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Abstract—Real-time systems need time-predictable architec-
tures to support static worst-case execution time (WCET) analy-
sis. One architectural feature, the data cache, is hard to analyze
when different data areas (e.g., heap allocated and stack allocated
data) share the same cache. This sharing leads to less precise
results of the cache analysis part of the WCET analysis.

Splitting the data cache for different data areas enables
composable data cache analysis. The WCET analysis tool can
analyze the accesses to these different data areas independently.

In this paper we present the design and implementation
of a cache for stack allocated data. Our port of the LLVM
C++ compiler supports the management of the stack cache.
The combination of stack cache instructions and the hardware
implementation of the stack cache is a further step towards time-
predictable architectures.

I. INTRODUCTION

To allow for static analysis of the worst-case execution
time (WCET), we need time-predictable architectures. The
EC funded project T-CREST1 develops time-predictable multi-
core systems for future embedded real-time systems [22]. T-
CREST considers time predictability in (a) the processor, (b)
the on-chip interconnect, (c) the memory hierarchy, and (d)
the compiler. AbsInt’s WCET analysis tool aiT will support
the architecture features that are developed within T-CREST.

The basis of a time-predictable system is the processor. We
use the processor Patmos [24] for the T-CREST platform.
Patmos is a dual-issue RISC-style pipeline with full predi-
cation support. Patmos is intended as a research platform for
time-predictable architecture features. In this paper we extend
Patmos with time-predictable caching of stack allocated data.

Caches are essential parts of any embedded system nowa-
days, in order to shorten the average memory access time.
However, in real-time systems, the WCET is more important
than the average-case execution time. Cache analysis tries
to predict hits and misses statically for the calculation of
the WCET [4]. Without timing anomalies, unknown cache
accesses can be classified as misses. A safe, but not practical,
approach would be to classify all accesses as potential misses.
In that case an architecture without a cache at all would
perform better in the worst-case.

Storage for data structures can be categorized in three
major types: global static data, stack allocated data, and heap
allocated data. Global static data is easy to analyze since
the addresses are determined during program linking. Heap

1Time-predictable Multi-Core Architecture for Embedded Systems (T-
CREST), see http://www.t-crest.org/

allocated data are the most difficult types to analyze since
the addresses of objects are unknown before running the
program [21].

The stack area contains, besides the return address informa-
tion and callee saved registers, also function local variables and
data structures. As the access frequency on this data area is
very high, the stack benefits from caching. A WCET analysis
tool can statically determine the addresses of stack allocated
data when the call tree can be determined and when there is
no dynamically sized allocation on the stack.

This paper describes the design and implementation of a
cache for stack allocated data. We call this cache the stack
cache. The stack cache is optimized to simpliy the cache
analysis of static WCET analysis. The stack cache is managed
in program scopes. These program scopes can be, in the
simplest form, functions. We will use functions to explain the
stack cache in the rest of the paper.

On a function call a stack frame is reserved in the stack
cache. On the function return this same stack frame is freed.
On returning to the caller, the stack frame of the caller is
ensured to be in the stack cache. These three operations are
instruction in the Patmos instruction set and are emitted by the
compiler. Exchange with the main memory can only happen
during a reserve operation or during the ensure operation.
Therefore, all load and store instruction that access the stack
cache are guaranteed hits. This simplifies the cache analysis,
as fewer instructions need to be tracked within the data-flow
analysis.

Furthermore, a cache that serves only stack allocated data
can be optimized for this type of data. E.g., a new stack frame
for a function call does not need to be cache consistent with
the main memory as the local variables in a C function or
Java method are undefined after the call or invoke and need
to be initialized. The cache area for the new stack frame can
be allocated without a cache fill from the main memory. On
a return, the previously used cache blocks are marked invalid
by the free instruction, as function local data is not accessible
after the return. As a result, there is no need to write back
cache lines after returning from a function.

When the cache overflows, the oldest frames of the stack
cache are spilled to the main memory. Therefore, when a
function returns and the program goes up in the call tree, there
may be cache misses (triggered by the ensure instruction) and
the spilled frames are loaded back into the stack cache.

