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ABSTRACT

picoJava is a Java microprocessor developed by Sun to speedup
execution of Java in embedded systems and an often-cited refer-
ence design for other Java processors. Information about imple-
mentations of picoJava is rare however. In contrast to a number of
new Java processors which are targeted at FPGAs, picoJava was de-
signed for ASICs, and no implementation in an FPGA is known up
to date. In this paper we show the implementation and evaluation
of Sun’s picoJava-II microprocessor in an FPGA.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Run-time envi-
ronments, Java

Keywords
Java processor, FPGA

1. INTRODUCTION

Java is a promising language for embedded systems, due to its
object-oriented paradigm, its portability, robustness and security.
The latter three are achieved by compiling the source code into a
platform independent representation. Usually, this representation is
interpreted or executed via just-in-time compilation; both ways are
not feasible in embedded systems for reasons of performance and
worst-case execution time (WCET) predictability, however. To in-
crease performance and in some cases help WCET analysis, several
Java processors have been developed, most prominently picoJava,
which was developed by Sun Microsystems and first released in
1997.

Although picoJava is often referenced in research papers about
other Java processors, information about implementations is rare.
The processor was never released commercially, and only one re-
search paper related to the implementation of picoJava in an ASIC
could be found ([10]). This paper describes the implementation of
the picoJava processor in a FPGA and compares it to other proces-
sors.
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The paper is structured as follows: The rest of this Section gives
an introduction into the Java Virtual Machine (JVM). Related work
on Java processors is described in Section 2. In Section 3 an over-
view of the picoJava architecture is provided. Section 4 describes
the steps which had to be taken to convert the provided sources
into a running system, which is evaluated in Section 5. Finally, a
conclusion is drawn in Section 6.

1.1 The Java Virtual Machine

The Java virtual machine [16] is an abstract computing machine
designed to support the Java programming language [6]. In order to
enhance portability and to achieve a high code density, it is a stack
machine with variable-length instructions (called bytecodes) [17].
Furthermore, its instruction set is left intentionally incomplete, be-
cause one design goal was to provide a high level of security. This
includes that memory is treated as black box so a malicious pro-
gram cannot exploit a certain memory layout. As a consequence,
the JVM must rely on an underlying operating system, or at least
rudiments thereof.

The 201 bytecodes defined by the JVM specification span a
wide range of complexity: from very simple operations (like iadd)
through floating point operations (like dmul) to highly sophisticated
operations like anewarray which resolves a symbolic reference to
a class and allocates an array of that type on the heap.

A fully compliant implementation of the JVM must be able to
parse the class file format, dynamically load new classes and to
verify loaded classes. As the Java programming language relies
on garbage collection for memory management, this also has to
be implemented. These constraints entail that a fully compliant
implementation of the JVM cannot consist of pure hardware, but
also has to include some software as well.

2. JAVA PROCESSORS

Since the appearance of Java in 1995 many projects, both in in-
dustry and academia, have been devoted to speedup Java bytecode
execution through hardware implementation. Despite promising
first results Java processors are still a niche product. Many indus-
trial projects disappeared after a few Years. The fact can be ex-
plained by the advances in just-in-time (JIT) compilers. JIT com-
pilation is the standard execution mode of the JVM in desktop and
server environments. In the embedded domain, where memory re-
sources are scarce, a Java processor is still an option. Especially in
real-time systems JIT compilation is not feasible. The compilation
during runtime is hard to predict and introduces a high variability
in the execution time. In the following section we give an overview
of Java processors.



2.1 ASIC Designs

Sun introduced the first version of picoJava [19] in 1997. Sun’s
picoJava is the Java processor most often cited in research papers.
It is used as a reference for new Java processors and as the basis for
research into improving various aspects of a Java processor. Iron-
ically, this processor was never released as a product by Sun. A
redesign followed in 1999, known as picoJava-II that is now freely
available with a rich set of documentation [23, 24]. The architec-
ture of picoJava is a stack-based CISC processor implementing 341
different instructions [19] and is the most complex Java processor
available. According to [10] the processor can be implemented in
about 440 K gates.

