
Private Memory Allocation Analysis for Safety-Critical Java

Andreas E. Dalsgaard
Department of

Computer Science
Aalborg University

andrease@cs.aau.dk

René Rydhof Hansen
Department of

Computer Science
Aalborg University
rrh@cs.aau.dk

Martin Schoeberl
Informatics and

Mathematical Modeling
Technical University of

Denmark
masca@imm.dtu.dk

ABSTRACT
Safety-critical Java (SCJ) avoids garbage collection and uses
a scope based memory model. This memory model is based
on a restricted version of RTSJ [3] style scopes. The scopes
form a clear hierarchy with different lifetimes. Therefore,
references between objects in different scopes are only al-
lowed from objects allocated in scopes with a shorter lifetime
to objects allocated in scopes with a longer lifetime.

To ensure memory safety, programmers are required to ei-
ther manually annotate the application with complex anno-
tations, rely on a runtime test of each reference assignment,
or statically analyze all reference assignments and avoid run-
time checks when all assignments are proven to be correct.
A violation of the assignment rule at runtime leads to an
unchecked exception. For safety-critical code that needs to
be certified, runtime exceptions must be avoided and the
absence of illegal reference assignments needs to be proven.
In this paper we present a static program analysis tool that
automates the proof that no illegal assignments occur.

1. INTRODUCTION
The standard defining safety-critical Java (SCJ) [6] intro-

duces the concept of private memories. Private memories
are based on RTSJ style scoped memories, but are only ac-
cessible by a single thread of control—hence the name pri-
vate memory. These private memories are used for tempo-
rary objects. An initial private memory is entered on each
release of a handler. All objects are reclaimed at the end of
the release. For further flexibility, private memories can be
nested. To share data among handlers, there exists immor-
tal memory and mission memory. Together with the private
memories, these memory areas form a hierarchy with differ-
ent life times.

One important consequence of the scoped memory model
of SCJ is that without garbage collection, the lifetime of an
object is now the responsibility of the programmer as it is
no longer handled automatically (and safely). Instead it is
determined directly by the lifetime of the scope it lives in,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES 2012 October 24-26, 2012, Copenhagen, Denmark
Copyright 2012 ACM 978-1-4503-1688-0 ...$15.00.

which again is controlled by the programmer. While en-
abling more flexibility and affording the programmer better
control of memory use, it also opens the door for dangling
references: a reference to an object that no longer exists.

In order to avoid dangling references, references within
this hierarchy are only allowed from a shorter lived mem-
ory (an inner memory) towards an object in a longer lived
memory (an outer scope). In SCJ the problem of dan-
gling references is handled either by manually annotating
applications with detailed memory scope information or dy-
namically with runtime checks. Using annotations requires
an analysis for verifying the correctness of the annotations.
Handling the problem dynamically can be done by check-
ing, at runtime, that all operations on objects are based on
a valid, non-dangling reference and throwing an exception
if not. Since the SCJ memory hierarchy does not allow the
RTSJ style cactus stack of scopes [3], each scope can be
assigned a level, which simplifies the assignment check [8].
However, even when the assignment check is simplified, hav-
ing runtime exceptions is considered very problematic for
any system that is not supposed to terminate and especially
so for safety-critical real-time systems that need certifica-
tion.

In this paper we present an approach using program anal-
ysis to prove the absence of illegal assignments for objects
living in SCJ style memory areas. The analysis is a context-
sensitive points-to analysis for Java bytecode where a stack
of SCJ memory scopes is used as contexts, enabling a straight-
forward check for potential violations of memory safety. A
WALA [1] based prototype of the analysis has been im-
plemented. Our implementation is targeting level 0 and 1
SCJ applications. With this implementation it is possible
to present problems in the code, where illegal assignments
might occur at runtime, to the programmer.

The paper is organized as follows: the following section
gives background on the safety-critical Java specification.
Section three and four present the memory safety analy-
sis and implementation. Section five give results of exper-
iments with the memory analysis. Section six, seven and
eight present related work, future work and how to get ac-
cess to the source code, respectively. Section nine concludes.

2. SAFETY-CRITICAL JAVA
Safety-critical Java (SCJ) [6] is intended for future safety-

critical systems that need certification. To allow certifica-
tion of Java programs only a very restricted subset of Java
is defined. SCJ itself is based on the real-time specification
for Java (RTSJ) [3]. It is a subset of RTSJ with some ad-

ditional class files. It is so defined that it can in principle
be implemented on top of RTSJ. That is also the way the
reference implementation (RI) is provided. However, it has
to be noted that the combination of the SCJ on top of RTSJ
is not a preferred combination for certification. If the imple-
mentation of the RTSJ is part of the safety-critical system,
it needs to be certified as well. Therefore, one can just use
the full RTSJ.

The SCJ specification is developed within the Java com-
munity process (JCP) under specification request number
JSR 302. To cover different criticality levels, SCJ defines
three different levels with increasing complexity of imple-
mentations and increasing expressive power for the applica-
tion programmer. Level 0 provides a single-threaded cyclic
executive. All memory areas (immortal, mission, and pri-
vate) are available in level 0. As individual executions of
handler releases are not preempted, the backing store for
the private memory of a handler can be reused by the next
handler. Level 1 introduces preemptive scheduling with ceil-
ing based locks. Furthermore, interrupt handlers, written in
Java, are allowed in level 1. Level 2 provides the notion of
nested missions for more dynamic systems. It is possible
to keep part of the system running and starting and stop-
ping other parts during runtime. Level 2 also introduces an
adapted version of RTSJ’s NoHeapRealtimeThread.