The above, brief explanation of the stack cache assumed op-
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erations on stack frames on function entry and exit. However,
as it will be explained later, the processor has dedicated stack
manipulations instructions to reserve stack space and to ensure
that a region of the stack is in the cache. Therefore, this mech-
anism is not limited to function call and return instructions.
An optimizing compiler can place space reservation, freeing,
and ensuring at any feasible points in the program scope.

The paper is organized as follows. Section II presents related
work. Section III describes the mechanics of the stack cache
and Section IV the implementation of the stack cache in the
RISC-style processor Patmos and in the compiler. Section V
shows the evaluation of the stack cache with embedded bench-
marks on a cycle accurate simulation of Patmos. Section VI
discusses the findings and presents ideas for future work.
Section VII concludes the paper.

II. RELATED WORK

Several groups are working on time-aware architectures.
The precision timed (PRET) architecture is first presented in
[8]. PRET implements a RISC pipeline and performs chip-
level multithreading for several threads to eliminate data for-
warding and branch prediction [11]. The first FPGA version of
PRET implements the ARM instruction set [9], [10]. Current
work is ongoing to implement a PRET processor with the
RISC-V [26] instruction set and to allow a variable number of
hardware threads.2 In contrast to our proposal, PRET contains
no caches, but uses a compiler- or programmer-managed on-
chip scratchpad memory.

One approach to avoid conservative cache miss assumptions
in the WCET analysis is to mark data, where the address
cannot be statically predicted, as un-cached [12]. The WCET
analysis tool is used to determine predictable cache accesses
and bypass unpredictable ones. The intention is similar to
our approach. In Patmos we support typed memory load
and store operations to distinguish between different on-chip
memories/caches.

The Bell Labs C machine is an approach to support the
C programming language [2]. In this machine a stack cache,
implemented as a circular buffer, is replacing the registers of
a processor. The argument is that register allocation is hard
for compilers. However, current compilers perform well on
register allocation. Therefore, in our Patmos processor we
support a standard RISC registers set. The stack cache serves
the on-chip memory for fast register spills and fills.

Similar to the Bell labs research group, the RISC research
group at Berkeley considered hardware support for function
calls necessary. From the first RISC architecture on, register
windows were supported [17]. In RISC I [15], a new window
of registers in the large register file is allocated to functions
upon calling them. If a call overflow/underflow happens, a
software routine adjusts the stack area in the main memory to
save/restore the registers. Patterson [16], presents a hardware
solution to keep operands in registers. In this method, many
register windows are considered for different function calls.

2Private communication with the PRET research group.

The register windows overlap to improve performance and
avoid the copying of parameters from one register window
to the next on a function call. The architecture of register
windows is used in the follow-up SPARC architectures by
Sun Microsystems. In contrast to register windows, the callee
saved registers need to be spilled and restored explicitly using
a stack cache. However, a cache can be made larger than a
register file.

The Java virtual machine (JVM) is a stack machine. There-
fore, hardware implementations of the JVM have usually on-
chip memory to cache the stack content. PicoJava uses a
hardware stack to support the stack-based architecture of the
JVM [14]. A circular register file implements the stack cache.
A dribbling mechanism handles the validity of data in the
cache. The spilling and filling to respectively from memory
is triggered by watermarks, which are defined in control
registers.

Several other Java processors [20], [25], [27] support a
simpler form of the stack cache. The on-chip memory needs
to be large enough to hold the full stack of a thread. The stack
content is only exchanged with the main memory on a thread
switch. Therefore, the stack cache is part of the processor
state. For a stack machine the two top elements of the stack
cache can be implemented as dedicated registers, which can
be directly accessed for the ALU operations [19].

M Huang et al. [7] argue that smaller caches consume less
energy and propose to break the L1 cache into smaller struc-
tures to reduce the power consumption. The issue with cache
power consumption is also addressed with using specialized
caches such as the stack cache. The compiler usually inserts
substantial amounts of spill codes during register allocation.
Cooper and Harvey [1] use a small random access compiler-
controlled memory to hold these spilled values. Using this
method, most of the memory traffic due to compiler-inserted
instructions is eliminated.