Simple Java bytecodes are directly implemented in hardware
and some performance critical instructions are implemented in mi-
crocode. picoJava traps on the remaining complex instructions and
emulates this instruction. A trap is rather expensive and has a mini-
mum overhead of 16 clock cycles. The worst-case interrupt latency
is 926 clock cycles [24]. This great variation in execution times for
a trap hampers tight WCET estimates.

aJile’s JEMCore is a direct-execution Java processor that is avail-
able as both an IP core and a stand alone processor [1, 12]. It
is based on the 32-bit JEM2 Java chip developed by Rockwell-
Collins. Two silicon versions of JEM exist today: the aJ-80 and
the aJ-100. Both versions comprise a JEM2 core, 48 KB zero wait
state RAM, and peripheral components. 16 KB of the RAM is used
for the writable control store. The remaining 32 KB is used for
storage of the processor stack. The alile processor is intended for
real-time systems with an on-chip real-time thread manager.

The Cjip processor [11, 14] supports multiple instruction sets, al-
lowing Java, C, C++ and assembler to coexist. Internally, the Cjip
uses 72 bit wide microcode instructions, to support the different in-
struction sets. At its core, Cjip is a 16-bit CISC architecture with
on-chip 36 KB ROM and 18 KB RAM for fixed and loadable mi-
crocode. Another 1 KB RAM is used for eight independent register
banks, string buffer and two stack caches. Cjip is implemented in
0.35-micron technology and can be clocked up to 80 MHz. The
JVM is implemented largely in microcode (about 88% of the Java
bytecodes). Java thread scheduling and garbage collection are im-
plemented as processes in microcode. Microcode instructions exe-
cute in two or three cycles. A JVM bytecode requires several mi-
crocode instructions. The Cjip Java instruction set and the exten-
sions are described in detail in [13]. For example: a bytecode nop
executes in 6 cycles while an iadd takes 12 cycles. Conditional
bytecode branches are executed in 33 to 36 cycles. Object oriented
instructions such getfield, putfield or invokevirtual are not
part of the instruction set.

Besides the real Java processors a FORTH chip (PSC1000 [20])
is marketed as a Java processor. Java coprocessors (e.g. JSTAR
[18]) provide Java execution speedup for general-purpose proces-
sors. Jazelle [5] is an extension of the ARM 32-bit RISC processor.
It introduces a third instruction set (bytecode), besides the Thumb
instruction set (a 16-bit mode for reduced memory consumption),
to the processor. The Jazelle coprocessor is integrated into the same
chip as the ARM processor.

2.2 FPGA Designs

Hardware resources in FPGA are usually measured in number of
logic cells (LCs) and on-chip memory. Converting the number of
LCs to equivalent gate counts is problematic, but a factor of 5.5 to
7.4 is suggested in [21] for rough estimates.

Vulcan ASIC’s Moon processor is an implementation of the JVM
torun in an FPGA. The execution model is the often-used mix of di-
rect, microcode and trapped execution. As described in [26], a sim-

ple stack folding is implemented in order to reduce five memory cy-
cles to three for instruction sequences like push-push-add. The first
version of Moon uses 3840 LCs and 10 embedded memory blocks
in an Altera FPGA. The Moon2 processor [27] is available as an en-
crypted HDL source for Altera FPGAs (22% of an APEX 20K400E
equates to 3660 LCs) or as VHDL or Verilog source code. The min-
imum silicon cost is given as 27 K gates plus 3 KB ROM and 1 KB
single port RAM. The single port RAM is used to implement 256
entries of the stack.

The Moon project is a typical example for the lifetime of a Java
processor company. When Vulcan ASIC started to develop Moon,
a lot of information was available. This information was usually
more of a presentation of the concept. Nevertheless it gave some
insights into how they approached the different design problems.
However, at the point at which the projects reached production
quality, this information quietly disappeared from their web site. It
was replaced with colorful marketing prospectuses about the won-
derful world of the new Java-enabled mobile phones. Later the
company and the web site faded into history.

The Lightfoot 32-bit core [9] is a hybrid 8/32-bit processor based
on the Harvard architecture. Program memory is 8 bits wide and
data memory is 32 bits wide. The core contains a 3-stage pipeline
with an integer ALU, a barrel shifter and a 2-bit multiply step unit.
According to DCT, the performance is typically 8 times better than
RISC interpreters running at the same clock speed. The core is
provided as an EDIF netlist for dedicated Xilinx devices. Lightfood
consumes 3400 LCs and can be clocked at 40 MHz in a Xilinx
Virtex-1I FPGA.

LavaCORE [8] is another Java processor targeted at Xilinx
FPGA architectures. It implements a set of instructions in hard-
ware and firmware. Floating-point operations are not implemented.
A 32x32-bit dual-ported RAM implements a register-file. For spe-
cialized embedded applications, a tool is provided to analyze which
subset of the JVM instructions is used. The unused instructions can
be omitted from the design. The core can be implemented in 1926
CLBs (= 3800 LCs) in a Virtex-II FPGA and runs at 20 MHz.

