1KB/4 16KB/64 64KB/256
Benchmark (%) (%) (%)

Kfl −7.5 2.9 2.9
Lift −3.6 0.0 0.0
UdpIp −5.6 2.5 2.5
201 compress −7.4 0.0 0.0
202 jess −4.7 0.8 0.8
209 db −0.1 0.0 0.0
213 javac −30.8 10.1 11.9
222 mpegaudio −1.2 0.0 0.0
228 jack −15.8 5.4 11.0

geo. mean −9.0 2.4 3.1

Four benchmarks do not benefit from a larger method
cache at all. We conclude that for these benchmarks, the
methods where most of the execution time is spent fit
together into the cache, or most of the invoked methods are
very short. In the latter case, the cache load time is hidden by
the invoke instruction as cache loading is performed partially
in parallel with microcode execution.

It has to be noted that the cache size and organization
(number of blocks) is configurable in JOP, so this variation
can be easily explored in the FPGA for the embedded
benchmarks. However, on-chip memory in an FPGA is very
limited. Thus, for this experiment a big and expensive FPGA
would be needed.

C. Faster Method Invocation and Return

Invoke instructions for Java methods are complex. The
number of arguments and local variables has to be deter-
mined, the stack frame manipulated, some state saved onto
the stack, and a virtual method lookup has to be performed.
This quite complex process is implemented in microcode
on JOP and takes about 100 cycles. That number is not
so uncommon, as the aJile processor takes about the same
number of clock cycles for an invoke instruction [8].

We have investigated the microcode sequence for the
invoke and return instructions and found several places
where operations can be performed in hardware (e.g., bit ma-
nipulation to extract sub fields from the method dispatch data
structure). With some hardware support we can cut down the
number of cycles for the invoke and return instruction by a
factor of two. The performance impact of this optimization
for different cache sizes is shown in Table IV.

The measurements with cache sizes of 1 KB, 4 KB,
and 16 KB are shown in Table IV. A size of 64 KB
is not included as it performs similar to a 16 KB cache
(see previous experiment). Furthermore, a 64 KB first-
level cache is quite large, especially in resource-constrained
embedded processors. The third column of Table IV shows
that the performance increases (except for 222 mpegaudio)
between 12% and 24%, with a geometric mean of 16% for

Table IV
FASTER INVOKE INSTRUCTIONS WITH DIFFERENT CACHE SIZES

1KB/4 4KB/16 16KB/64
Benchmark (%) (%) (%)

Kfl 7.3 21.7 28.9
Lift 5.6 12.4 12.4
UdpIp 7.4 17.6 23.7

201 compress 4.4 14.7 14.7
202 jess 15.0 24.3 26.1
209 db 14.8 14.9 14.9
213 javac −23.4 19.0 34.6
222 mpegaudio 0.4 1.9 1.9
228 jack −2.7 21.0 30.8

geo. mean 2.6 16.2 20.5

the standard cache size of 4 KB. Only 222 mpegaudio does
not show any significant improvement; the reason is that
most of the execution time is spent in just a few methods.
The third and fourth column show the performance changes
with different cache sizes. The improved invoke instruction
can compensate for the performance decrease due to a small
1 KB method cache, as seen by comparing the second
column of Table III and Table IV.

It is interesting to note that the cache size has now a
higher impact on the performance than without the changed
invoke instruction, as shown in the previous experiment.
For example, the change from 4 KB to 16 KB results in
a speedup of 10.1% for javac, the faster invoke instruction
with 4 KB cache in a speedup of 19%, but the combined
effect is a speedup of 34.6%. This effect can be explained by
the fact that some cache load time is hidden by execution of
microcode for the invoke instruction. That is, short methods
have no cache load penalty on a miss and bigger caches
do not help. When the invoke instruction itself is enhanced,
less method load time can be hidden and larger caches help
reduce the execution time. Therefore, both changes in the
architecture result in more than a linear speedup. This result
is also an argument for the dynamic approach of cross-
profiling that takes cache influences into account.