Gonzalez et al. [5] propose a dual data cache, including
a spatial cache and a temporal cache. A locality prediction
table, which includes information related to the load/store
instructions, predicts the type of locality for each memory
access. The main advantage of this method is that it can decide
on temporal or spatial locality of vectors too. A similar idea
of cache splitting was explored by Milutinovice et. al [13].
Data tagging is used to separate data with temporal locality
from data with spatial locality. This eliminates fetching the
entire block into the temporal cache. Therefore, a smaller
prefetch buffer for spatial data cache and an overall smaller
cache satisfy the needs. Our approach is to split the data cache
to increase predictability [23].

Despite promising initial performance results of split data
caches, mainstream architectures rely on unified data caches.
The flexibility of using a single cache for different data areas is
probably better for the average-case performance for a wide
range of applications. Our hypothesis is that the benefit of
better predictable data accesses is more important for real-
time systems then the flexible usage of a single data cache.



void reserve(int n) {

int nspill, i;

sc_top -= n;
nspill = m_top - sc_top - SC_SIZE;
for (i=0; i<nspill; ++i) {

mem[m_top] = sc[m_top & SC_MASK];
--m_top;

}
}

Fig. 1: The reserve instruction provides n free words in the
stack cache. It may spill data into main memory.

III. THE STACK CACHE

The stack cache is a processor-local, on-chip memory. The
stack cache operates similar to a ring buffer. It can be seen
as a stack-cache-sized window into the main memory address
range. To manage the stack cache, we use three additional
instructions: reserve, ensure, and free. Two hardware registers
define which part of the stack area is currently in the stack
cache.

A. Stack Cache Manipulation

We present the mechanics of the stack cache in C code for
easier readability. However, the hardware implementation is
a synchronous design and the algorithm is implemented by a
state machine that handles the memory spill and fill operations.
In the C code following data structures are used:

mem is an array representing the main memory,
sc is an array representing the stack cache,
m top is the register pointing to the top of the saved stack

content in the main memory, and
sc top points to the top element in the stack cache.
The two pointers are full-length address registers. However,

when addressing the stack cache, only the lower n bits are
used for a stack cache of a size of 2n words. The constant
SC SIZE represents the stack cache size and SC MASK is
the bit mask for the stack cache addressing. The stack cache
is managed in 32-bit words. Therefore, the pointers count in
32-bit words.

At program start the stack cache is empty and both pointers,
m top and sc top, point to the same address, the address that
is used for the stack area. m top points to the next not-yet-
used word in main memory. Similar, sc top points to the next
unused word of the stack cache. Therefore, the number of
currently valid elements in the stack cache is m top - sc top.

The compiler generates code to grow the stack downward,
as it is common for many architectures. Growing the stack
downwards has historical reasons. However, for multi-threaded
systems each thread needs a reserved, fixed memory area
for the stack and there is no benefit from growing the stack
downwards.

a) Reserve: The reserve instruction, as shown in Fig-
ure 1, reserves space in the stack cache. Typed load and store
instructions use this reserved space. The reserve instruction

void free(int n) {

sc_top += n;
if (sc_top > m_top) {

m_top = sc_top;
}

}

Fig. 2: The free instruction drops n elements from the stack
cache. It may change the top memory pointer m top.

void ensure(int n) {

int nfill, i;

nfill = n - (m_top - sc_top);
for (i=0; i<nfill; ++i) {

++m_top;
sc[m_top & SC_MASK] = mem[m_top];

}
}

Fig. 3: The ensure instruction ensures that at least n elements
are valid in the stack cache. It may need to fill data from main
memory.

may spill data to the main memory. This spilling happens when
there are not enough free words in the stack cache to reserve
the requested space.

The processor reads the number of words to be reserved
(the immediate operand of the instruction) in the decode stage.
The processor adjusts the sc top register in the execution stage
and also computes how many words need to be spilled in the
execution stage. The processor spills to the main memory in
the memory stage, as shown by the for loop in Figure 1.

b) Free: The free instruction frees the reserved space on
the stack. It does not fill previously spilled data back into
the stack cache. It just changes the top of the stack pointer
and may change the top of the memory pointer, as shown in
Figure 2.

c) Ensure: Returning into a function needs to ensure that
the stack frame of this function is available in the stack cache.
The ensure instruction, as shown in Figure 3, guarantees this
condition. This instruction may need to fill back the stack
cache with previously spilled data. This happens when the
number of valid words in the stack cache is less than the
number of words that need to be in the stack cache. Filling
the stack cache is shown in the loop in Figure 3.