Komodo [15] is a multithreaded Java processor with a four-stage
pipeline. It is intended as a basis for research on real-time schedul-
ing on a multithreaded microcontroller. The unique feature of Ko-
modo is the instruction fetch unit with four independent program
counters and status flags for four threads. A priority manager is
responsible for hardware real-time scheduling and can select a new
thread after each bytecode instruction. Komodo’s multi-threading
is similar to hyper-threading in modern processors that are trying
to hide latencies in instruction fetching. The fact that the pipeline
clock is only a quarter of the system clock wastes a considerable
amount of potential performance.

FemtoJava [7] is a research project to build an application spe-
cific Java processor. The bytecode usage of the embedded applica-
tion is analyzed and a customized version of FemtoJava is gener-
ated (similar to LavaCORE) in order to minimize the resource us-
age. The resource usage is very high (about 2000 LCs), compared
to the minimal Java subset implemented and the low performance
of the processor.

JOP [21, 22] is a Java processor designed especially for embed-
ded real-time systems. The main design goal was a time predictable
processor. All hard to analyze processor features, such as prefetch-
ing or automatic stack dribbling as found in picoJava, have been
avoided. To still provide acceptable performance a special stack
cache and a WCET analyzable method cache have been developed.
JOP consumes about 2000 LCs (depending on the configuration)
and can be clocked at 100 MHz in an Altera Cyclone FPGA.

The jHISC project [25] proposes a high-level instruction set ar-



chitecture for Java. This project is closely related to picoJava. The
processor consumes 15500 LCs in an FPGA and the maximum fre-
quency in a Xilinx Virtex FPGA is 30 MHz. According to [25] the
prototype can only run simple programs and the performance is es-
timated with a simulation. In [28] the clocks per instruction (CPI)
values for jHISC are compared against picoJava and JOP. However,
it is not explained with which application the CPI values are col-
lected. We assume that the CPI values for picoJava and JOP are
derived from the manual and do not include any effects of pipeline
stalls or cache misses.

3. PICOJAVA ARCHITECTURE

Sun introduced the first version of picoJava [19] in 1997, tar-
geted at the embedded systems market as a pure Java processor
with restricted support of C. A redesign followed in 1999, known
as picoJava-II; this is the version described below. After Sun de-
cided to not produce picoJava in silicon, Sun licensed picoJava to
Fujitsu, IBM, LG Semicon and NEC. However, these companies
also did not produce a chip and Sun finally provided the full Ver-
ilog code under an open-source license.

Java bytecodes with low complexity are directly implemented in
hardware, most of them execute in one to three cycles. Performance
critical instructions with higher complexity, for instance invoking
a method, are implemented in microcode. picoJava traps on the
remaining complex instructions, and emulates this instruction. To
access memory, internal registers and for cache management pico-
Java implements 115 extended instructions with 2-byte opcodes.
These instructions are necessary to write system-level code to sup-
port the JVM.

Traps are generated on interrupts, exceptions and for instruction
emulation. A trap is rather expensive and has a minimum overhead
of 16 clock cycles:

clocks trap execution
clocks trap code

clocks set VARS register
clocks return from trap

NS o

This minimum value can only be achieved if the trap table entry
is in the data cache and the first instruction of the trap routine is in
the instruction cache. The worst-case interrupt latency is 926 clock
cycles [24].

Figure 1 shows the major function units of picoJava. The inte-
ger unit decodes and executes picoJava instructions. The instruc-
tion cache is direct-mapped, while the data cache is two-way set-
associative, both with a line size of 16 bytes. The caches can be
configured between 0 and 16 KB. An instruction buffer decou-
ples the instruction cache from the decode unit. The FPU is or-
ganized as a microcode engine with a 32-bit data path supporting
single- and double-precision operations. Most single-precision op-
erations require four cycles. Double-precision operations require
four times the number of cycles as single-precision operations. For
low-cost designs, the FPU can be removed and the core traps on
floating-point instructions to a software routine to emulate these
instructions. picoJava provides a 64-entry stack cache as a register
file. The core manages this register file as a circular buffer, with a
pointer to the top of stack. The stack management unit automati-
cally performs spill to and fill from the data cache to avoid overflow
and underflow of the stack buffer. To provide this functionality the
register file contains five memory ports. Computation needs two
read ports and one write port, the concurrent spill and fill opera-
tions the two additional read and write ports. The processor core
consists of following six pipeline stages:

Fetch: Fetch 8§ bytes from the instruction cache or 4 bytes from the
bus interface to the 16-byte-deep prefetch buffer.