D. Longer Pipeline

The pipeline of JOP consists of four stages: bytecode fetch
and translation to microcode addresses, microcode fetch,
decode, and execute. The first pipeline stage is the limiting
factor for the maximum clock frequency. Some experiments
with the design showed that the split of bytecode fetch and
microcode address mapping results in a 10% higher clock
frequency. This additional pipeline stage results in an in-
crease of the execution time of bytecode control instructions
(branch and goto) by one cycle.

Table V shows the resulting increase of CPI due to
slower control instructions. The (negative) speedup is be-
tween -0.1% and -3.9%. Consequently, the increase of the
maximum clock frequency will result in a faster architecture.



Table V
LONGER PIPELINE WITH SLOWER CONTROL INSTRUCTIONS

Benchmark speedup (%) CPI

Kfl −3.9 4.81
Lift −2.8 4.80
UdpIp −1.8 5.49

201 compress −0.9 7.51
202 jess −0.7 16.84
209 db −1.0 11.44
213 javac −0.6 17.70
222 mpegaudio −0.1 25.25
228 jack −0.7 16.60

geo. mean −1.4 10.35

With a 10% higher clock frequency, the longer pipeline
results in a speedup of 8.5%.

It is interesting to note that the embedded benchmarks
have a higher branch frequency than the SPEC JVM98
benchmarks. This is an indication that embedded applica-
tions have a more complex intra-procedural control flow
and a simpler inter-procedural control flow, as they are less
object-oriented.

E. Advanced Instruction Fetch

In the current design of JOP the bytecode instruction fetch
is performed with one byte per cycle in order to achieve a
time-predictable architecture. However, with an additional
pipeline stage an optimization of the bytecode fetches from
the method cache will be possible to provide single cycle
bytecode fetch despite the variable instruction length. This
optimization is still time-predictable.

The optimization applies to all bytecodes that are longer
than one byte and are implemented in microcode. Table VI
shows the performance increase when these bytecodes are
fetched in a single cycle. The experiment also includes the
penalty of the additional clock cycle for control instructions.

F. Combined Effect

As a summary, the combined effect of all mentioned
architectural enhancements is given in Table VII. For a
16 KB method cache the performance gain is between 20%
and 40%, again with the exception of 222 mpegaudio.
The geometric mean speedup is 28%. As before, it also
includes the slower control instructions due to a longer
pipeline. Therefore, the real speedup, with a clock frequency
improvement of 10%, is up to 54% for the 213 javac
benchmark and the geometric mean speedup is 40%.

G. Theoretical Limit

One interesting question is the theoretical limit of an in-
order Java processor without instruction folding. Instruction
folding, as implemented in picoJava [12], can map certain
frequent sequences of simple bytecodes to a single RISC-like
instruction. Instruction folding in picoJava reduces the CPI
by 15 to 29% [33]. However, instruction folding consumes a

Table VI
SINGLE CYCLE BYTECODE FETCH

Benchmark speedup (%) CPI

Kfl 3.6 4.46
Lift 6.3 4.39
UdpIp 8.0 4.99

201 compress 10.2 6.75
202 jess 3.0 16.23
209 db 5.3 10.77
213 javac 3.1 17.07
222 mpegaudio 2.2 24.67
228 jack 2.8 16.04

geo. mean 4.9 9.73

lot of chip resources due to the folding unit and the five-port
register file and can limit the maximum clock frequency.3

For the theoretical limit experiment, we model a realistic
but very advanced architecture. For bytecodes that do not
access heap memory, we assume a single cycle execution
time. To achieve this value, even for floating point opera-
tions, a long pipeline will be needed. The resulting ideal
processor has a cache hit rate of 100% and a perfect branch
prediction. With the prefect branch prediction we assume a
branch or goto execution time of 2 cycles – the branch/goto
instruction is executed in the decode stage.

The ideal architecture will still need several cycles for
some bytecode instructions, e.g., for the object-oriented
instructions, such as field access, object creation, and virtual
method dispatch. Table VIII shows the assumed cycle count
for more complex bytecodes. The numbers are derived from
the fact that the bytecodes need more than one access to heap
memory. For a write operation, we account an additional
clock cycle as the hit detection has to be performed before
the actual write. The invoke instruction also includes the
additional cycles for the return instruction.