Concurrence is represented as handlers in SCJ, similar to
RTSJ style event handlers. In fact the SCJ handlers are a
subclass of RTSJs BoundAsyncEventHandler. These handlers
are either periodic or event triggered.

2.1 Missions and Scheduling
SCJ has the notion of missions. An application can con-

sist of several missions, where each mission might represent a
different operation mode. The mission itself consists of the
handlers and the mission memory. The handlers within a
mission are created int he initialization phase and the num-
ber of handlers is fixed for a mission. Handlers come in
two flavors: a periodic event handler to be released time-
triggered and an aperiodic handler released by an event.
The event to release an aperiodic handler can be a software
event or an interrupt.

A mission consists of three phases: initialization, execu-
tion, and cleanup. In the initialization phase the mission
memory is created by the SCJ implementation and all han-
dlers and data created during initialization is by default allo-
cated in the mission memory. Data shared between handlers
must be allocated in mission memory. Data shared between
missions must be allocated in immortal memory.

The SCJ application is started on the transition from the
initialization to the execution phase. During the execution
phase no new handlers can be registered or started. Tem-
poral objects are allocated in the handler’s private memory.
Allocation in mission memory is not prohibited, but strongly
discouraged. After the cleanup phase, the mission memory
is cleared and a new mission can be started.

An SCJ application is represented by a class that imple-
ments Safelet and at least one class that extends Mission.
Simple programs, consisting of a single mission, can use one
class the extends Mission and implements Safelet.

2.2 The Memory Model
Three different memory areas are available for an SCJ

application: immortal memory, mission memory, and pri-

vate memories. Immortal memory is the same as immortal
memory in the RTSJ. It contains static fields, objects that
are created during class initialization, and application data
that needs to be preserved over mission boundaries. Mission
memory, as the name implies, exists as long as a mission is
active (in any of the three phases).

Within this paper the most interesting memory area is
private memory. Each handler has an initial private mem-
ory, which is cleared after a release has finished. There-
fore, no data can survive individual releases. To allow more
flexibility within the release of a handler, the handler can
enter nested private memories. In practise, the feature is
only useful when a nested private memory is entered more
than once per release. Otherwise the temporary data could
also be allocated in the initial private memory. The object
representing a private memory needs to be reused when re-
peatedly entering private memory to avoid leaking memory.
However, nested private memories might be sized differently.
Therefore, the implementation of the private memory area
needs to be able to resize a memory area [9]. The private
scopes are by intention private and are entered by a static
method.

Immortal Memory

Mission Memory

Private
Memory

Private
Memory

Private
Memory

@A

@B

@D

@C

Outer

Inner

Figure 1: Memory scopes of an SCJ application.

In Figure 1 the memory scopes of an example SCJ appli-
cation are shown. The example application implements a
single mission with two event handlers. Each event handler
has a private memory area and thereby a separate scope.
The event handler on the right has entered another layer of
private memory. The small boxes denoted @A, @B, @C, and
@D represent objects allocated in a particular scope, repre-
sented by the immediately surrounding box. An arrow be-
tween two objects represents a reference to the object at the
arrow head, stored in a field in the object at the arrow base.
The reference from object @A to object @B is prohibited by
the scope assignment rules of the SCJ as Mission Memory
will have a dangling reference when the Private Memory is
cleaned.

During execution of an SCJ application the scopes in use
by the application, at any point in time, can be viewed as a
stack of scopes, see Figure 1 for an example. When talking
about a stack of scopes we will call the first scope on the
stack (from the bottom of the stack) the outer scope of the
next scopes which we will refer to as the inner scopes. As

an example, the right-most event handler in Figure 1 has a
scope stack consisting of: Immortal Memory, Mission Mem-
ory, Private Memory, and finally Nested Private Memory at
the top. For SCJ applications Mission Memory will always
be the outer scope of the Private Memory scope of an event
handler and potential nested Private Memory scopes.

3. MEMORY SAFETY ANALYSIS
In this section we discuss a sound memory safety anal-

ysis for SCJ that can statically guarantee an SCJ applica-
tion will never (attempt to) violate the memory scope rules.
In addition to the increased assurance and lower mainte-
nance cost achieved by eliminating potential bugs early in
development [2], it also makes it possible to dispense with
the runtime checks otherwise necessary to enforce memory
safety [8, 15]. Such runtime checks are undesirable in safety-
critical real-time applications, not only due to the added
runtime overhead, but also because of the inherent difficul-
ties in handling memory safety violations at runtime without
negatively impacting the scheduling of critical tasks. While
this may also be true for annotation-based methods, the
extra time and resources spent on developing and maintain-
ing annotations (and potential code duplication [14]) may
negate some or all of the positive effects.

In the following we describe a fully automated static mem-
ory safety analysis, that can verify that a program does not
violate memory safety or point the programmer to where
such violations may potentially occur.

In order to find potential violations of the memory scope
rules, the memory safety analysis must find all references
that may be stored in a field on an object in a given scope,
to an object allocated in an inner scope. For this it needs to
determine, for all objects, which scope they are allocated in
as well as track when the current scope changes (see below).
This makes points-to analysis a good basis for the memory
safety analysis (as also noted in [11]), since a sound points-
to analysis computes a conservative (over-)approximation of
all the possible object references that may be stored in any
field or local variable, which is exactly what is needed for the
memory safety analysis. Extending the basic points-to ana-
lysis to a context-sensitive analysis using memory scopes as
contexts, essentially tagging each abstract object reference
in the analysis with the scope in which it was allocated,
makes it almost trivial to find potential violations or, indeed,
guarantee that there are no violations.