Decode: Group and precode instructions (up to 7 bytes) from the
prefetch buffer. Instruction folding is performed on up to
four bytecodes.

Register: Read up to two operands from the register file (stack
cache).

Execute: Execute simple instructions in one cycle or microcode
for multi-cycle instructions.

Cache: Access the data cache.
Writeback: Write the result back into the register file.

The integer unit together with the stack unit provides a mechanism,
called instruction folding, to speed up common code patterns found
in stack architectures, as shown in Figure 2. The first step in in-

A Java instruction
c=a+tb;
translates to the following bytecodes:

iload_1
iload_2
iadd
istore_3

Figure 2: A common folding pattern that is executed in a single
cycle

struction folding is the classification of operations in the instruction
buffer into six groups. One group corresponds to a local variable
load or a constant push (LV), three groups to different types of op-
erations (OP, BG1 and BG2), one group to a local variable store
(MEM) and one group to an instruction that cannot be folded (NF).

In patterns like LV LV OP MEM (the instructions in Figure 2
form such a pattern), LV and MEM resemble access to registers
in a RISC architecture — the idea behind instruction folding is to
detect such patterns and access the stack cache like a register file
when possible. This eliminates the need for stack manipulation
and allows up to four instructions to by executed in one RISC-style
single cycle operation. Figure 3 shows how the instructions from
Figure 2 are executed depending on whether folding is enabled or
not.

picoJava contains a simple mechanism to speed-up the common
case for monitor enter and exit. The lowest order bit of an object
header is used to indicate the lock holding or a request to a lock
held by another thread. This bit is examined by monitorenter
and monitorexit. Hardware registers cache up to two locks held
by a single thread.

To efficiently implement a generational or an incremental
garbage collector picoJava offers hardware support for write bar-
riers through memory segments. The hardware checks all stores of
an object reference if this reference points to a different segment
(compared to the store address). In this case, a trap is generated
and the garbage collector can take the appropriate action. Addi-
tional two reserved bits in the object reference can be used for a
write barrier trap.

The layout of class and method structures imposed by the hard-
ware leaves much space for software dependent uses. In the two



Memory and I/O interface

Bus Interface Unit

Instruction > Instruction
cache RAM/tag Cache Unit
Microcode >
ROM T
Stack cache >
Integer
Unit

Data Cache
Unit
P Data cache
h RAM/tag
[« Floating-
h point ROM

Floating Point
Unit and Control

|:| Megacells || and Scan Unit

Powerdown, Clock Stack
Manager Unit

Processor Interface

Figure 1: Block diagram of picoJava-II (from [23])

Execution without folding

Execution with folding

TOS TOS
TOS TOS-1 TOS-2 TOS-1 TOS TOS TOS
iload_1 iload_2 iadd istore_3

~—_ 7T

iload_1+iload2+iadd+istore_3

Figure 3: Execution of a common folding pattern

types of structures used for representing classes, 13 out of 18 words
are unused by the hardware; a method uses a structure consisting of
9 words, of which 4 are unused. Although this is an advantage in
terms of flexibility, it can add a significant overhead to the memory
consumption of programs. Compared to layouts used by other pro-
cessors, picoJava does not only consume a lot of memory, it also
uses more indirections. This is compensated by the use of “quick”
instructions however, which cut short many indirections.

The architecture of picoJava is a stack-based CISC processor im-
plementing 341 different instructions [17] and is the most complex
Java processor available. The processor can be implemented [10]
in about 440 K gates (128 K for the logic and 314 K for the memory
components: 284 x80 bits microcode ROM, 2x192x 64 bits FPU
ROM and 2x 16 KB caches).

4. FPGA IMPLEMENTATION

The distribution of picoJava comprises the source code for the
actual hardware, an instruction accurate simulator and extensive
documentation. For the hardware to work properly, memory and
I/0 modules have to be implemented. The simulator is written in C
and comes along with support software, such as a loader, code that
implements the software traps and an assembler. The latter (written
in Java) was ready to use, while the loader and the traps had to be

modified in the course of the implementation (see Sections 4.4 and
4.5, respectively).

Other parts, such as a garbage collector and the standard class
library, are not part of the distribution and have to be written in
order to accomplish a compliant implementation of the JVM. The
current implementation does not include a garbage collector and
the class library was only implemented as far as it was necessary
for conveying benchmarks.

