
Improving Performance of Single-path Code
Through a Time-predictable Memory Hierarchy

Bekim Cilku∗, Wolfgang Puffitsch‡, Daniel Prokesch∗, Martin Schoeberl‡ and Peter Puschner∗
∗Vienna University of Technology, Vienna, Austria
{bekim, daniel, peter}@vmars.tuwien.ac.at

‡Technical University of Denmark, Copenhagen, Denmark
{wopu, masca}@dtu.dk

Abstract—Deriving the Worst-Case Execution Time (WCET)
of a task is a challenging process, especially for processor archi-
tectures that use caches, out-of-order pipelines, and speculative
execution. Despite existing contributions to WCET analysis for
these complex architectures, there are open problems. The single-
path code generation overcomes these problems by generating
time-predictable code that has a single execution trace. However,
the simplicity of this approach comes at the cost of longer
execution times.

This paper addresses performance improvements for single-
path code. We propose a time-predictable memory hierarchy with
a prefetcher that exploits the predictability of execution traces in
single-path code to speed up code execution. The new memory
hierarchy reduces both the cache-miss penalty time and the cache-
miss rate on the instruction cache. The benefit of the approach
is demonstrated through benchmarks that are executed on an
FPGA implementation.

I. INTRODUCTION

Computing the Worst-Case Execution Time (WCET) of
a task becomes mandatory when timing guarantees on task-
completion deadlines have to be given. Unfortunately WCET
computation is a complex undertaking, especially for systems
that use caches, out-of-order pipelines, and control speculation.
Although these features complicate timing analyses, the chase
for higher execution performance makes their presence almost
inevitable. For software running on such complex architectures,
a high-quality WCET estimation would require a highly
complex WCET analysis that would cover all possible system
states that can emerge at runtime. However, exploring all
possible hardware states quickly leads into an unmanageable
state-space explosion.

State-of-the-art WCET tools avoid the complexity problem
by modeling the real hardware with abstracted models [1].
Abstract interpretation is a static program analysis method that
executes abstract version of the program on a set of abstract
values [2]. In case of WCET analysis, an abstract domain
and abstract transition functions are defined to reduce the
complexity of hardware modeling and also reduce the set of
states that have to be analyzed. The abstraction is considered
successful if the set of abstract states compactly represents the
real hardware states at any program point. However, abstraction
also leads to information loss which, in turn, results in lots of
unclassified model states and the computation of pessimistic
WCET estimates. In the end, task CPU-time reservation based

on these pessimistic estimates leads to poor processor utilization
and overly pessimistic results on schedulability tests.

One approach that eliminates the problems of WCET analysis
for traditional code is the generation and use of single-
path code [3]. Single-path code generation eliminates input-
dependent control flow in the code. This is achieved through
conversion of all input-dependent alternatives of the source code
into pieces of sequential code. Also, all loops with input-data
dependent termination conditions are transformed into loops
with constant iteration counts. This code generation strategy
forces all executions to follow the same instruction trace, thus
eliminating control-flow induced variations in execution time.
WCET analysis for the resulting code is trivial—one only needs
to run the code once (on its unique path) and measure. This
single execution run also identifies the stream of instructions
that every execution will follow. The properties of single-path
code make the process of real-time system design simple,
composable and scalable [4]. A major drawback is, however,
that single-path code may end up with quite long execution
times for programs with many input-data dependent control
decisions.

This paper presents a new time-predictable memory hierarchy
that improves the performance of single-path code. The memory
concept exploits the pre-runtime knowledge about the execution
trace that can be derived from the single-path code. Using
this knowledge, the prefetching algorithm predictably brings
instructions into the cache before they are required. This enables
the prefetcher to work efficiently for the whole single-path
code without polluting the cache at any moment. However,
to reach the best performance of the memory hierarchy, the
cache memory needs to be adapted. Therefore, we propose a
modified cache design that allows regular instruction fetching
(and caching) and prefetching to work in parallel without
interference.

The paper is organized as follows. Section II provides a brief
overview of single-path code, cache memory, and prefetching.
Section III describes the architecture of the memory hierarchy
and its components. An evaluation of the memory hierarchy
follows in Section IV, while related work is presented in
Section V. Section VI concludes the paper.

II. BACKGROUND

A. Single-path Paradigm

The essence of single-path conversion is to eliminate the
complexity of multi-path code analysis. The only hardware
support required for this strategy is the provision of predicated
instructions. Predicated instructions guard the processor-state
modification with a predicate condition. At runtime, all
predicated instructions are executed, but only those whose
predicates evaluate to true change the hardware state. If a
predicate evaluates to false, the instruction behaves like a NOP
instruction and does not change the hardware state [5]. Figure 1
illustrates with an example how predicated instructions are used
for if-else conversion. The value of variable x is conditionally
updated, depending on the evaluation of cond. Variant (a)
illustrates conventional code with branch instructions, where
only one of the instructions is executed. Variant (b) executes
both instructions, but only one of them changes the state of x.