For the purpose of the analysis we will define a scope as:

Scope = MemoryAreaID× ScopeType

where MemoryAreaID is a unqiue identifier for the memory
area represented by the scope and ScopeType is the type of
scope defined by:

ScopeType = {IMMORTAL,MISSION,PM,UNKNOWN}

where the first three correspond to immortal, mission, and
private memory respectively. However, for the analysis we
must also be able to represent the situation where, for some
reason, it is not possible to determine the current scope (cor-
responding to the ‘top’ value in the underlying abstract anal-
ysis domain). We will refer to this as an unknown memory.

Based on these definitions we can define a scope stack as:

ScopeStack = Scope∗

As mentioned above, In our context-sensitive pointer anal-
ysis, we use scope stacks as contexts. This means both ob-
ject references and objects are tagged with a scope stack. To
be able to identify if a object reference is in an outer scope
we define an ordering on the set of scope stacks:

ss1 v ss2 iff ∃ss′2 : ss2 = ss′2 :: ss1

in other words, a scop stack ss1 is less than scope stack ss2
if and only if the stack ss1 is a postfix of the stack ss2.

Furthermore we note that equallity between scopes only is
true if the MemoryAreaID and ScopeType are identical except
if any of the scope types is UNKNOWN in which case the
scopes are not equal.

As the SCJ API contains a number of functions that may
be used to directly change the current memory area, the
memory safety analysis must track the use of such functions
in addition to the (extended) points-to analysis:

handleAsyncEvent
is the function called by the scheduler when an event
handler is activated. When handleAsyncEvent is called
a private memory area of the event handler is entered
and the scope should therefore be changed.

enterPrivateMemory
is used to enter a private memory scope. It takes an ob-
ject of a class implementing the Runnable interface as
an argument. When the run() method of the runnable
object is called it is executed in a new private memory
scope.

getCurrentManagedMemory
is used to get a reference to the current scope in the
form of a ManagedMemory object. This reference can
be passed around and is typically used to pass the ref-
erence of the current scope to an inner scope in a vari-
able. From the inner scope the reference stored in a
variable can be used to pass a result out of the inner
scope.

executeInArea
is called on a MemoryArea or ManagedMemory object
with a runnable object as argument, it is possible to
pass a result out of an inner scope. The runnable ob-
ject needs to be initialised and in the run() method
the result can be copied to an outer scope. E.g., the
getCurrentManagedMemory method can be used to get
a ManagedMemory object.

getMemoryArea
can be used to get a reference to a MemoryArea. The
method is similar to getCurrentManagedMemory for non-
managed memory except it takes an object as argu-
ment and return the MemoryArea in which the object
is allocated.

initialize
is a method implemented on classes extending the Mis-
sion class and indicate when a mission’s memory scope
is initial entered. The method is used to initialise event
handlers which is then registered in the SCJ API.

In order to enable the analysis to track when the current
scope changes, using one of the above function, a call graph
must be constructed. Such a graph can be extracted from
the information computed by the points-to analysis, since

the set of possible target objects for a dynamic dispatch
are already covered by the points-to analysis. Using the
call graph it is possible to make an over-approximation of
the scope stack of all methods. Based on this it can be
determined in which scope stack a method allocates new
objects, and thus, using the results from the pointer analysis,
it is possible to compare the scope stack of the allocated
objects scope with the scope stack of the reference and thus
find potential violations of the memory scope rules.

Besides the functions listed above, the functions newAr-
ray, newArrayInArea and newInstance can be used to allocate
objects in other scopes than the current scope. Our tool
does not currently support analysis of these functions, but
may be implemented in a way similar to the analysis of han-
dleAsyncEvent. None of the analysed applications made use
of these functions and their use is generally discouraged as
it may lead to ambiguous analysis results.

It should also be noted that the initialize method can only
be used to track when a mission’s memory is initially en-
tered. However, there is no API method that can be used
to track when the mission’s memory is entered again, before
the handleAsyncEvent of a periodic event handler is called,
as handleAsyncEvent is called from the same level that set
up the Safelet [6, Figure 3.3]. This makes it difficult for a
static analysis to track when mission memory is entered. In
the next section we discuss possible solutions.

4. IMPLEMENTATION
The implementation of the analysis is based on the T.J. Wat-

son Libraries for Analysis (WALA) [1] that provides support
for many different kinds of pointer analysis including several
context sensitive analyses that allow analysis developers to
define and implement specialised contexts (called parame-
terised context sensitive analyses). Contexts in a pointer
analysis are typically based on the call chain. In contrast,
we implement specialised contexts consisting of a scope stack
(as described in the previous sections). For the implementa-
tion of a scope we use a string to represent the MemoryAreaID
and a scope stack is implemented using a linked list.

WALA uses an intermediate representation of the Java
bytecode to perform the analysis on. The intermediate rep-
resentation is similar to Java bytecode, but in static single
assignment (SSA) form which eliminates the need for a stack
and simplifies flow-sensitive analyses. However, the use of
SSA makes it slightly more difficult to map the results back
to the exact location in the original code. Currently prob-
lems are reported using name of fields, methods and classes
which we found to be sufficient to locate and correct poten-
tial violations of scope rules.

Another feature of WALA is that it performs pointer anal-
ysis and call graph construction simultaneously, enabling the
construction of a sound call graph, i.e., a call graph that
takes dynamic dispatch into account.