Apart from the sources provided by Sun, JOP was a vital re-
source for the implementation. The floating point unit was not
included, because it is not featured in all processors intended for
comparison by default and similar resource consumption and per-
formance gains from such a unit are expected for all processors.

4.1 Target Platform

The target board for the implementation was the DE2 board from
Altera [3]. This features a Cyclone II (speed grade 6) FPGA with
33,216 LCs and 483,840 bits on-chip memory. Of the available
resources on the board, the SRAM (512 KB, 10 ns access time),
the UART and the LEDs were used.

Quartus II (Web Edition, version 7.1) [2], Altera’s tool for hard-
ware design was used for synthesizing and downloading the hard-
ware. Mentorgraphic’s ModelSim is available for download along
with Quartus II and was used for simulation.



4.2 Hardware

As the first step towards the implementation of the picoJava pro-
cessor, a project in Quartus II was started and all relevant files were
added. The dependencies between these files could be easily con-
cluded from the scripts for synthesizing the processor with Synop-
sys, which are part of the distribution. The caches and the FPU
were defined to be non-existent in the according configuration file,
according to the instructions provided in this file. Only one minor
change was necessary (certain bits were assigned a value twice) to
make the core compile.

4.2.1 Stack Cache

As the stack cache is an essential part of the processor, this unit
was to be designed before all other hardware. The stack cache
has two write ports and three read ports to support both instruc-
tion folding and dribbling at the same time. While no memory with
this setup is readily available, the situation is worsened by the fact
that the stack cache is specified to be implemented as asynchronous
memory, which is not available in modern FPGAs. This means
that writes — reads are not critical in this context — have to be trig-
gered by the write enable signal themselves. A race condition is the
inevitable consequence of this behavior, because the write enable
signals both have to be available as edge (to avoid latches) and as
level (to fulfill their purpose as enable signals) to the same flip-flop.
Quartus-1I did not recognize the appropriate timing relations in the
first attempts to design the stack cache, and therefore did not even
mention possible timing violations. Several possible implementa-
tions were tried (a separate clock for every memory word vs. one
common clock, e.g.), until finally a design was found which fulfills
all specified properties and is handled correctly by the design tool.

A drawback of the current implementation of the stack cache
is that it is implemented with flip-flops instead of on-chip memory.
This uses 6 K LCs and thus enlarges the design significantly. It also
might slow down the whole processor due to the more complex
placement and routing. Implementing the stack cache with time-
multiplexed access to on-chip memory by using a multiple of the
system clock has been suggested but not evaluated yet.

4.2.2 Memory and I/0

A processor cannot be reasonably evaluated without an interface
to its environment, so the next step was to implement an interface
for memory and I/O. The SimpCon interface which is used with
JOP had the advantage that several modules were already available
for use with the DE2 board from Altera and thus was chosen. The
SimpCon interface itself was extended with a signal sel_bytes for
byte- and halfword-wise access — this signal had already been con-
sidered, but did not make it to the specification of the interface,
because JOP only features word-wise access. A signal error was
also added to the specification to signal invalid use of a module to
the processor.

The translation of the signals generated by the picoJava proces-
sor to the SimpCon interface was relatively simple. 16 byte burst
accesses which occur on transactions that involve the caches are
serialized; other accesses only have to map the two least significant
bits of an address to an according mask for sel_bytes and set rd or
wr to high. The mapping of modules to addresses is slightly more
complex, because rd_data, rdy_cnt and error from the module least
recently accessed have to be routed back to the processor. To ease
the task of mapping addresses to the according modules, a simple
xml schema was defined from which Verilog code for such an ad-
dress mapping is generated automatically. While there was some
overhead to create a tool to do so, this already proved to be useful
when changing the configuration of modules, and it also might be

useful for other processors using the SimpCon interface.
As a basic set of modules the following configuration was cho-
sen:

8 KB on-chip memory as boot ROM for initializing the pro-
cessor and loading a program to the main memory.

e An interface to the SRAM on the DE2 board, which was de-
rived from the according module for JOP. The module was
enhanced to handle 8 and 16 bit accesses.

e A UART for downloading programs and diagnosis. This
module was already available from JOP.

e An interface to access the on-board LEDs for diagnosis.
o A Timer module for measuring execution times.