The generator for single-path conversion has already been
implemented in a compiler back-end [6]. Without going into
too much detail, we present the main rules of the single-path
conversion in the following.

1) Branch conversion: Input-dependent branches of if or
case semantics consist of two or more mutually exclusive
alternatives, where, depending on the program inputs, one
alternative is executed. The single-path conversion serializes
all alternatives into sequential code, thus forcing the execution
to pass all branches [3]. Thereby the values of predicates
control which instructions change the computational state. In
the conversion of nested alternatives, the predicates of the inner
statements are formed by a conjunction of the predicates that
lead to those statements [7].

2) Loop conversion: Loops with input-dependent termina-
tion condition exit the loop dependent on the program inputs.
The single-path approach transforms these loops to loops with
constant iteration count, where each iteration has constant
execution time [8]. To achieve this, the loop iteration count
is set to a fixed maximum count and predicates, generated
from exit condition of the old loop, are used to control the
statements of the loop body. Hence, when the exit condition
of the original loop becomes true, the new loop continues to
iterate, but does not change the state anymore.

cond := . . .
i f (cond) goto L2

L1 : x := x + 1
goto L3

L2 : x := x − 1
L3 : . . .

(a) Update of x with branch
instruction.

cond := . . .
(! cond) x := x + 1
(cond) x := x − 1

. . .

. . .

. . .

(b) Update of x with predi-
cated instructions.

Fig. 1: Example of code with branch instruction and predicated
instructions.

3) Function conversion: Function calls are unconditional,
but the predicate of the call site is passed to the called function.
For predicates evaluating to false, the function does not change
the processor state, even though the whole function is executed.
Hence, the function predicate forms the initial precondition for
all statements of the function.

B. Understanding Cache Behavior

Caches are small and fast memories that are used to improve
the performance of the memory system based on the principle
of locality [9]. Locality can be observed in the temporal and
spatial behavior of the execution of code. Temporal locality
means that code executed now is likely to be referenced again
in the near future. This type of behavior is observed in program
loops and functions when instructions that are already in the
cache (from prior iterations or calls) are reused. Spatial locality
means that instructions whose addresses are close by will
tend to be referenced in temporal proximity. Caches exploit
locality by storing only a copy of code fractions while the
entire executable code is held in main memory.

As an application is executed over the time, the processor
references the memory by sending memory addresses. Refer-
enced instructions that are found in the cache are called hits,
while those that are not in the cache are called misses. In
case of a cache miss, the processor stalls until the instructions
are fetched from main memory. The time needed to transfer
instructions from the main memory into the cache is called miss
penalty. The fraction of cache accesses that result in misses
is called the miss rate. Cache memories can be organized as
fully associative (memory blocks can be stored in any cache
line), set associative (cache lines are grouped into sets), or
direct mapped (memory blocks can be placed in only one
cache line) [10]. The very first reference to a memory block
always results in a cache miss, a so-called compulsory miss.
For a fully-associative cache, when the cache is full, cached
instructions must be evicted to create space for the incoming
ones. If evicted instructions are referenced again, a capacity
miss occurs. For set-associative and direct-mapped caches,
a conflict miss occurs when more memory blocks than the
associativity map to the same set, even though the cache is
not full.

C. Instruction Prefetching

Prefetching is considered an efficient strategy to mask the
large latencies of memory accesses: instructions are loaded into
the cache before they are needed [9]. Information that is fetched
before it is referenced is called prefetched. Prefetching can be
implemented in software or hardware. A software prefetcher
initiates prefetching through explicit prefetch instructions. The
challenge of software prefetching is the placement of the
prefetch instructions to guarantee that prefetching happens
at the right time. Hardware prefetching is initiated by hardware
logic that monitors the processor accesses to the memory. In
contrast to software prefetching, hardware prefetching has
no code overhead, but often generates more unnecessary
traffic than the software approach—hardware prefetching

speculates on future memory accesses without using compile-
time information.

D. Patmos and the T-CREST Platform

The proposed prefetcher is intended for time-predictable
systems. Therefore, we decided to build upon a time-predictable
processor architecture. We use the Patmos [11] processor,
which is part of the T-CREST platform [12]. T-CREST is
a multiprocessor system developed especially for real-time
systems. All components are built to be time-predictable and
allow WCET analysis. A T-CREST platform consists of several
processor cores that are connected to two networks-on-chip
(NoC): (1) the Argo NoC and (2) the memory tree. The Argo
NoC [13] supports time-predictable message passing between
processor local memories. For code and larger data structures,
all processors are connected to shared DRAM memory through
the Bluetree memory tree [14] and the Predator memory
controller [15], or to a shared SRAM memory through a
distributed memory arbiter [16].