The call graph produced by the analysis is built from a
number of call graph node objects. Each call graph node
represents a method invocation, i.e., the execution of the
method at runtime. If methods are invoked in different con-
texts, i.e., different memory scopes, this will give rise to
separate call graph node objects. To implement a parame-
terised context sensitive pointer analysis in WALA, the anal-
ysis developer must provide a class implementing an inter-
face called ContextSelector whose implementations can be
called at certain points of the analysis while building the

1 public Context getCalleeTarget(CGNode caller,
2 CallSiteReference site, IMethod callee,
3 InstanceKey[] actualParameters)
4 {
5 ScjContext cc;
6 ...
7 cc = (ScjContext) caller.getContext();
8

9 if (isFuncName(callee, "handleAsyncEvent") &&
10 isSubclassOf(callee.getDeclaringClass(),this.MEHIClass))
11 {
12 cc = new ScjContext(cc,
13 getClassName(callee),
14 ScjScopeType.PM);
15 } else if (isFuncName(callee, "enterPrivateMemory") &&
16 isSubclassOf(callee,this.ManagedMemoryIClass))
17 {
18 cc = new ScjContext(cc,
19 getUniquePMName(),
20 ScjScopeType.PM);
21 } else if (isFuncName(callee, "getCurrentManagedMemory") &&
22 isSubclassOf(callee,this.ManagedMemoryIClass))
23 {
24 ((ScjContext)caller.getContext()).
25 setLastGCScope(cc.peek());
26 } else if(isFuncName(callee, "executeInArea") &&
27 isSubclassOf(callee,this.MemoryAreaIClass))
28 {
29 cc = new ScjContext(cc, cc.getLastGCScope().getName(),
30 cc.getLastGCScope().getScopeType());
31 } else if (isFuncName(callee, "startMission") &&
32 getClassName(callee).
33 equals("Ljavax/safetycritical/JopSystem"))
34 {
35 cc = new ScjContext(cc,
36 getClassName(caller),
37 ScjScopeType.MISSION);
38 }
39

40 return cc;
41 }

Figure 2: Implementation of getCalleeTarget for con-
text change.

call graph in order to change the current analysis context of
methods.

The WALA implementation of our memory safety anal-
ysis was fine-tuned to achieve few false positives. As such
parameters were chosen mainly to favour increased precision
over performance. Specifically, we set an option for the anal-
ysis that causes instances in a method to be distinguished
by allocation site rather than simply by type. In order to
prevent this option from resulting in state space explosion,
another feature was enabled, called SMUSH MANY, that
collapses object instances once more than 25 different object
instances are found in a method. By default, similar options
are enabled for strings, called SMUSH STRINGS, and throw-
ables, called SMUSH THROWABLES. However, through ex-
perimentation we found that disabling these leads to fewer
false positives with no notable performance degradation.

4.1 Implementing Context Changes
The first step towards a WALA implementation of our

memory safety analysis is to define the necessary contexts
and, in particular, to define the class implementing the Con-
textSelector interface which handles context changes.

The ContextSelector interface requires classes implement-
ing it to define the methods getCalleeTarget and getRele-
vantParameters. In our implementation the most interest-
ing method is getCalleeTarget as it is called for all possible

method invocations in order to determine whether or not to
change context for a given method call.

The interesting part is when the method invoked is one
of the special context changing API methods discussed in
Section 3. Figure 2 shows our implementation of the get-
CalleeTarget method that we will explain in more detail in
the following.

The getCalleeTarget method accepts four arguments: the
calling method represented by a call graph node, a represen-
tation of the call site, a representation of the called method,
and the actual parameters of the call. Based on these argu-
ments the getCalleeTarget method return the context of the
called method as a Context object (lines 1–3). For brevity
and clarity we have elided the initialisation and handling
of the initial call graph nodes, called synthetic nodes. The
context of these nodes is set to immortal memory such that
methods executed in immortal memory are bootstrapped
correctly.

Two utility methods getClassName and getUniquePMName
are used in getCalleeTarget. The first returns the class name
of either the calling or called method. The second returns a
unique string used to name an anonymous private memory
created by enterPrivateMemory.

For most methods, i.e., all methods that do not change the
context, the new context is simply the same as the old con-
text as determined by the calling method (line 7 and 40).
The large conditional (lines 9–38) is used to check if the
called method is one of the “special” methods and handle
it accordingly. Specifically, the name of the called method
is compared with the names of the context changing meth-
ods and it is further checked that the method is defined in
the right class. All the context changing functions, except
getCurrentManagedMemory, are handled by assigning a new
context with an updated scope stack to the variable cc (e.g.,
line 12). The scope stack is updated by adding the rele-
vant scope, which comprises a string and a scope type. The
string is used to separate different missions, event handlers
and private memories.

As a concequence of getCurrentMangedMemory the analy-
sis needs to track the reference returned by this method.
Not doing so would mean we would lose all information
when executeInArea is used. We noticed that we did not
see any application requesting two references before running
executeInArea. Therefore we implemented a simple memory
reference tracking by expanding the definition of a scope
stack with an additional scope:

ScopeStack = Scope∗ × Scope

This scope is used to annotate scope stacks with the scope
returned by getCurrentManagedMemory. If getCurrentMan-
agedMemory is called more than once in a call chain the
scope on the scope stack will be assigned UNKNOWN.

In the implementaion getCurrentManagedMemory is han-
dled in (lines 24–25). This is done by calling setLastGC-
Scope(cc.peek()) on the current context/scope stack. This
sets the value of a field lastGCScope, on the current context,
to the value on the top of the scope stack. If lastGCScope is
already assigned a scope it will be assigned a scope with the
type set to UNKNOWN to represent an unknown memory. In
case of the function executeInArea, the lastGCScope is used
to determine which scope the new context is assigned. In
some cases this may be an unknown memory (lines 26–30).

4.2 Analysing SCJ
In order to soundly and fully analyse an SCJ application,

it is necessary to take the effects of the underlying SCJ im-
plementation and API into account, since important flow
information may otherwise be lost. As an example, peri-
odic event handlers (from class PeriodicEventHandler) have
to be registered in the SCJ implementation, which will then
invoke the handleAsyncEvent method on the registered Peri-
odicEventHandler object at appropriate time intervals.