4.2.3 Instruction and Data Caches

To enhance the performance of the processor, an instruction and
a data cache had to be implemented. While the implementation of
the instruction cache along the specification in [24] worked from
the beginning, the data cache was a little more complex due to the
interleaved usage of the memory banks by the two cache sets. It
also triggered a bug in the translation of memory transactions to
the SimpCon interface, because the cache fill ordering had been
disregarded in the initial version.

4.3 Booting

Figure 4 shows how booting and invoking the main method is
done. The processor starts execution at address 0, where the boot
ROM is located. The trap base register is set to the suiting value
at the very start, and then the boot method is invoked. When this
method returns, the code jumps to the main memory, where the trap
base might be set up again and the main method is called. Execu-
tion ends in an endless loop to prevent random code from being
executed. The grey-shaded areas in Figure 4 are generated by the
loader, which is described in Section 4.4

The presented procedure might look overly complex, but it is
well motivated. Invoking a method instead of jumping to some
piece of code has the advantage that internal registers are set to
reasonable values in a fast and convenient way. It would also not
have been feasible to invoke the main method from the boot ROM:
this would have meant to require either the method structure to be
located at some fixed location (which limits flexibility) or that this
information is passed separately. The latter would probably have
caused more trouble than the additional jump which is executed
now. The current practice is also convenient because the boot ROM
and programs have an almost identical format.

The boot method itself enables the stack cache and initializes and
enables the instruction and data caches. The code for doing this is
available in [24]. It then enables instruction folding and reads a
program from the UART and writes it to the main memory.

4.4 Loader

To both make the implementation simpler and speed up execu-
tion, it was decided to load all classes statically. A loader to do this
is provided, but it is written in C and relies on being executed on
a big-endian 32 bit processor and has only been tested on SPARC.
On the other side JOP has a similar loader written in Java, which
has also a less restrictive license. Having this in mind, it seemed
more profitable in terms of portability and reusability to port the
latter.

The loader first looks for all classes which can be reached from
the main class and parses them. After that, instructions which have



main()
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Figure 4: Schematic of bootstrap and execution

a “quick” counterpart are substituted and the symbolic references
in the constant pool are resolved. Finally, the code to achieve the
behavior described in Section 4.3 is emitted and the class informa-
tion is dumped in a format that suits the representation picoJava
stipulates.

In the course of the implementation of the loader, the BCEL [4]
package which is used for parsing the class files had to be mod-
ified. picoJava does support extended bytecodes and these codes
might appear in assembly code or code generated by the loader.
BCEL must know about these instructions in order to handle them
correctly.

4.5 Traps

Traps are an integral part of picoJava, because they implement
parts of its instruction set. Object-oriented bytecodes, which have
to resolve symbolic references from the constant pool cannot be
implemented reasonably in hardware or microcode. While much
overhead can be eliminated by replacing opcodes with their “quick”
counterparts, some instructions are implemented as traps even in
their “quick” version (new_quick is an example of such an instruc-
tion).

Implementations for the traps are provided by Sun, but these
have to be modified. On the one hand there are some parts that
are specific to the simulation environment, on the other hand the
characteristics of the target system have to be taken into account
(e.g. size of the available memory). Still, even with the rewritten
loader, the original code was a good source for how the respective
traps work.

The trap table is organized as 256 8-byte entries; the 4 bytes at
the lower address provide the address of the trap code, the follow-
ing 4 bytes can be used freely in principle, but are most useful for
storing the address of the constant pool for the trap method. The
table has to be aligned to a 2 KB boundary which can make a larger
memory necessary than its actual size of 2 KB itself. Instructions
that can cause a trap have their bytecode as index to the respective
trap table entry. Entries of other instructions take care of illegal
instructions, unaligned memory access and similar conditions.

The loader described in Section 4.4 provides means for register-
ing methods as traps and takes care that the trap table is aligned
correctly.

The only trap with a working implementation is at the moment
newarray, which implies that only static programs (i.e. programs
that do not create any objects) are supported. Future work will
include writing the missing traps in order to provide full support
for the Java programming language.

4.6 Timing Issues

The integer multiplication / division / remainder unit contains a
combinatorial loop that has to be cut in order to get proper results
from the timing analysis (there is no de facto data flow through
the loop). The design constraints provided by Sun cut this loop
and can be translated easily to constraints understood by the Time
Quest timing analyzer that comes along with Quartus II.

Apart from the mentioned issues with the stack cache and the

timing loop described above, no problems concerning the timing of
the core were encountered. Problems with the adaptation of timing
constraints mentioned in [10] did not arise.