Patmos is a dual-issue RISC processor with a simple 5-stage
pipeline. Patmos is designed to avoid any timing anomaly.
All instructions of Patmos can be predicated to support the
single-path code paradigm. Furthermore, the execution time of
an instruction is constant, independent of the predicate value.
Patmos includes caches designed to simplify WCET analysis.
Stack allocated data is cached in the so-called stack cache [17].
For instructions, the cache of Patmos is configurable to include
either a method cache [18] or a standard instruction cache. In
this work, we use Patmos with a standard instruction cache.

Most of the T-CREST hardware is open-source under
the industry-friendly simplified BSD license. The build in-
structions for the whole platform can be found at https:
//github.com/t-crest/patmos and (in more detail) in the Patmos
handbook [19].

III. MEMORY HIERARCHY FOR SINGLE-PATH CODE

In this section, we describe the instruction path of the new
designed memory hierarchy with the time-predictable prefetcher.
Figure 2 shows a high-level architecture diagram of the instruc-
tion cache and the prefetcher as well as their interconnections to
the CPU and main memory. Both components are designed to
be time-predictable and allow efficient execution of single-path
code.

A. Architecture of the Instruction Cache

The proposed instruction cache is a small dual-port on-chip
memory that accepts and processes address references issued
from both the processor for reads and the prefetcher for writes.
Each reference that arrives at the cache is first compared with
the entries of the tag table for a possible match. Depending
on the source of the request, the cache performs one of two
types of actions in case of a miss: (1) on a processor cache
miss, the cache works like a conventional cache—it stalls the
processor and forwards the processor request to the external
main memory; (2) on a prefetch cache miss, the cache forwards
the request of the prefetcher directly to the main memory

D
em

ux

Controller

Call

Return

Large-Loop

Small-Loop

Next

M
ux

 1

RPT Table

P
rogram

C

ounter

Mux 2

Tag Data

Mux 3

Prefetcher

Instruction cache

0

prefetch hit/m
iss

fetch hit/m
iss

fetch address

prefetch address

main memory CPU

instruction

main memory

instruction

Fig. 2: Memory hierarchy architecture with prefetcher

without disturbing the operation of the processor. Distinguishing
these two types of misses in the cache enables the prefetcher
and the processor fetch stage to work in parallel, without
interfering the execution. Thus, while the fetch stage accesses
instructions that are already in the cache, the prefetcher initiates
the prefetching of upcoming cache lines. Overlapping these
two stages reduces both the miss-penalty time and therefore the
overall execution time. Moreover, when the processor executes
a loop that fits into the cache, the prefetcher continues to fill the
rest of the cache with the upcoming cache lines. In this case,
the memory hierarchy not only eliminates the miss penalty
but also reduces the cache-miss rate, as the cache-loading of
instructions is finished before the instructions will be referenced.
Note however, that the number of cache misses that can be
eliminated depends on the time the processor spends executing
the loop and on the cache space that can be filled without
evicting parts of the loop.

Both types of address references can be sent to the cache at
the same time. If both result in a cache miss, then only one can
be forwarded to the main memory. In that case, the cache gives
priority to the request from the processor, i.e., it restricts the
prefetcher to read the memory only when the bus is idle. The
hardware mechanism for this arbitration is implemented by a
cascade of two multiplexers (Mux 2 and Mux 3 in Figure 2).

One has to make sure that the prefetcher does not evict the
cache line that holds the currently executing instruction. To

https://github.com/t-crest/patmos
https://github.com/t-crest/patmos

this end, the cache line number of each prefetching request
is compared with the line number of the currently executing
instruction. In case of a match, the prefetch request is dropped.

B. Time-predictable Prefetching Scheme for Single-path Code

For the sake of efficiency and time-predictability, the
prefetcher combines both sequential and non-sequential
prefetching. Simple, sequential prefetching is used whenever
sequential fragments of code are executed. In sequential
prefeching, the prefetcher pre-loads the cache lines sequentially,
starting from the currently fetched cache line [20].

When the processor jumps to a new location, the prefetcher
applies non-sequential prefetching. Non-sequential prefetching
is, in general, tricky due to the difficulty of predicting branch
targets of dynamic control-flow instructions. Single-path code,
however, has no dynamic control decisions, which makes it
ideal for predictable prefetching. The clearly defined control
flow of single path code enables the designer to use control-
flow information extracted by a simple pre-runtime analysis
to control the non-sequential operation of the prefetcher at
runtime. Our prefetcher therefore uses control-flow information
extracted before runtime to control both the target memory
addresses and the triggering times of prefetch operations, thus
making the whole prefetching scheme fully predictable for
every cache line.