One possible solution to this problem would be to write
stubs for all the relevant classes and methods of the SCJ.
However, true to its RTSJ heritage, the SCJ libraries are
numerous and sizeable. Instead we initially opted to use an
SCJ implementation built directly on top of an RTSJ imple-
mentation [12]. However, analysing an application together
with this software stack proved to be too time consuming
and gave rise to many false positives.

Instead of using the SCJ implementation built on top of
an RTSJ implementation we used the JOP/SCJ implemen-
tation [9, 10] which turned out to be suffieciently small to
provide immediate feedback of analysis results to the pro-
grammer on all tested programs.

Using the JOP/SCJ implementation lead to a few minor
issues: The first, is that the result of the pointer analysis
always contains exactly ten InstanceKey objects, of the de-
clared type String, without an associated context. These are
String objects from exceptions allocated in the JOP/SCJ im-
plementation. When checking for violations, we filter these
out along with potential violations occurring strictly within
the SCJ implementation itself, since the SCJ infrastructure
may need to temporarily break the scope rules and is al-
lowed to so. However, to support developers implementing
the SCJ specification it is possible to set the variable show-
Primordial, on the class Problem, to true to have our analysis
report problems in the SCJ implementation as well.

A second issue with the JOP/SCJ implementation was
that it did not, at the time, support getCurrentManaged-
Memory, executeInArea and getMemoryArea. This was solved
by making a new branch of the JOP/SCJ implementation
and adding support for getCurrentManagedMemory and ex-
ecuteInArea. We have postponed implementing support for
getMemoryArea as it requires substantial effort and none of
our test programs used this function. The function exe-
cuteInArea was implemented to only work for objects of the
ManagedMemory class.One of the advantages of using the
JOP/SCJ implementation is that we can use the JOP/SCJ
specific function startMission to handle the issue concerning
tracking when a mission’s memory is entered (since the ini-
tialize method can only be used to detect the first entry into
mission memory).

4.3 Finding Potential Safety Violations
The result of the pointer analysis is a list of objects of type

PointerKey and associated InstanceKey objects. A PointerKey
is an abstract representation of a static field, instance field,
or a local variable that stores a reference to an object. An
InstanceKey is the abstract representation of objects based
on type or, as in this case, allocation site.

The pointer analysis is over-approximating, meaning that
in the analysis a PointerKey may point to InstanceKey ob-
jects that will never occur during execution of the concrete
program. On the other hand, the analysis is sound, mean-
ing that whatever any (concrete) pointer may point to dur-

ing the execution of the concrete program, there will be an
abstract representation of it in the analysis result. Such a
sound analysis can in general be used to verify safety proper-
ties, e.g., to verify that pointers from the immortal memory
scope will never point to objects living in mission or private
memory during any possible execution of the program.

To verify this property we need to ensure that the scope
stack sspk of a PointerKey and the scope stack ssik of all
InstanceKey objects the PointerKey may point to, conforms
to the ssik v sspk ordering defined in Section 3.

The main loops for checking the result of the pointer anal-
ysis can be seen in Figure 3. The code uses two helper meth-
ods getScjContext and report problems. The first is used
to get the context(scope stacks) from PointerKey and In-
stanceKey objects. The second is used to report problems
and extract as much information from the PointerKey and
InstanceKey that is avilable. The code shows a loop iter-
ating over all InstanceKey objects. If an InstanceKey does
not have an associated context a counter variable i is in-
cremented, filtering away the ten exception strings from the
JOP/SCJ implementation. Otherwise all PointerKey objects
that may point to the InstanceKey object are iterated over
(lines 15–21). While iterating over all the PointerKey objects
a test for a mismatch of scope stacks is performed using
the less method which implements the v ordering. If the
method returns false a problem based on the information
from the involved PointerKey and InstanceKey is added to a
set of problems found using the report problems. The rea-
son for using a set is to eliminate duplicates from the set of
problems. Experiments found this to be usefull as problems
would otherwise often be reported more than once.

1 public static void runAnalysis(PointerAnalysis pa, HeapGraph hg,
2 HashSet<Problem> problems)
3 {
4 Iterator<InstanceKey> ikItr = pa.getInstanceKeys().iterator();
5 int i = 0;
6

7 while(ikItr.hasNext())
8 {
9 InstanceKey ik = ikItr.next();

10 Iterator<Object> pkIter = hg.getPredNodes(ik);
11

12 if (getScjContext(ik) == null) {
13 i++;
14 } else {
15 while (pkIter.hasNext())
16 {
17 Object pk = pkIter.next();
18

19 if (!getScjContext(ik).less(getScjContext(pk)))
20 report_problems(problems, ik, pk);
21 }
22 }
23 }
24

25 if (i != 10) {
26 util.error("Unexpected number: "+i+
27 " of InstanceKey objects with context == Null");
28 }
29 }

Figure 3: Checking the result the pointer analysis
for potential problems.

4.4 Example
To demonstrate the advantage of using the memory anal-

ysis instead of using annotations an example is presented.
The example is taken from Figure 6 in [14]. It shows a

program annotated with memory safety annotations (high-
lighted in the example) and with two parts of code replaced
by “...”. The annotations are used to define scopes and re-
lation between scopes and classes, references to instances of
the ManagedMemory class and methods. The example con-
tains seven lines of annotations. However, we do not find
the number of lines of annotations to be significant rather
the complexity of learning and using the memory safety an-
notations. In [14] it is stated that memory safety is the most
complex property their analysis checks. A total of 14 rules
have to be checked to verify correctness using the annota-
tions. Our analysis means programmers do not have to an-
notate SCJ programs with memory safety annotations as
seen in the example. In fact, the analysis is able to guaran-
tee memory safety for the example, without any annotations
in the code, in a fully automated way.

