
Analyzing Performance and Dynamic Behavior of
Embedded Java Software with
Calling-Context Cross-Profiling

Philippe Moret
Faculty of Informatics
University of Lugano

Switzerland
philippe.moret@usi.ch

Walter Binder
Faculty of Informatics
University of Lugano

Switzerland
walter.binder@usi.ch

Martin Schoeberl
Institute of Computer Engineering
Vienna University of Technology

Austria
mschoebe@mail.tuwien.ac.at

Alex Villazón
Faculty of Informatics
University of Lugano

Switzerland
alex.villazon@usi.ch

Danilo Ansaloni
Faculty of Informatics
University of Lugano

Switzerland
danilo.ansaloni@usi.ch

ABSTRACT
Prevailing approaches to analyze embedded software performance
either require the deployment of the software on the embedded tar-
get, which can be tedious and may be impossible in an early devel-
opment phase, or rely on simulation, which can be extremely slow.
We promote cross-profiling as an alternative approach, which is
particularly well suited for embedded Java processors. The embed-
ded software is profiled in any standard Java Virtual Machine in a
host environment, but the generated cross-profile estimates the ex-
ecution time on the target. We implemented our approach in the
customizable cross-profiler CProf, which generates calling-context
cross-profiles. Each calling-context stores dynamic metrics, such
as the estimated CPU cycle consumption on the target. We vi-
sualize the generated calling-context cross-profiles as ring charts,
where callee methods are represented in segments surrounding the
caller’s segment. As the size of each segment corresponds to the
relative CPU consumption of the corresponding calling-context, the
visualization eases the location of performance bottlenecks in em-
bedded Java software, revealing hot methods, as well as their callers
and callees, at one glance.

Keywords
Calling-context cross-profiling, Java processors, visualization of
calling-context profiles

1. INTRODUCTION
Profiling of embedded Java applications is a tedious task that re-

quires either a simulator of the embedded target platform or deploy-
ment of the application on that target. Both approaches have seri-
ous drawbacks. Simulation can be prohibitively slow. Software de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ ’09, August 27–28, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM 978-1-60558-598-7 ...$10.00.

ployment and profiling on the target platform are time-consuming,
too. Moreover, embedded Java systems often lack profiling sup-
port. In addition, because of resource constraints, some profiling
techniques, such as calling-context profiling, cannot be applied on
the target platform. Calling-context profiling is an important tech-
nique for locating performance problems in applications, since it
yields detailed profiling data for each executed calling-context. The
Calling Context Tree (CCT) [1] is a widely used datastructure for
calling-context profiling, which stores dynamic metrics, such as
CPU cycle consumption, for each calling-context.

In this tool demonstration, we promote cross-profiling [2, 3] for
analyzing the performance of embedded Java software. The em-
bedded software is profiled in any standard Java Virtual Machine
(JVM) in a host environment, completely decoupled from the em-
bedded target system. Nonetheless, the generated cross-profiles
represent the execution time metric of the target system. The host
environment is a typical machine for software development, pro-
viding sufficient resources for memory consuming profiling tech-
niques, such as CCT construction. We present the customizable
cross-profiler CProf1 [2, 3], which generates CCTs with the num-
ber of method invocations and an estimate for the CPU cycle con-
sumption on the embedded target for each calling-context.

As CCTs typically comprise a large number of calling-contexts,
there is need for a condensed visualization that eases the location
of performance problems. This tool demonstration presents a new
visualization of calling-context cross-profiles as ring charts, where
callee methods are represented in segments surrounding the caller’s
segment. In order to reveal hot methods, their callers, and callees
at one glance, the visualization can size each segment according to
a chosen dynamic metric.

2. CROSS-PROFILING WITH CPROF
Cross-profiling executes applications in a host environment and

yields profiles that estimate dynamic metrics, such as CPU cycle
consumption, for a different target environment. In the case of the
JVM, both the host and the target environment execute the same
instruction set, JVM bytecodes [5]. However, the JVM may be im-
plemented in fundamentally different ways on the host and on the
target. We run CProf in a typical environment for software develop-

1http://www.inf.unisi.ch/projects/ferrari/

ment, comprising a standard PC with any state-of-the-art JVM im-
plementation that relies on just-in-time compilation and supports
dynamic optimization of executing applications. In contrast, the
target environment is an embedded Java processor that implements
most JVM bytecodes in hardware.

As cross-profiling target, CProf supports embedded Java systems
where accurate CPU cycle estimates are available for most byte-
codes and where instruction cache misses may happen only upon
method invocation and return. Some recent Java processors, such
as the Java Optimized Processor JOP [7], meet these requirements;
JOP has a special instruction cache that caches whole method bod-
ies.