C. Architecture of the Prefetcher

To keep the development of the prefetcher independent from
the processor and compiler, and to avoid the overhead of
executing additional instructions, we have decided to implement
the prefetcher as a separate hardware unit. As shown in
Figure 2, the prefetcher consists of the Controller, three
non-sequential prefetch-components (Call-prefetcher, Return-
prefetcher, Large-loop-prefetcher), the sequential prefetch-
component (Next-prefetcher), the Small-loop-prefetcher, and
the Reference Prediction Table (RPT).

The controller watches the stream of execution, to determine
the prefetch-triggering times, and to select the appropriate
prefetch component for the target address calculation. As the
code executes, all address references issued by the program
counter (PC) are monitored by the controller. Whenever the
execution switches to a new cache line, the controller triggers
the prefetcher and forwards the PC to the RPT to check for a
possible match. If the search in the table yields a hit, which
means that the upcoming cache line is non-sequential, the
calculation of the target is performed by one of the non-
sequential components of the prefetcher. In case of miss, the
sequential component gets active.

Call-prefetcher, Return-prefetcher, and Large-loop-prefetcher
form the non-sequential part of the prefetcher. Call-prefetcher is
triggered when the prefetch target is a cache line of a function
whose target address is stored in the RPT. This component has
a small stack memory that holds the address of the caller. Thus,
when the execution reaches the end of the function, the Return-
prefetcher will use the return address from the stack. Using
a stack eliminates the need to store function-return addresses

TABLE I: Reference Prediction Table

Index Trigger Type Destination Iteration Next Count Depth
0 8310 call 8305 - 1 - -
1 8350 ret - - - - -
2 8780 big-loop 8205 24 2 - 1
3 9215 small-loop - - - 15 -

in the RPT. Large-loop-prefetcher is triggered for loops that
are larger than the cache. For such loops, the prefetecher will
always prefetch the loop header, until the known number of
iterations is reached. In case of nested loops, the prefetcher
keeps the iteration number of outer loops in registers, in order
to track if the loops are still alive.

The Next-prefetcher calculates the next consecutive target
address by just incrementing the address of the current cache
line. As compilers genarlly try to generate sequential code
layouts and the single-path conversion does a lot of code
serialization, this prefetch component is the most active one.

The last prefetch component, the Small-loop-prefetcher,
utilizes the idle bus cycles when the processor is busy executing
loops that are smaller than the cache size. In contrast to the
other prefetch components, the Small-loop-prefetcher continues
prefetching for more than one cache line. To optimize perfor-
mance, the number of cache lines it prefetches is determined
in the pre-runtime analysis (e.g., to avoid the eviction of cache
lines that are part of the active loop) and stored in the RPT.

The RPT is a small table that holds code-related data to
control the prefeching. The table has entries of eight columns
that store the following information:
• Index: index of the table entry.
• Trigger: triggering address for the non-sequential

prefetcher.
• Type: the type of prefetch component to work on the

prefetch request.
• Destination: target address for non-sequential prefetching.
• Iteration: number of loop iterations.
• Next: next non-sequential entry.
• Count: number of cache lines to be prefetched when

executing a small loop.
• Depth: loop-nesting level for nested loops.
Table I shows an example of an RPT with all four possible

types of entries. Because single-path code has a single execution
trace, the entries of the RPT can be ordered in the same way
they are executed. This eliminates the need to organize the
RPT as a look-up table. Thus, whenever a PC reference needs
to be compared, only one table entry has to be tested. The
position of the current entry is kept in a register; the value of
this pointer changes as the execution proceeds.

D. Generating the Reference Prediction Table

The RPT generation is illustrated in Figure 3. The single-
path code generator of the Patmos compiler emits single-path
code for selected single-path entry functions. That is, the
entry functions themselves and the functions called within
are produced to execute on a singleton execution path. In
addition, each loop is generated with a single exit edge at the

Fig. 3: Work-flow for generation of the RPT.

end of the loop body. This setting minimizes the number of
control flow changes and the number non-sequential memory
accesses.

The RPT is created by analyzing the singleton execution trace
of the single-path code. Thereby a trace of the program counter
is recorded. We use our cycle-accurate simulator pasim, but a
simple instruction set simulator or a debugging facility could be
used for this purpose as well. The program trace is passed to the
trace analyzer. The analyzer uses the information of the symbol
table of the executable to map address ranges to the respective
functions. It extracts a subtrace for an execution of a single-
path task and constructs a dynamic interprocedural control-flow
graph, in which values of the program counter are represented
as nodes and the transitions between machine instructions are
represented as edges. Each edge is labeled with the global
count for the transition. The analysis furthermore identifies
transitions between functions, loop nests, and it computes the
iteration count for each loop.