While it can be argued that programming with annota-
tions forces the programmer to think more carefully, or at
least more explicitly, about memory usage and scope re-
quirements, it can also take up a lot programmer resources
and may lead to unfortunate code duplication [14].

In the experiments section we present results from analysing
two test cases (pmFFTcpresult and InOutParameter) using
a similar pattern although the test cases are more involved.

1 @Scope("immortal")

2 @DefineScope(name="MyMission", parent="immortal")

3 class MyMission extends CyclicExecutive {
4 public void initialize() {
5 new MyHandler(...);
6 }
7 }
8

9 @Scope("MyMission")

10 @RunsIn("MyHandler")

11 class MyHandler extends PeriodicEventHandler {
12

13 public void handleEvent() {

14 @DefineScope(name="MyRunnable",parent="MyHandler")

15 MyRunnable r = new MyRunnable();
16 ManagedMemory.getCurrentManagedMemory().
17 enterPrivateMemory(3000, r);
18 }
19 }
20

21 @Scope("MyHandler")

22 @RunsIn("MyRunnable")

23 class MyRunnable implements Runnable {
24 public void run() { ... }
25 }

5. EXPERIMENTS
To test the implementation, a number of test cases was

used. In Table 1 the results of running the analysis on these
test cases are shown. The table lists five test cases and their
complexity in the form of lines of code, size of bytecode
of SCJ library and application classes respectively, (known)
number of illegal assignments, and the number of illegal as-
signments the analysis found. Due to the lack of real world
level 0 and 1 SCJ applications the test cases are based on ap-
plications developed as part of two master thesis projects, a
modification of one of them, an example developed as part
of CJ4ES project activities and a test case developed for
another paper with clever reuse of space in a StringBuilder
which we expected would result in a false positive. The anal-
ysis perform very well and as expected. Below a description
of the test cases can be found.

Test case LOC Bytecode IA Found
scjminepump 1465 239884/18519 0 0
scjminepumplog 1490 239884/20511 1 1
pmFFTcpResult 545 247854/11577 0 0
InOutParameter 155 264949/6285 1 2
scjreprap 1758 242561/27730 4 5

Table 1: This table shows the result of running the
analysis on five test cases. LOC is short for Lines of
Code. Bytecode size of SCJ library and application.
IA is short for Illegal Assignments

scjminepump
The scjminepump is inspired by the classical minepump
textbook example. It was implemented as part of a
master’s thesis project at Aalborg University. The
work was later published in [5]. The example has been
adapted to use the JOP/SCJ implementation. The
example is straight forward and does not pass refer-
ences between scopes and therefore does not contain
any illegal assignments.

scjminepumplog
An extension of the previous test case with logging
facilities. For testing purposes this case contains an
illegal assignment.

pmFFTcpresult
This test case use nested private memory to encap-
sulate a Fast Fourier transform library which creates
temporary objects that would otherwise have to be
reclaimed by a garbage collector. The code demon-
strates the usecase of reusing existing libraries in an
SCJ application and was developed as part of ongo-
ing activities in the CJ4ES project. The test case uses
executeInArea to move the result of the Fast Fourier
transform to a higher scope by copying the result data
from the inner scope to an object allocated in the outer
scope.

InOutParameter
This test case uses private memory for encapsulating
code that leaks garbage. The result from the private
memory is stored in a StringBuilder allocated in the
outer scope. The StringBuilder is initialised with a
buffer size of 30. When entering the private mem-
ory the length of the StringBuilder is reset to be able
to reuse the buffer for output. As our analysis is not
data sensitive it cannot guarantee that the buffer size
of 30 cannot be exceeded, which would result in allo-
cation of a new buffer in the private memory scope. If
a new buffer is allocated, an illegal assignment will oc-
cur. Using our memory analysis this gave rise to a false
positive as expected. Furthermore, the test case uses
a static variable to store a SimplePrintStream object.
The object is allocated in mission memory but a ref-
erence is stored in immortal memory by use of a static
variable. This illegal assignment was not intended by
the author and was first discovered by the analysis.

scjreprap
The scjreprap test case is an implementation of the
controller software for a reprap 3D printer on top of
the JOP/SCJ implementation as part of a master’s

project [13]. It was unknown whether this test case
contained illegal assignments. The test case is rela-
tively large and has an interesting control structure.
The analysis found five problems. By examining the
code based on the problems reported it was found that
four were indeed illegal assignments. The last report is
a false positive due to the problem of tracking when a
mission starts by examining method invocations. We
currently track this by using the JOP/SCJ startMis-
sion, unfortunately this means that the method get-
Sequencer on the mission object is called as if it was
invoked as if it was executed in mission memory al-
though it in fact is invoked just before entering mission
memory.

Overall the results contain few false positive indicating good
precision of the memory analysis. The experiments were ex-
ecuted on a Intel Core i7-2620M CPU at 2.70GHz with 8
GB Memory and a solid state disk. The running time of
the analysis was timed by using System.currentTimeMillis()
before and after the analysis to measure the number of mil-
liseconds spend on running the memory analysis. The ex-
periments were performed three times. All test cases were
analysed in around one second. The source code of the ex-
periments can be found in the git repository associated to
this paper1 in the file ScjMemoryScopeAnalysisTest.java. It
should be mentioned that the LOC column only lists the
application code. The analysis also includes the part of
JOP/SCJ implementation that is used in the respective test
cases. The entire JOP/SCJ implementation comprises sev-
eral thousands lines of code. To give an idea of the size of
the analysed test cases and the size of the JOP/SCJ imple-
mentation analysed the “Bytecode” column list the size in
bytes of the JOP/SCJ implementation and the size of the
program analysed.