5. EVALUATION

5.1 Logic Resource Usage

The implementation of picoJava in the final configuration (16 KB
both data and instruction cache, no FPU) uses 27.5 K LCs. Of the
units which had to be written, the stack cache is the biggest con-
sumer, using more than 6 K LCs. The memory and I/O modules use
1 K LCs, including the bridge between picoJava and the SimpCon
interface. The parts of the instruction and data caches to be written
use less than 300 LCs together. For detailed numbers see Table 1.
These numbers suggest that efforts for optimization would be spent
best in finding a better solution for the stack cache than the current
one.

Unit Logic Cells
Data Cache Unit 1241
Data Cache RAM 192
Data Cache Tags 80
Instruction Cache Unit 3983
Instruction Cache RAM 0
Instruction Cache Tags 16
Execution Unit 6900
Hold Logic 8
Folding Unit 1036
Microcode Unit 2733
Pipeline Control 535
Register Control Unit (without Stack Cache) 3340
Stack Cache 6242
Trap Unit 117
Stack Management Unit 591
Powerdown, Clock and Scan Unit 0
Bus Interface Unit 28
Memory Map 216
Boot ROM 0
LEDs 45
SRAM Interface 164
Timer 138
UART 128
Interface picoJava/SimpCon 353
Total 27543

Table 1: LC usage of individual components

picoJava consumes between seven and thirteen times the number
of LCs the designs presented Section 2.2 use. The only exception
is jHISC, but even compared to this processor, picoJava uses 76%
more LCs.

When comparing the number of LCs to the gate count reported
in [10], 128 K gates for the logic, this yields a factor of 4.7. This



factor seems to be rather low but still plausible, taken into account
that some logic functions are realized through memory blocks and
thus do not add to the number of LCs.

5.2 Memory Consumption

47.6 KB of on-chip memory are used: 37 KB for the caches
(actual cache and tag memory), 8 KB for the boot ROM and the
remaining 2.6 KB for the implementation of special logic functions.
Detailed numbers are provided in Table 2. There does not seem to
be much potential for optimizations in this area, except for resizing
the boot ROM (which at least has to be 4 KB in size to hold the trap
table) or the caches, possibly affecting performance.

Unit Memory Blocks Bits
Data Cache 32 2x65536
Data Cache Tags 6  2x9728
Data Cache Status 5 2560
Instruction Cache 32 2x65536
Instruction Cache Tags 5 19456
Boot Memory 16 65536
Folding Unit 8 18432
Microcode Unit 3 624
Others 2 2048
Total 109 390256

Table 2: Memory usage of individual components

5.3 Speed

Although for comparisons, a frequency of 100 MHz is some-
times assumed for picoJava [19], this could not be met. Even high-
est optimization efforts could not push beyond around 43 MHz.
For easy deduction from the provided clock frequency on the DE2
board with a PLL, 40 MHz were chosen as frequency for oper-
ation. The limiting factor in this case is the integer multiplica-
tion/division/remainder unit; the worst case timing path is located
within this unit and is dominated by the interconnect delay (69% of
the total delay). A different organization of the stack cache could
as a side effect help in terms of speed by allowing for more efficient
placement and routing — the effect of this is hardly predictable, but
only minor enhancements are expected.

5.4 Performance

Two benchmarks from the benchmark suite used in [21] could
be run on the picoJava processor at the current state of implemen-
tation: Sieve, a synthetic benchmark, and Kfl, an adaption of a
real-time application. The benchmarks return how often per sec-
ond the program can be executed; consequently, a higher number
corresponds to better performance.

Figure 5 shows benchmark results (geometric mean of Sieve and
KA1, scaled such that the fastest configuration corresponds to 100)
for different configurations of picoJava. In absolute numbers, the
fastest configuration of picoJava returned 7797 iterations per sec-
ond for Sieve and 23290 for Kfl. Both caches were configured
to be 16 KB in size when present. The figure clearly shows that
instruction folding is futile without the instruction cache. If the
instruction cache is present, folding improves performance by 15
to 29%. Furthermore, the instruction cache has a bigger effect on
the overall performance than the data cache — while the instruction
cache speeds up execution by almost 90%, the data cache yields a
speedup of 32% only compared to the version without caches.

Figure 6 compares benchmark results for different Java proces-
sors, scaled such that picoJava’s performance corresponds to 100.
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Figure 5: Bechmarks for different configurations of picoJava

JOP#* refers to the most recent version of JOP, while JOP refers
to the version used in [21]. Apart from minor changes that do not
concern performance, JOP* has more instructions implemented di-
rectly in hardware instead of microcode. The original results for
Komodo, JStamp and SalJe are also found in [21].