One processor register serves as stack pointer and points
to the end of the stack frame. Load and store instructions use
displacement addressing relative to this stack pointer to access
the stack cache.

B. Function Call Example

We illustrate the stack cache with an example of three
functions: A calls B, which in turn calls C. Figure 4 shows
the mapping of the stack cache to the main memory and the
spilled content of the stack area in the main memory when
the program is in function C. The blocks A, B, and C in the
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Fig. 4: Stack mapping, the stack cache content, and the spilled
stack area.

figure are the stack frames for functions A, B, and C. The
stack mapping shows the stack usage as it would be without
a stack cache. The main memory figure shows which parts of
the stack frames have been spilled into the main memory. And
the middle box (S$) shows the content of the stack cache. We
can see that stack frame A is fully spilled to main memory.
Frame B is partially spilled and it also wraps around in the
stack cache. Stack frame C is fully in the stack cache.

The program in this example starts with an empty stack
cache. After entering function A, its stack frame is allocated
using a reserve instruction. This stack frame is represented
as block A in Figure 4. During execution of function A,
function B is called. As before, B’s stack frame is allocated
by executing a reserve instruction, which checks whether the
required space is available. Assuming that there is not enough
free space in the stack cache, the stack frame of A is partially
spilled to main memory. Then, another function call to C
(Figure 4) causes the rest of the A’s stack frame and a part of
B’s stack frame to be spilled to main memory. Before returning
from C, its stack frame is freed. Since B’s stack frame was
partially spilled, an ensure instruction reloads the spilled parts
of B’s stack frame back into the stack cache. Similarly, the
whole stack frame of A is reloaded after returning from B.
Before returning from A, all the allocated space on the stack
cache is freed and the stack cache becomes empty again.

IV. IMPLEMENTATION

We implemented the stack cache in hardware for the
processor Patmos [24], extended the cycle-accurate software
simulator of Patmos to support the stack cache, and adopted
the LLVM-based compiler for Patmos to make use of the stack
cache.

A. Instruction Set

To use the stack cache, we extended the RISC-style in-
struction set of Patmos with three stack cache manipulation
instructions: reserve, ensure, and free. Furthermore, we added
reading and writing of the stack cache registers for the program
start and for a thread context change.

Load and store instruction in Patmos use displacement
addressing with a normal register. One possibility is to assign
a general purpose register as stack pointer and address the
stack cache with this register. However, the stack cache register
sc top already points to the top of the stack. Therefore, we use
addressing relative to this register for the stack cache. Typed
load and store instructions distinguish between the stack cache
access and other data areas.

Patmos is open source and we have the tool chain under
control. Therefore, it is possible to use instruction set exten-
sions for the usage and implementation of the stack cache. If
the instruction set cannot be changed, e.g., it has to be ARM
or MIPS compatible, a stack cache can be implemented as
follows: an alternative to typed load store instructions is to use
different address ranges to select different caches. The address
range for the stack area needs to be loaded into the stack
cache on program start. Memory mapped control registers for
the stack cache can implement the stack cache manipulation
instructions.

B. Hardware Implementation

To support the stack cache in Patmos, we added the required
functionality to the execution and the memory stages. The
execution stage computes new values for the stack cache
registers and the condition if a spill or fill is needed. The
memory stage contains the stack cache and performs the
normal load and store operations. Furthermore, the memory
stage contains the state machine for the spill and fill. On a
fill or spill, the rest of the memory stage stalls the rest of
the pipeline. In the following we describe the changes in the
pipeline in more detail.

1) Decode Stage: According to the algorithms introduced
in Section III, three instructions manage the stack cache. We
extended the decode stage to support these instructions.

2) Execution Stage: The execution stage performs the nec-
essary computations to update the two stack cache registers. If
necessary, the execution stage determines also the number of
words that the memory stage will spill of fill. The execution
stage sets the spill/fill signals for the memory stage.