The RPT creator uses this information to select the points
in the code that represent control-flow changes, i.e., backward
branches to loop headers (at the end of the loop body), call
sites, and returns from functions. As the RPT creator works
on single-path code, there are no if-else constructs that would
require treatment. By supplying a cache model, the table creator
computes the trigger and destination values using the cache
line size. Additional parameters, namely the cache size and
the associativity are required for classification of loop-type
entries as either large-loop or small-loop, including the count
for the latter. RPT entries are grouped by function and sorted
by trigger within each function.

IV. EVALUATION

This section presents the results of the evaluation of the
memory hierarchy. We implemented the memory hierarchy in
hardware and then integrated it into the T-CREST platform.
We synthesized the design and uploaded on an DE2-115
FPGA board with Cyclone EP4CE115 device. The hardware
consisted of Patmos dual-issue processor, cache memory and
main memory. The processor was configured as single-issue,

while the main memory was an SRAM with size of 2MB. For
our experiment we used the Mälardalen WCET benchmarks
[21]. We generated the code for the benchmarks with the
single-path code generator of the Patmos compiler for the T-
CREST platform, which is based on LLVM 3.4 [6]. Following
the code generation, we analyzed the binary outputs and
generated the RPT for each benchmark. The size of the
RPT table for Mälardalen benchmarks ranged from 2 to 178
entries. In the experiments, we evaluated the whole set of
Mälardalen benchmarks, except the fac, recursion, matmul and
st benchmarks. The latter were excluded as our prototype tools
do not handle recursion and calls to external libraries.

Figure 4 presents normalized values of benchmark execution
times to show the timing improvement that can be achieved
when a memory hierarchy with the prefetcher is used. All
benchmarks were run on two platforms that were identical,
except for the prefetcher which was only used in one setup.
On both cases the cache size was 4 KB. In the presence of
the prefetcher, we observed run-time improvements ranging
from less than 1% up to 16%. Note that all experiments show
execution-time improvements. This is due to the pre-planning
of the prefetching activities that prevents the prefetcher from
generating cache pollution or useless memory traffic that could
slow down the execution.

Even though the prefetcher guarantees improvement, the
scale of improvement depends on the structure of the single-
path code, on the size of the cache, and on the configuration
of the cache. Some benchmarks have small performance
improvements (see Figure 4). For those benchmarks, the rate
of data-cache misses is much higher than the miss rate of the
instruction cache.

To illustrate this, Figure 5 compares the execution times
of a binary search algorithm for arrays of different size.
The algorithm was executed with four different on-chip
memory configurations with the same size of 4 KB. The
first configuration uses instruction and data caches only. The
second configuration additionally includes our time-predictable
prefetcher. The third configuration uses an instruction cache
and a data scratchpad instead of the data cache. The last
configuration includes the instruction prefetcher, an instruction
cache, and a data scratchpad. For the last two configurations,
all required data were loaded into the scratchpad before the
experimental execution was started. The result shows that as
the number of elements in the array increases, the improvement
gap between configurations with data cache and scratchpad
also increases.

Figure 6 presents the influence of the cache size on the
execution time in the presence of our prefetcher. We selected
benchmarks for which the effect of changing the cache size
could be observed. We used caches sizes of 1, 2, 4, 16
and 32 KB, both in direct-mapped or two-way associative
configuration with LRU replacement and cache line sizes of
16 or 32 bytes. The results show that the prefetcher is most
effective if the size of the code is larger than the size of cache—
improvements can reach 17% for cover benchmark. Once
the cache becomes larger than the code size, the prefetcher

 0

 0.25

 0.5

 0.75

 1

 1.25

adpcm

bs bs100

cnt
com

press

cover

crc
duff

edn
expint

fdct
fft1

fibcall

fir insertsort

janne-com
plex

jfdctint

lcdnum

lm
s

ludcm
p

m
inver

ndes
ns nsichneu

prim
e

qsort-exam

qurt
select

sqrt
statem

ate

ud

e
x
e
c
u
ti
o
n
 t
im

e
 i
m

p
ro

v
e
m

e
n
t

Fig. 4: Execution time improvement for Mälardalen benchmarks

 0

 100

 200

 300

 400

 500

 600

10 20 30 40 50 60

e
x
e

c
u

ti
o

n
 t

im
e

 [
c
y
c
le

s
]

number of elements

memory configuration:
I$+D$ PR+I$+D$ I$+DSP PR+I$+DSP

Fig. 5: Binary search algorithm for different memory configu-
rations (I$: instruction cache, D$: data cache, PR: prefetcher,
DSP: data scratchpad)

is effective only on compulsory misses and the impact on
execution-time improvement gets very small. However, realistic
applications will always be larger than the instruction cache.
Otherwise, the program could simply be loaded into an on-chip
memory.