The platform on which JOP was bench-marked is slightly dif-
ferent from the DE2 board; most importantly, a 32 bit SRAM with
15 ns access time was used instead of a 16 bit SRAM with 10 ns
access time. Fortunately, these discrepancies equal out and both
processors need two cycles for 32 bit memory transactions. The
FPGAs show only minor differences, with the one picoJava runs on
being faster by approximately 10%. This makes the results usable
for comparisons of the processors themselves rather than compar-
isons of the overall systems, as it is the case with the other plat-
forms.

The performance of JOP was measured at 100 MHz for both
versions. Sale features an aJ-100 processor running at 100 MHz,
JStamp is a development platform containing an aJ-80 processor
clocked at 74 MHz. The results for the Komodo processor were
derived from cycle-accurate simulations using 33 MHz as clock
frequency. picoJava runs, as already mentioned, at 40 MHz.

As shown by Figure 6, picoJava outperforms the processors it is
compared against: it is more than ten times faster than Komodo and
JStamp and about than 1.7 times faster than SaJe and the original
version of JOP. Even the closest follower, JOP*, is almost 20%
slower.

6. CONCLUSION AND OUTLOOK

In this paper we presented the implementation of the first in-
dustrial Java processor, Sun’s picoJava, in an FPGA. To best of
our knowledge this is the first successful attempt to implement the
originally ASIC targeted design in an FPGA.

During the port to an FPGA we have encountered several solv-
able issues in the course of implementing the internal memories for
the various caches. Results show that picoJava outperforms other
Java processors, but that it is considerably larger too.

Future work will include completing the implementation of all
trap functions and a bigger subset of the Java class library. With
these prerequisites, more complex benchmarks will be possible and
a thus better understanding of the architecture.

We provide a package named Harvey to adapt the original
sources to the Altera DE2 board (see Appendix for download loca-
tion and build instructions). We hope that the availability of a pico-
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Java implementation in an FPGA on a low-cost prototyping board
is a basis where other researches can evaluate their ideas within
an industrial strength Java processor. With a real implementation
enhancements can be easily verified using a quantitative approach.
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APPENDIX
A. BUILD INSTRUCTIONS

The original sources for picoJava are available at www. sun.com/
software/communitysource/processors/picojava.xml; the
package to adapt it to the DE2 board is available at www.soc.
tuwien.a.at/files/harvey/.

Please note that the instructions given here might change in
the future; latest build instructions will be provided in the file
README-HARVEY.

Unpack the sources for picoJava, pj2_rt1_2.0.tar.gz and
pj2-sw-2.0.tar.gz, to some directory of your choice. Unpack
the archive for Harvey (named harvey-de2-date.tar.gz) to the
same directory. Change to the directory picoJava-II and call
patch.sh to apply the patches. The source code is now prepared
for all other operations.

The easiest way to build picoJava is to simply type make in the di-
rectory picoJdava-II. This creates the memory map (make mmap),
creates the boot ROM (make bootrom), synthesizes the hard-
ware (make hardware) and builds the software (make software).
Please note that synthesizing the hardware might require some
time; in the archive for Harvey there is a precompiled file that can
be downloaded to the board (quartus/picojava.sof) which you
may want to use.


www.sun.com/software/communitysource/processors/picojava.xml
www.sun.com/software/communitysource/processors/picojava.xml
www.soc.tuwien.a.at/files/harvey/
www.soc.tuwien.a.at/files/harvey/

For downloading the processor to the board, connect the appro-
priate USB port to your computer and call make download.

If only the boot ROM has changed, call make bootrom update
to rebuild it and update the hardware (note that the target update
does not download the hardware to the board).

To download software to the board, connect it to a serial port of
your computer and configure this port with 57600 baud, 8 bit, 1
stop bit, no parity, no flow control. Pick a .bin file from the di-
rectory sw and send it to the serial port. You should see the LEDs
of the DE2 board flash while downloading, and - if you use the
files Sieve.bin or Kf1.bin without changing their sources - you
should receive data via the serial port. The last 8 characters of
output from these two programs represent the cycles used for con-
veying the respective benchmark.

It it also possible to use the graphical interface of Quartus II
to build and download the hardware. The according project file
is quartus/picojava.gpf. Simulations with ModelSim can be
started from here by using the menu entry Tools—EDA Simulation
Tool—Run EDA Gate Level Simulation.
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