While the fast analysis times of the test cases are not,
in themselves, enough to argue that our analysis scales to
large applications, the analysis times combined with the doc-
umented scalability of WALA in general, does indicate that
our approach can scale to cope with large SCJ applications.

5.1 Eliminating Illegal Assignments
Five out of the six known illegal assignments we found

were due to the use of static variables. Where developers
stored references to objects allocated in either mission or
private memories. A general recommendation for reducing
false positives therefore is to only use static variables when
absolutely necessary. The last, known illegal assignment was
due to storing a reference to a logging object, allocated in
an inner scope, in an array allocated in an outer scope. This
could be avoided by using a number of pre-allocated logging
objects.

To eliminate the false positive illegal assignments, the In-
OutParameter test case could be refactored to avoid using
the StringBuilder class for storing the result of computations
performed in private memory. Instead an array of characters
could be used to store the result. Potentially, a StringBuilder
could be used in the private memory and the character se-
quence could be copied to the character array. The false pos-
itive in scjreprap could be avoided by making a small change
to the JOP/SCJ implementation or adding a workaround to
the analysis. However, we would prefer a more generic way

1https://github.com/andreasDalsgaard/privmem

https://github.com/andreasDalsgaard/privmem

to identify when mission memory is entered across SCJ im-
plementations.

6. RELATED WORK
In [11] a points-to analysis for Java bytecode (actually for

the JamaicaVM intermediate language) is developed and ap-
plied to finding violations of the RTSJ memory scope rules,
as well as for finding simple programmeing bugs such as
dereferencing a null pointer. The paper does not discuss
scalability of the analysis, however, an example is shown,
a “hello world” program, that takes roughly 11 seconds to
analyse.

The SCJ specification [6] specify a set of SCJ annotations.
The annotations can be divided into three groups: Compli-
ance levels, behavioral restrictions and memory safety.

In [14] an analysis for checking all three groups of SCJ an-
notations is presented. The implementation is based on the
Java Checker framework using the annotations in the appli-
cation as a type system to restrict the number of permitted
applications. An example of 24 thousand lines of code is
annotated and verified with their implementation. In total
92 annotations had to be added, of which 31 were memory
safety annotations and 61 were related to compliance level.
However, the rules for memory safety are far more complex
than those for compliance level. This is exemplified by the
large number of rules memory safety annotations have to
abide by. Given the unfamiliar memory model of SCJ we
see it as an additional burden that developers have to anno-
tate the code.

In [7] a related annotation/type system and analysis tool
is presented. The annotation system presented is stronger
than the annotation system in the SCJ specification. The
type system is designed to enable modular composition of
software products by, e.g., allowing developers to annotate
methods with scope constraints. Although a different anno-
tation system most of the arguments on [14] also apply to
this work.

It has previously been shown in [8] that by implementing
the check as a hardware runtime check instead of as a soft-
ware runtime check makes the check around ten times faster.
Furthermore, results on two smaller benchmark applications
show that this resulted in an average improvement of 18.16%
for one of the applications and 0.09% for the other applica-
tion. This indicate that for some applications it is definitely
relevant to eliminate these checks.

A formalisation of the memory model of SCJ have been
presented in [4]. The formalisation the Unifying Theories of
Programming and may prove an interesting starting point to
develop a formal proof of the correctness of the implemented
analysis.

7. FUTURE WORK
A formal proof of correctness of the memory analysis should

be developed to further increase the confidence in its correct-
ness and facilitate its use for certification purposes. The pa-
pers mentioned in the previous section would provide good
starting points for such an endeavour. In particular, the pa-
per [4] seems highly relevant, however in the formalisation of
private memory for periodic event handlers the scope stack
is treated differently from other private memories. Based on
experiences with the implementation this could possibly be
simplified.

The implementation forms a natural basis for develop-
ing an Eclipse plugin enabling highlighting of fields and
variables that give rise to potentially illegal assignments.
WALA already contains support for mapping results back
to the source code. Another way of improving the imple-
mentation would be by improving precision. This could be
done by modelling the bytecode and using model checking
and/or symbolic execution to verify that reported problems
can indeed occur. One way of doing this would be by us-
ing a Counter-Example Guided Abstraction Refinement ap-
proach.

Another way of improving precision of the analysis would
be by adding support for manual memory safety annota-
tions. The current implementation does not take any anno-
tations into consideration but could be extended to extract
information from, e.g., Compliance Levels or Behavioral Re-
strictions annotations and thereby reduce ambiguities and
false positives. Some way of supporting these annotations
would be a useful extension of an Eclipse plugin.

8. SOURCE ACCESS
Our memory analysis implementation is available in open-

source, currently hosted at GitHub: https://github.com/
andreasDalsgaard/privmem.

The memory analysis is based on WALA which should be
installed following: wala.sf.net/wiki/index.php/UserGuide:
Getting_Started

Following the WALA getting started guide will result in
WALA being checked out in Eclipse. After finishing the
WALA getting started guide the memory analysis should be
imported. The analysis is run using the Eclipse Run system
using a string similar to:
-application ${workspace loc}/app.jar -main /package/Main
as argument and including wala in the class path.

We used the JOP makefile system to compile jar-files
including both the SCJ implementation and application.
For instructions on how to do this please see: http://www.
jopwiki.com/Getting_started Instead of downloading the
source of JOP from the main repository a fork that adds sup-
port for getCurrentManagedMemory and executeInArea in the
JOP SCJ implementation should be used. This is currently
available at: https://github.com/andreasDalsgaard/jop

For more details see the README.txt file in the privmem
repository.