From the evaluations we can conclude that the prefetcher
always improves the execution time of single-path code. The
magnitude of the improvements, however, depends on the
structure of the code, the cache size, and the size of the code.

V. RELATED WORK

In general, research on time-predictability of the memory
hierarchies can be observed to follow two directions. On one
side, there is ongoing research on building analysis tools
for analyzing the timing behavior of conventional memory
architectures [22]. On the other side, we see the development
of new techniques of using memory hierarchies in a predicable
way to simplify the analysis. Here we limit the scope to

techniques that improve the timing predictability of on-chip
memories.

Cache locking loads memory contents into cache the and
locks it to ensure that it will remain unchanged afterward. The
benefit of such an approach is that all accesses to the locked
cache lines will always result into cache hits. The cache content
can be locked entirely [23], [24] or partially for the whole
system lifetime (static cache locking) or it can be changed at
runtime (dynamic cache locking) [25], [26]. Although cache
locking increases predictability, it reduces performance by
restricting the temporal locality of the cache to a set of locked
cache lines.

Scratchpads present another alternative for on-chip memory
[27]. Their content is managed through software, which makes
them predictable concerning the access time. They are also
smaller and consume less energy than caches of the same size.
Scratchpads are used in the PRET and MERASA processors
where they replace the cache [28], [29]. The disadvantage of
using a scratchpad is the overhead due to code allocation and the
necessity to correct the execution flow with additional control-
flow instructions as code parts are dislocated into different
memory address spaces.

The method cache is another alternative for replacing the
conventional cache. It was first proposed by Schoeberl in
[30] for Java programs and later extended for functions and
procedures of procedural languages [18]. In contrast to a
conventional cache, the method cache uses a granularity of a
method, thus guaranteeing that except for method calls and
returns all memory accesses will result in cache hits. However,
the strategy generates large overheads for cases when the whole
method is loaded into the cache, but only a small part of it is
executed.

Lee et al. [31] suggest a dual-mode instruction prefetch
scheme as an alternative to using an instruction cache. The
idea is to improve the WCET by associating a thread to
each instruction block that is part of the WCET. Threads
are generated by the compiler and remain static during the task
execution. Such a solution provides good performance only

 0

 0.25

 0.5

 0.75

 1

 1.25

cover

nsichneu

qurt
ludcm

p

sqrt
ttf1

ud statem
ate

e
x
e

c
u

ti
o

n
 t

im
e

 i
m

p
ro

v
e

m
e

n
t

cache size:
1K 2K 4K 8K 16K 32K

(a) direct-mapped cache with line size of 16 bytes

 0

 0.25

 0.5

 0.75

 1

 1.25

cover

nsichneu

qurt
ludcm

p

sqrt
fft1

ud statem
ate

e
x
e

c
u

ti
o

n
 t

im
e

 i
m

p
ro

v
e

m
e

n
t

cache size:
1KB 2KB 4KB 8KB 16KB 32KB

(b) 2-way set associative cache with line size of 16 bytes

 0

 0.25

 0.5

 0.75

 1

 1.25

cover

nsichneu

qurt
ludcm

p

sqrt
fft1

ud statem
ate

e
x
e

c
u

ti
o

n
 t

im
e

 i
m

p
ro

v
e

m
e

n
t

cache size:
1KB 2KB 4KB 8KB 16KB 32KB

(c) direct-mapped cache with line size of 32 bytes

 0

 0.25

 0.5

 0.75

 1

 1.25

cover

nsichneu

qurt
ludcm

p

sqrt
fft1

ud statem
ate

e
x
e

c
u

ti
o

n
 t

im
e

 i
m

p
ro

v
e

m
e

n
t

cache size:
1KB 2KB 4KB 8KB 16KB 32KB

(d) 2-way set associative cache with line size of 32 bytes

Fig. 6: Cache size impact on prefetch efficiency

when the block execution times are longer than the prefetching
time.

Kou et al. [32] propose TickPAD, a predictable memory for
synchronous languages. This memory system consists of four
components where each one is used to load the local memory
based on the upcoming memory access pattern. However,
having fully associative storage for the reference table makes
this solution very expensive. Also, stalling the execution until
the whole loop is fetched into the associative loop memory
degrades system performance.