For comparison, measured numbers obtained with the
just-in-time compiler CACAO [34] on the fast in-order
MIPS CPU YARI are shown in the last column [35]. Two
bytecode timings are missing in the table, as these have
not been measured in [35]. The invoke instruction also
includes the cycles for the corresponding return instruction.
The CACAO/YARI combination, implemented in the same
FPGA as JOP, can be clocked 20% slower than JOP, but
is up to 2.8 times faster than JOP (our baseline). However,
the resulting design consumes twice the chip resources of
JOP and, due to the compiler overhead, needs 20 times more
main memory for the execution of a Hello World example.

Table IX shows the resulting performance and CPI values
for the ideal in-order Java processor. The CPI value for
all benchmarks is very similar with a geometric mean of
1.5. The speedup of the embedded benchmarks is between a
factor of 3.3 and 3.9. The SPEC JVM98 benchmarks, which

3picoJava is about 8 times larger than JOP and can be clocked at about
half the frequency of JOP in the same implementation technology.



Table VII
EFFECT OF THE COMBINATION OF ALL ARCHITECTURAL ENHANCEMENTS

speedup (%) CPI

4KB/16 16KB/64 4KB/16 16KB/64

Kfl 27.0 34.8 3.64 3.43
Lift 20.4 20.4 3.87 3.87
UdpIp 28.8 36.2 4.19 3.96

201 compress 28.3 28.3 5.80 5.80
202 jess 29.0 30.9 12.96 12.77
209 db 21.9 21.9 9.30 9.30
213 javac 23.4 40.3 14.26 12.54
222 mpegaudio 4.1 4.2 24.21 24.21
228 jack 25.1 35.7 13.17 12.15

geo. mean 22.9 27.6 8.30 8.00

Table VIII
CYCLES FOR CONTROL AND OBJECT-ORIENTED INSTRUCTIONS, FOR

THE IDEAL JAVA PROCESSOR, AS WELL AS FOR CACAO/YARI

Instruction Ideal CACAO/YARI

branch/goto 2 3–4
getfield/getstatic 2 3–5
putfield/putstatic 3
invoke 5 12-15
xaload 3 9
xastore 4

Table IX
PERFORMANCE OF THE IDEAL IN-ORDER JAVA PROCESSOR

Benchmark speedup (%) CPI

Kfl 232.3 1.39
Lift 228.9 1.42
UdpIp 289.2 1.39

201 compress 403.2 1.48
202 jess 924.9 1.63
209 db 654.2 1.50
213 javac 1000.4 1.60
222 mpegaudio 1595.0 1.49
228 jack 924.7 1.61

geo. mean 581.3 1.50

had a higher CPI in all other experiments, are between 5 and
17 time faster than our baseline. For the benchmark with the
highest speedup ( 222 mpegaudio), the high speedup results
from the fact that the ideal processor executes float and long
operations in a single cycle.

VII. CONCLUSION

In this paper we have applied cross-profiling as an ap-
proach to computer architecture evaluation for embedded
Java processors. We used the cross-profiling tool CProf for
standard Java benchmarks and evaluated the performance
impact of various enhancements to the Java Optimized
Processor JOP. We have shown that the combination of
several enhancements to the architecture of JOP will result
in a speedup of about 40%. All the proposed changes are

still time-predictable and will not defeat the intention of JOP
to serve as a real-time Java processor.

The availability of accurate bytecode-level execution time
information for JOP greatly simplified the architecture eval-
uation. Regarding ongoing research, we are investigating
the automated extraction of bytecode execution timings
for embedded Java systems (e.g., jamuth, aJile, Cjip, and
CACAO/YARI). The resulting timing models can then be
used for cross-profiling or for a first estimation of the WCET.

This methodological paper is complemented by a tool
demonstration paper of the cross-profiler CProf [36].
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