In order to estimate the number of executed CPU cycles on the
target while profiling workloads on the host, CProf relies on byte-
code instrumentation techniques to intercept particular “points” in
the program execution. More precisely, CProf intercepts basic
block (BB) entries in the code, as well as method entry and method
return. Upon BB entry, a statically pre-computed CPU cycle esti-
mate for bytecodes in the BB is added to a counter that keeps track
of the number of CPU cycles that would be consumed on the target
if the workload was executed there.

Method entry and return are specially instrumented, in order to
model variable CPU cycle consumption for method invocation and
return bytecodes. This enables the runtime simulation of method
caches, where the execution time of method call respectively re-
turn depends on whether the callee respectively the caller method
is in the cache. Upon method entry, the concrete invoke opcode
(invokestatic, invokespecial, invokevirtual, invokeinterface), an
identifier of the callee method, and the size of the callee method (in
bytes) are used for CPU cycle estimation. Conversely, on method
return, the return opcode, an identifier of the caller, and the size of
the caller are used.

CProf supports the customization of CPU cycle estimation and
method cache simulation through pluggable components. Hence, it
eases experimentation with different bytecode performance models
and cache strategies, which is a prerequisite for an effective proces-
sor design space exploration, as reported in this paper.

CProf yields calling-context-sensitive profiles, estimating CPU
cycle consumption for each executed calling-context. It relies on
the CCT [1] to store dynamic metrics separately for each calling-
context. The CCT enables a detailed analysis of program perfor-
mance and helps locate hotspots in the program code.

Regarding overhead, CProf significantly outperforms the tar-
get hardware [2, 3]. It runs standard Java benchmarks, such as
SPEC JVM98 [8] or DaCapo [4], without any problems, although
these benchmarks cannot execute on the target. Cross-profiling
is several orders of magnitude faster than VHDL simulators. For
more details on CProf, we refer to [2, 3].

3. ACCURACY OF CROSS-PROFILING
To assess that our approach is sound, we compare the CPU cycle

estimates from the generated cross-profiles with the actual CPU
cycle consumption on an embedded Java processor and compute
the percent error of the estimates. For this experiment, we chose
JOP [7] as target, because timing information is public available
for all bytecodes.

Our evaluation is based on 3 embedded benchmarks, Kfl, Lift,
and UdpIp. As JOP’s execution environment is a typical embedded
system without a filesystem and with only 1 MB memory, standard
Java benchmarks, such as SPEC JVM98 or DaCapo, cannot be ex-
ecuted on the target hardware. Hence, only embedded benchmarks
can be used for assessing the accuracy achieved by CProf.

Benchmark JOP CProf Error (%)
Kfl 5.023×107 5.021×107 −0.04
Lift 5.282×107 5.262×107 −0.38
UdpIp 1.132×108 1.111×108 −1.81

Table 1: Benchmark execution time and cross-profiling results
in clock cycles for JOP with a 4KB/16 method cache

The benchmarks Kfl and Lift are based on real-world applica-
tions [6]. The benchmark UdpIp uses a TCP/IP stack, implemented
in Java, in order to simulate a UDP-based client/server application.
Each embedded benchmark is executed 10000 times, and in the
generated cross-profile the cumulative CPU cycle estimate of the
benchmark harness (the method test()) is taken, effectively exclud-
ing the execution of startup code on the host.

In this experiment, JOP is clocked at 100 MHz in a low-cost
FPGA and the memory access time is 2 clock cycles. It has a 4 KB
FIFO instruction cache organized in 16 blocks. The three embed-
ded benchmarks Kfl, Lift, and UdpIp are executed on JOP and the
execution time is measured with a CPU cycle counter. The same
benchmarks are profiled with CProf.

Table 1 shows the execution times on JOP and cross-profiling
results in clock cycles. The last column shows the percent error
of the cross-profiling estimates. For two benchmarks, the error is
well below 1%, for UdpIp the error is below 2%. The observed
inaccuracies in the cross-profiles generated by CProf are due to im-
precise CPU cycle estimates for certain (complex) bytecodes and
differences in the Java class libraries between the host and the tar-
get. Nonetheless, for all measured benchmarks that run on the JOP
hardware, the error in the CPU cycle estimates is below 2%.2

4. VISUALIZATION OF CALLING-
CONTEXT PROFILES

CProf supports user-defined profilers to process the collected
profiling data. A typical profilers dumps the calling-context cross-
profile in a text file upon JVM shutdown. As a textual represen-
tation of a calling-context cross-profile can be very large and cum-
bersome to analyze, we provide a novel visualization tool for CProf
that represents calling-context cross-profiles as ring charts, where
callee methods are represented in segments surrounding the caller’s
segment.

Figure 1(b) shows a conceptual representation of a calling-
context cross-profile for the code sample in Figure 1(a). The cross-
profile, which was generated by CProf using a cache simulator
and cycle estimator for the JOP processor [7], represents one in-
vocation of method f(). Each calling-context stores the number of
method invocations and the aggregated CPU cycle consumption for
the CCT subtree.