Garside and Aidsley [14] have implemented a stream
prefetcher located between a memory NoC and shared main
memory. Such a position enables the prefetcher to listen to the
address references of all cores and to provide service for all of
them. Even though the prefetcher improves the performance
and is part of a time-predictable platform, the only guarantee
that can be given is that the presence of prefetcher does not
affect the WCET negatively.

VI. CONCLUSION

To overcome the problem of long execution times of
single-path code, we have proposed a new memory hierarchy
organization. This memory architecture reduces the cache-miss
penalty time and the cache-miss rate by prefetching instructions
into the cache before they are required for execution. The key
idea of the proposed approach is to use the fully predictable
execution behavior of single-path code to execute full control
on the operation of the prefetcher both in the time domain—
determining when a prefetch is initiated—and value domain—
determining from which addresses instructions are prefetched.

The proposed modification of the cache enables both fetching
and prefetching to be performed in parallel. The solution allows
the prefetcher to prefetch every cache line of the code, which
maximizes the efficiency of the prefetcher by utilizing every
idle cycle of the bus. The design of the prefetcher guarantees
that for code of any structure, the presence of the prefetcher will

never increase the execution time of the generated single-path
code.

We have evaluated the prefetcher by implementing it in an
FPGA together with the Patmos processor. Execution of single-
path code with the prefetcher on the FPGA shows improvement
of the execution of up to 17%.

ACKNOWLEDGMENT

This paper was partially funded by the EU COST Action
IC1202: Timing Analysis on Code Level (TACLe), the Euro-
pean Project FP7-ICT-2013-10-610535 AMADEOS, ARTEMIS
Joint Undertaking (JU) project EMC2 under grant agreement n◦

621429 and the European Union’s 7th Framework Programme
under grant agreement no. 288008: Time-predictable Multi-
Core Architecture for Embedded Systems (T-CREST).

Source Access

Chisel source code for the hardware can be found at:
https://github.com/t-crest/patmos/tree/icache with prefetcher/
hardware/src/icache

REFERENCES

[1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra et al., “The worst-case
execution-time problem—overview of methods and survey of tools,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 7, no. 3,
p. 36, 2008.

[2] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages. ACM, 1977, pp. 238–252.

[3] P. Puschner and A. Burns, “Writing temporally predictable code,” in
Object-Oriented Real-Time Dependable Systems, 2002.(WORDS 2002).
Proceedings of the Seventh International Workshop on. IEEE, 2002,
pp. 85–91.

[4] P. Puschner, B. Cilku, and D. Prokesch, “Constructing time-
predictable MPSoCs: Avoid conflicts in temporal control,” in Embedded
Multicore/Many-core Systems-on-Chip (MCSoC), 2016 IEEE 10th Inter-
national Symposium on. IEEE, 2016, pp. 321–328.

[5] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W.-M. W.
Hwu, “A comparison of full and partial predicated execution support for
ILP processors,” in Computer Architecture, 1995. Proceedings., 22nd
Annual International Symposium on. IEEE, 1995, pp. 138–149.

[6] D. Prokesch, S. Hepp, and P. Puschner, “A generator for time-predictable
code,” in 2015 IEEE 18th International Symposium on Real-Time
Distributed Computing. IEEE, 2015, pp. 27–34.

[7] P. Puschner, R. Kirner, B. Huber, and D. Prokesch, “Compiling for
time predictability,” in International Conference on Computer Safety,
Reliability, and Security. Springer, 2012, pp. 382–391.

[8] P. Puschner, “Transforming execution-time boundable code into tempo-
rally predictable code,” in Design and Analysis of Distributed Embedded
Systems. Springer, 2002, pp. 163–172.

[9] A. J. Smith, “Cache memories,” ACM Computing Surveys (CSUR), vol. 14,
no. 3, pp. 473–530, 1982.

[10] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative
approach. Elsevier, 2011.

[11] M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, C. W. Probst,
S. Karlsson, and T. Thorn, “Towards a time-predictable dual-issue
microprocessor: The Patmos approach,” in First Workshop on Bringing
Theory to Practice: Predictability and Performance in Embedded
Systems (PPES 2011), Grenoble, France, March 2011, pp. 11–20.

[12] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso,
J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann,
S. Hepp, B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch,
W. Puffitsch, P. Puschner, A. Rocha, C. Silva, J. Sparsø, and A. Tocchi,
“T-CREST: Time-predictable multi-core architecture for embedded
systems,” Journal of Systems Architecture, vol. 61, no. 9, pp. 449–471,
2015.

[13] E. Kasapaki, M. Schoeberl, R. B. Sørensen, C. T. Müller, K. Goossens,
and J. Sparsø, “Argo: A real-time network-on-chip architecture with
an efficient GALS implementation,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 24, pp. 479–492, 2016.