3) Memory Stage: In case of spill/fill operations (triggered
by spill/fill signals from the execution stage), the memory
stage stalls the other pipeline stages until the data transfer
to/from main memory is completed. A state machine man-
ages the spill/fill operations in the memory stage. This state
machine keeps track of the number of spilled/filled bytes and
deactivates the stall signal after all the bytes are spilled/filled.
Furthermore, based on the current state of the state machine,
the state machine adjusts the pointer to the top of the memory
to access different words of the main memory and the stack
cache on each spill/fill operation. There are two different types
of transfer to/from the stack cache: (1) one directly through the
load and store instructions, and (2) one caused by fill/spill state
machine. Thus a multiplexer in the memory stage determines
if the input data for the stack cache is coming from the main
memory or from a normal store instruction. Similar, the write



path to the main memory is multiplexed between normal store
instructions and the stack cache spill operation.

4) Write Back Stage: The write back stage is not affected
by the stack cache instructions. The only difference is that the
stall signal disables writing to the register file during the stall
cycles.

C. Compiler Support

We have added support for the stack cache to the LLVM
compiler, which supports the Patmos instruction set. First,
loads and stores that shall end up in the stack cache use (stack)
typed load and store instructions. Second, the compiler emits
the reserve, free, and ensure instructions.

Local variables and data structures that are not accessed by
a pointer cannot leak out of a function and can therefore be
safely allocated on the stack cache. The compiler must also
be able to figure out the maximum number of words used in
a function. Therefore, memory allocated with alloca() with a
non-constant size cannot be allocated on the stack cache. To
fully support all legal operations on function local data of the
C language, the compiler uses a second stack, the so-called
shadow stack, for data which cannot be allocated in the stack
cache.

As part of the function entry code, the compiler emits a
reserve instruction to prepare the stack cache for the following
load and store instructions. As part of the exit code, the
compiler emits a free instruction to return the space on the
stack cache. A ensure instruction after a call restores the call
frame of the caller. Note that most ensure operations can be
eliminated by the compiler in practice (see Section V).

It has to be noted that the usage of the stack manipulation
instructions around function call and returns is only one way
to use the stack cache. Any well-formed part of the program
can serve as a region for stack cache manipulation. These
scopes can be several regions within a function or it can be a
cross-function scope.

V. EVALUATION

We have implemented the stack cache in the Patmos proces-
sor in hardware and in the cycle accurate software simulation.
In the evaluation section we report on the hardware size,
compare with a standard caches. With the software simulation
of Patmos we collect runtime statistics on stack and data cache
usage with embedded benchmarks.

A. Hardware Resource Consumption

The Patmos processor and the stack cache are implemented
in an FPGA. For the evaluation we use the Altera Cyclone II
FPGA on the DE2-70 FPGA board. Without the stack cache,
Patmos consumes about 2400 logic cells and can be clocked
at 77 MHz. Adding the stack cache increases the total size of
Patmos to about 3200 logic cells and reduces the maximum
clock frequency to 73 MHz. We consider the additional 800
logic cells on the high side for this cache implementation. We
intend to optimize the code for size and pipeline speed.

Line Size (Words)
Cache Size (KB) 2 4 8

Direct Mapped 1 1.4 1.2 1.1
2 2.7 2.3 2.2
4 5.3 4.7 4.3

TABLE I: Total cache size in KB for different line sizes and
cache sizes.

The size of the stack cache is configurable and for first
spill and fill tests the default configuration is 64 32-bit words.
Therefore, it consumes a single on-chip memory block.

The main differences between a normal data cache and the
stack cache are:

• A normal data cache needs hit detection by comparing
the tag memory of each way with part of the address.
This hit detection is usually on the critical path. In can be
performed in parallel on data read, but needs to performed
before a write, which might add an additional cycle for
a store instruction.
With the stack cache we have guaranteed hits on load
and store instructions and no need to compare with a
tag memory. The equivalence to hit detection in the stack
cache happens on reserve and ensure, which happens less
often than loads and stores.

• A normal data cache needs a tag memory, which can
consume a considerable amount of memory. In the stack
cache only two pointers into the address space mark
which data is in the cache and which data is only in
the main memory.