Figure 1(c) presents a ring chart visualization where all calling-
contexts have the same weight. For instance, the segments repre-
senting the callees of f() (i.e., g(int) and h()) have the same size
and completely surround the segment of f(). This representation
gives a condensed view of the overall CCT, but does not convey the
dynamic metrics collected for each context.

In order to ease locating performance problems, we support a
different visualization, where each segment is sized according to a
chosen dynamic metric. Figure 1(d) shows the corresponding ring
chart, where segments are sized according to CPU cycle estimates.

2In prior work [3] we reported higher errors. Thanks to improved
CPU cycle estimates for some bytecodes, we were able to reduce
the error.

Here, the segments representing the calles of method f() have dif-
ferent size and do not completely surround the segment of f(). The
execution of the callee g(int) consumes about 76% of the CPU cy-
cles consumed by the overall execution of f(), whereas the callee
h() (of method f()) contributes only little to the overall cycle con-
sumption of f(). The part of the segment representing f() that is not
surrounded by callee segments represents the CPU cycle contribu-
tion of f() excluding its callees.

Our tool not only supports different visualizations according to
different dynamic metrics, it also allows, amongst others, for nav-
igation in the CCT (i.e., selection of any calling-context to be dis-
played as root), for limitation of the CCT depth, and for marking
calling-contexts with special properties (e.g., particular package,
class, or method names).

Our visualization tool comes in two implementations. The first
version is based on JavaScript and on the standard XML-based
Scalable Vector Graphics (SVG)3. It enables the developer to an-
alyze calling-context cross-profiles in any standard web browser.
The drawback of the first implementation is its high memory con-
sumption, preventing the visualization of large profiles. The second
implementation, which offers many advanced features and will be
presented in this tool demonstration, is a Java Swing application.
It has been optimized for displaying very large profiles comprising
millions of calling-contexts.

5. CONCLUSION
In this tool demonstration, we present CProf, a configurable

cross-profiler for embedded Java processors. CProf yields calling-
context cross-profiles, providing dynamic metrics, such as CPU cy-
cle consumption, separately for each calling-context. We introduce
a new visualization of calling-context cross-profiles as ring charts,
where each calling-context corresponds to a ring segment. In order
to reveal hot methods, their callers, and callees at one glance, ring
segments can be sized according to a chosen dynamic metric.

Regarding limitations, CProf currently does not represent certain
system activities of the target in the generated cross-profiles. For
instance, the automated memory management on the target is not
being simulated in the host environment.

With respect to ongoing research, we are working on techniques
to simulate activities of the target runtime system on the host. Fur-
thermore, we are exploring the possibility of cross-profiling for
embedded Java systems that rely on just-in-time compilation (in
contrast to Java processors). In addition, we are enhancing our
visualization tools with a domain-specific language that allows a
fine-grained selection, removal, or colorization of calling-contexts
according to complex conditions, including also numerical bounds
computed from selected dynamic metrics.

Acknowledgment
The work presented in this paper has been supported by the Swiss
National Science Foundation.

6. REFERENCES
[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware

performance counters with flow and context sensitive
profiling. In PLDI ’97: Proceedings of the ACM SIGPLAN
1997 conference on Programming language design and
implementation, pages 85–96. ACM Press, 1997.

[2] W. Binder, M. Schoeberl, P. Moret, and A. Villazón.
Cross-profiling for embedded Java processors. In Fifth

3http://www.w3.org/Graphics/SVG/

International Conference on the Quantitative Evaluation of
SysTems (QEST-2008), pages 287–296, Saint-Malo, France,
Sept. 2008. IEEE Computer Society.

[3] W. Binder, A. Villazón, M. Schoeberl, and P. Moret.
Cache-aware cross-profiling for Java processors. In
International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES-2008), pages
127–136, Atlanta, Georgia, USA, Oct. 2008. ACM.

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In
OOPSLA ’06: Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programing, Systems,
Languages, and Applications, New York, NY, USA, Oct.
2006. ACM Press.

[5] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, Reading, MA, USA, second
edition, 1999.

[6] M. Schoeberl. Application experiences with a real-time Java
processor. In Proceedings of the 17th IFAC World Congress,
Seoul, Korea, July 2008.

[7] M. Schoeberl. A Java processor architecture for embedded
real-time systems. Journal of Systems Architecture,
54/1–2:265–286, 2008.

[8] The Standard Performance Evaluation Corporation. SPEC
JVM98 Benchmarks. Web pages at
http://www.spec.org/osg/jvm98/, 1998.

void f() {

for (int i = 1; i <= 10; ++i) {

h();

g(i);

}

}

void g(int i) {

for (int j = 1; j <= i; ++j)

h();

}

void h() {

return;

}

(a) Example code (b) Generated CCT (conceptual representation)

(c) Calling-contexts with equal weight (d) Calling-contexts weighted by estimated
CPU cycle consumption

Figure 1: Example calling-context cross-profile and its visualization (assuming method f() is invoked once)