[14] J. Garside and N. C. Audsley, “Investigating shared memory tree
prefetching within multimedia noc architectures,” in Memory Architecture
and Organisation Workshop, 2013.

[15] M. D. Gomony, B. Akesson, and K. Goossens, “Architecture and optimal
configuration of a real-time multi-channel memory controller,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2013, 2013,
pp. 1307–1312.

[16] M. Schoeberl, D. V. Chong, W. Puffitsch, and J. Sparsø, “A
time-predictable memory network-on-chip,” in Proceedings of the 14th
International Workshop on Worst-Case Execution Time Analysis (WCET
2014), Madrid, Spain, July 2014, pp. 53–62.

[17] S. Abbaspour, F. Brandner, and M. Schoeberl, “A time-predictable stack
cache,” in Proceedings of the 9th Workshop on Software Technologies
for Embedded and Ubiquitous Systems, 2013.

[18] P. Degasperi, S. Hepp, W. Puffitsch, and M. Schoeberl, “A method
cache for Patmos,” in 2014 IEEE 17th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing.
IEEE, 2014, pp. 100–108.

[19] M. Schoeberl, F. Brandner, S. Hepp, W. Puffitsch, and D. Prokesch,
“Patmos reference handbook,” Technical University of Denmark, Tech.
Rep., 2014.

[20] A. J. Smith, “Sequential program prefetching in memory hierarchies,”
Computer, vol. 11, no. 12, pp. 7–21, 1978.

[21] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen
WCET benchmarks – past, present and future,” B. Lisper, Ed. Brussels,
Belgium: OCG, Jul. 2010, pp. 137–147.

[22] M. Lv, N. Guan, J. Reineke, R. Wilhelm, and W. Yi, “A survey on static
cache analysis for real-time systems,” Leibniz Transactions on Embedded
Systems, vol. 3, no. 1, pp. 05–1, 2016.

[23] H. Falk, S. Plazar, and H. Theiling, “Compile-time decided instruction
cache locking using worst-case execution paths,” in Proceedings of the
5th IEEE/ACM international conference on Hardware/software codesign
and system synthesis. ACM, 2007, pp. 143–148.

[24] S. Plazar, J. C. Kleinsorge, P. Marwedel, and H. Falk, “WCET-aware static
locking of instruction caches,” in Proceedings of the Tenth International
Symposium on Code Generation and Optimization. ACM, 2012, pp.
44–52.

[25] I. Puaut, “WCET-centric software-controlled instruction caches for hard
real-time systems,” in 18th Euromicro Conference on Real-Time Systems
(ECRTS’06). IEEE, 2006, pp. 10–pp.

[26] H. Ding, Y. Liang, and T. Mitra, “WCET-centric dynamic instruction
cache locking,” in Proceedings of the conference on Design, Automation
& Test in Europe. European Design and Automation Association, 2014,
p. 27.

[27] L. Wehmeyer and P. Marwedel, “Influence of memory hierarchies
on predictability for time constrained embedded software,” in Design,
Automation and Test in Europe. IEEE, 2005, pp. 600–605.

[28] I. Liu, J. Reineke, and E. A. Lee, “A PRET architecture supporting
concurrent programs with composable timing properties,” in 2010
Conference Record of the Forty Fourth Asilomar Conference on Signals,
Systems and Computers. IEEE, 2010, pp. 2111–2115.

[29] S. Metzlaff, S. Uhrig, J. Mische, and T. Ungerer, “Predictable dynamic
instruction scratchpad for simultaneous multithreaded processors,” in
Proceedings of the 9th workshop on MEmory performance: DEaling
with Applications, systems and architecture. ACM, 2008, pp. 38–45.

[30] M. Schoeberl, “A time predictable instruction cache for a java processor,”
in OTM Confederated International Conferences” On the Move to
Meaningful Internet Systems”. Springer, 2004, pp. 371–382.

[31] M. Lee, S. L. Min, C. Y. Park, Y. H. Bae, H. Shin, and C.-S. Kim,
“A dual-mode instruction prefetch scheme for improved worst case and
average case program execution times,” in Real-Time Systems Symposium,
1993., Proceedings. IEEE, 1993, pp. 98–105.

[32] M. Kuo, P. Roop, S. Andalam, and N. Patel, “Precision timed embedded
systems using tickpad memory,” in 2013 13th International Conference
on Application of Concurrency to System Design. IEEE, 2013, pp.
206–215.

https://github.com/t-crest/patmos/tree/icache_with_prefetcher/hardware/src/icache
https://github.com/t-crest/patmos/tree/icache_with_prefetcher/hardware/src/icache