In a standard cache, each cache line contains a tag word
and a valid bit. The size of the tag word depends on the cache
size, the cache line length, and the associativity. Table I shows
the total memory size (tag and data memory) for different
configurations of a direct mapped cache. We can see that the
tag memory adds up to 40% of memory consumption to the
data cache. In contrast our stack cache needs only the two
registers to mark the address range that is in the cache. The
two pointers also serve for the valid bit. Therefore, the total
size of the stack cache is equal to size of the data memory
used for a cache.

B. Cache Performance

The intention of the stack cache is to simplify WCET
analysis by splitting different data areas to specialized data
caches. Within the T-CREST project the WCET analysis tool
aiT form AbsInt will be adapted to support the stack cache
and other features of Patmos.

In the mean time we can evaluate the stack cache by
average-case measurements. The T-CREST project also con-
tains a cycle accurate software simulator of Patmos [3].
Therefore, it is possible to collect usage data and hit/miss rates
for different stack cache configurations and compare them with
a standard data cache.

In order to evaluate the stack cache we compiled and
executed a subset of the publicly available benchmark suite
MiBench [6] on the Patmos simulator. These benchmarks



cover a representative set of tasks often encountered in em-
bedded systems, e.g., in telecommunication and automotive
domains.

Each benchmark was first compiled to LLVM bitcode by the
clang C frontend using optimization level -O3 and then linked
and optimized using llvm-ld. LLVM’s llc tool generated
Patmos machine code using two configurations: (1) with
stack cache support enabled and (2) with stack cache support
disabled, i.e., all stack data is kept in the main memory. With
stack cache disable, the normal data cache caches the stack
allocated data. The gold linker finalizes the code layout using
a default memory layout, where all code and data sections are
placed into Patmos’ main memory.

The Patmos simulator executes the benchmarks and is
configured with a 1/4 KB stack cache, a 8 KB data cache, and
a 64 KB instruction cache, organized as method cache [18].
A larger stack cache of 1 KB is big enough to cache stack
data without the need to spill stack frames to main memory.
Therefore, we reduced the size of the stack cache to observe
some spill and fill operations.

The stack cache is organized in word-sized blocks (4B),
while the data and method caches are organized in 32-byte
blocks. The 4-way set-associative data cache uses a least-
recently-used (LRU) replacement policy and a write-through
strategy with no-write allocation. The method cache likewise
uses an LRU replacement policy. Transferring a cache block
(32B) to or from main memory is assumed to take 40 cycles.

MiBench offers a small and a large data set for most
benchmarks. We run most of the benchmarks with the default
data set. For some benchmarks we use smaller data sets. This
is indicated by the suffix in the figures.

C. Runtime

In our first experiment we compare the total number of
execution cycles for each benchmark with stack cache sup-
port enabled against a variant with the stack cache disabled.
Enabling the stack cache allows us to (partially) allocate the
stack frame of functions to the stack cache instead of the
main memory. This reduces the number of accesses through
the data cache, but at the same time increases the number
of instructions, because dedicated instructions, emitted by the
compiler, manage the the stack cache explicitly. As shown by
Figure 5, enabling the stack cache reduces the total number
of execution cycles for certain benchmarks.

The gains are explained by (a) the additional cache space
in the stack cache and (b) the handling of writes by the data
cache. The additional cache space (1/4 KB) in the stack cache
reduces the number of loads from the data cache and thus
the number of accesses to the slow main memory. Additional
gains are due to the long latency of stores to the data cache,
which uses a write-through strategy with no-write allocation.

Some benchmarks profit less from the stack cache, most
notably crc-32, rawcaudio, and rawdaudio. Loops that do
not contain any spill code or function calls dominate these
benchmarks. The simple stack cache allocation strategy thus
cannot find any data to allocate to the stack cache.
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Fig. 6: Normalized transfer volume of data accesses to the
data and stack cache for each benchmark (data cache 8 KB,
stack cache 256 bytes).

We also evaluated the benefits of a simple compiler op-
timization that removes useless ensure operations (see SC
optimized in Figure 5). An ensure can be eliminated after a
call whose worst-case stack cache occupancy combined with
the ensure’s size does not exceed the stack cache size.