9. CONCLUSION
In this paper we have shown how a memory safety analysis

can be used to statically identify potential violations of the
SCJ memory model and thereby make it easier for develop-
ers to write SCJ applications. This is further strengthened
by the fact that the analysis is fully automated and does not
require the programmer to manually annotate the applica-
tion.

The analysis is sound and can therefore be used to guar-
antee that an application will never attempt to violate the
scoped memory rules. Consequently, the many and poten-
tially expensive runtime checks for memory safety can be
dispensed with completely. In addition to improved perfor-
mance, this is also necessary for safety-critical applications
that must meet stringent certification requirements.

We have further discussed, in some detail, our prototype
implementation of the analysis, based on WALA, and noted

https://github.com/andreasDalsgaard/privmem
https://github.com/andreasDalsgaard/privmem
wala.sf.net/wiki/index.php/UserGuide:Getting_Started
wala.sf.net/wiki/index.php/UserGuide:Getting_Started
http://www.jopwiki.com/Getting_started
http://www.jopwiki.com/Getting_started
https://github.com/andreasDalsgaard/jop

some of the challenges specific to analysing SCJ programs.
We have tested our implementation on a number of bench-
marks showing promising results both for performance and
scalability, albeit with the caveat that we have not been able
to find good, “real-life”, and publicly available test applica-
tions. We have therefore used a number of “home-grown”,
but non-trivial, test applications. Still, we believe that static
memory safety analysis can be a valuable tool for both de-
velopment and certification.

10. ACKNOWLEDGMENT
This work is part of the project “Certifiable Java for Em-

bedded Systems” (CJ4ES) and received partial funding from
the Danish Research Council for Technology and Production
Sciences under contract 10-083159.

11. REFERENCES
[1] T.J. Watson libraries for analysis (WALA).

http://wala.sf.net/.

[2] P. Amey. Correctness by construction: Better can also
be cheaper. CrossTalk Magazine, pages 24–28, Mar.
2002.

[3] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr,
and M. Turnbull. The Real-Time Specification for
Java. Java Series. Addison-Wesley, June 2000.

[4] A. Cavalcanti, A. Wellings, and J. Woodcock. The
safety-critical Java memory model: A formal account.
In M. Butler and W. Schulte, editors, FM 2011:
Formal Methods, volume 6664 of Lecture Notes in
Computer Science, pages 246–261. Springer Berlin /
Heidelberg, 2011.

[5] C. Frost, C. S. Jensen, K. S. Luckow, and
B. Thomsen. Wcet analysis of java bytecode featuring
common execution environments. In Proceedings of the
9th International Workshop on Java Technologies for
Real-Time and Embedded Systems, JTRES ’11, pages
30–39, New York, NY, USA, 2011. ACM.

[6] D. Locke, B. S. Andersen, B. Brosgol, M. Fulton,
T. Henties, J. J. Hunt, J. O. Nielsen, K. Nilsen,
M. Schoeberl, J. Tokar, J. Vitek, and A. Wellings.
Safety-critical Java technology specification, public
draft, 2011.

[7] K. Nilsen. A type system to assure scope safety within
safety-critical java modules. In Proceedings of the 4th
international workshop on Java technologies for
real-time and embedded systems, JTRES ’06, pages
97–106, New York, NY, USA, 2006. ACM.

[8] J. R. Rios and M. Schoeberl. Hardware support for
safety-critical Java scope checks. In Proceedings of the
15th IEEE International Symposium on
Object/component/service-oriented Real-time
distributed Computing (ISORC 2012), pages 31–38,
Shenzhen, China, April 2012. IEEE.

[9] M. Schoeberl. Memory management for safety-critical
Java. In Proceedings of the 9th International
Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES 2011), pages 47–53, York,
UK, September 2011. ACM.

[10] M. Schoeberl and J. R. Rios. Safety-critical Java on a
Java processor. In Proceedings of the 10th
International Workshop on Java Technologies for

Real-Time and Embedded Systems (JTRES 2012),
Copenhagen, DK, October 2012. ACM.

[11] F. Siebert. Proving the absence of RTSJ related
runtime errors through data flow analysis. In
Proceedings of the 4th international workshop on Java
technologies for real-time and embedded systems
(JTRES 2006), pages 152–161, New York, NY, USA,
2006. ACM Press.

[12] H. Søndergaard. SCJ implementation using RTSJ.
http://it-engineering.dk/HSO/PJ/index.html.

[13] T. B. Strøm and M. Schoeberl. A desktop 3d printer
in safety-critical Java. In Proceedings of the 10th
International Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES 2012),
Copenhagen, DK, October 2012. ACM.

[14] D. Tang, A. Plsek, and J. Vitek. Static checking of
safety critical java annotations. In Proceedings of the
8th International Workshop on Java Technologies for
Real-Time and Embedded Systems, JTRES ’10, pages
148–154, New York, NY, USA, 2010. ACM.

[15] D. Tang, A. Plsek, J. Vitek, and K. Nilsen. A static
memory safety annotation system for safety critical
Java. Unpublished paper.

http://wala.sf.net/
http://it-engineering.dk/HSO/PJ/index.html

	Introduction
	Safety-Critical Java
	Missions and Scheduling
	The Memory Model

	Memory Safety Analysis
	Implementation
	Implementing Context Changes
	Analysing SCJ
	Finding Potential Safety Violations
	Example

	Experiments
	Eliminating Illegal Assignments

	Related Work
	Future Work
	Source Access
	Conclusion
	Acknowledgment
	References