D. Stack Cache Utilisation

As shown before, using the stack cache can be quite
profitable. We thus present some additional data characterizing
how the various benchmarks use the stack cache. Figure 6
shows the transfer volume to and from the data and stack
cache. The benchmarks that showed the best runtime im-
provements make heavy use of the stack cache. For instance,
79% of the memory accesses of the bitcnts go to the stack
cache. With regard to data transfer volume, these numbers even
increase. While roughly 65% of the accesses of the patricia
benchmark target the stack cache, almost 75% of the transfer
volume is serviced by the stack cache.

Benchmarks with little or no gain rarely make use of the
stack cache, as shown by Figure 5. The main reason is that
these benchmarks are dominated by a single loop without any
spill code or function calls. This is confirmed by the numbers
in Figure 7, which shows the amount of dynamically allocated
data on the stack cache.

Indeed, the current algorithm to allocate data on the stack
cache only leverages compiler-generated spill slots, which
are often linked to function calls (saving/restoring registers
before and after calls). However, we expect that more powerful
allocation algorithms will be able to overcome this limitation.
For instance, the rawcaudio and rawdaudio benchmarks
mostly operate on small buffers, which are potential candidates
for stack cache allocation.
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Fig. 5: Speedup when running benchmarks with stack cache support disabled, enabled, and enabled with optimization (cache
size 256 bytes, larger is better).
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Fig. 7: Data dynamically allocated on the stack cache. The
stack cache usage correlates with the number of executed
function calls (cache size 256 bytes).

VI. DISCUSSION

From the evaluation we have seen that even a very small
stack cache (1 KB and less) serves well to cache the register
spill and fill slots. As next step we would like to evaluate
the stack cache with respect to the WCET. As AbsInt already
provides a stack size analyzer tool StackAnalyzer, 3 we assume
the that this is relative easy.

3see http://www.absint.com/stackanalyzer/index.htm

A. WCET Analysis

On a standard cache each load or store instruction can
result in a cache miss and needs to be considered by program
analysis. The explicit management of the stack with reserve
and ensure by the compiler defines the programs points where
an interaction with the main memory (spill or fill) might occur.
All other accesses to the stack allocated data are guaranteed
hits.

A simple, but very conservative, WCET estimate for the
stack cache is to assume a spill and fill on every reserve
and ensure instruction. Although this is conservative, all stack
cache accesses within a function are guaranteed hits.

A simple improvement is to statically analyze the call tree
and cut out all functions that are within a stack cache size
from the call tree leaves. Such a part of the call tree needs to
spill only one stack cache size, the rest of the stack reserve
and ensure instructions need no spill or fill operations.

A more advanced analysis may perform data flow analysis
of the two pointers m top and sc top to find the exact spill
and fill points and sizes.

B. Stack Cache in Software

Our presented stack cache is one design point between
two extremes: (a) a conventional cache, where the hardware
decides and performs replacement of individual cache lines
and (b) a scratchpad memory SPM that is used for stack
allocated data. With a SPM the spill and fill of stack frames
is performed in software. A compiler can implement the same
algorithm that we have presented in this paper for the SPM.
The main difference is that the stack pointer as well needs to
be manipulated to always point into the SPM. One issue is,
when a stack frame is allocated over the SPM boundary. Either
crossing this boundary needs to be avoided, or the address for
each load and store needs to be masked to point into the SPM.

http://www.absint.com/stackanalyzer/index.htm


VII. CONCLUSION

Real-time systems need time-predictable architectures to
support static worst-case execution time analysis. One ar-
chitectural feature, the data cache, is hard to analyze when
different data areas (e.g., heap allocated and stack allocated
data) share the same cache.

To simplify the data cache analysis we propose to split the
data cache into different caches, serving different data areas.
In this paper we present a cache for stack allocated data. Stack
addresses are relative easy to predict statically and therefore
the stack cache is easy to analyze.

One benefit of a specialized cache for stack allocated data
is that it can be optimized for stack data. The exchange
between the stack cache and main memory can be restricted
to dedicated program points and needs not be considered on
each load or store. An unused stack frame after a return needs
not to be written back to main memory.

We have implemented the stack cache in hardware in the
time-predictable processor Patmos. Furthermore, benchmark-
ing of standard embedded benchmarks showed that even a
small stack cache provides a good hit rate.
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