
Architecture for Object-Oriented Programming Languages

Martin Schoeberl
Institute of Computer Engineering

Vienna University of Technology, Austria
mschoebe@mail.tuwien.ac.at

ABSTRACT
In this paper we investigate the overheads of object-oriented op-
erations, such as virtual method dispatch and field access, in the
context of an embedded processor for real-time systems. As an ex-
ample we use a Java processor that implements those operations
in microcode similar to the way those operations are compiled to
a RISC processor. As this processor is a soft-core, implemented
in an FPGA, an optimization of those operations is a valuable op-
tion. Significant application speedup is possible by providing an
architecture for object-oriented programming languages. We also
evaluate the hardware cost of this optimization with respect to the
application speedup.

1. INTRODUCTION
Object oriented (OO) languages, such as Java and C#, are the

dominant languages for desktop and server programming. How-
ever, in embedded systems C is still the common choice. This con-
servatism in the embedded systems domain is not just the avail-
ability of a large code base in C. The main reason is the pressure
for efficiency – with respect to memory consumption and proces-
sor resources. Java, as a popular example of an OO language, uses
just-in-time compilation on the target to achieve an acceptable per-
formance and still provides the platform independent class files. In
an embedded system a compiler on the target is usually not an op-
tion due to the large memory usage. Therefore, the Java virtual
machine (JVM) in an embedded system is still implemented as an
interpreter.

One solution for a high-performance JVM for embedded sys-
tems is a Java processor. A Java processor implements the byte-
codes, the instruction set of the JVM, in hardware. In [10, 11]
JOP, the Java optimized processor, is presented. JOP is intended to
be a time-predictable Java processor for embedded hard real-time
systems. Simple bytecodes are implemented in hardware, more
complex, such as OO oriented bytecodes, by microcode sequences.
Compared to other Java processors and solutions in the embedded
domain JOP is a very small and high performance solution [9]. In
this paper we evaluate the benefits from implementing OO related

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES ’07 September 26-28, 2007 Vienna, Austria
Copyright 2007 ACM 978-59593-813-8/07/09 ...$5.00.

instructions on JOP1.
Other Java processors such as aJile’s JEMCore [1, 3], Sun’s pi-

coJava [8], and Komodo [6] are quite similar to JOP. Simple byte-
codes are supported by the processor pipeline, more complex are
implemented by the execution of microcode or with a software
trap. The Cjip processor [2, 5] takes this approach to the extreme:
All bytecode instructions are implemented by microcode to support
multiple instruction sets for Java, C, C++ and assembler.

In [15] support for object access in a Java processor is consid-
ered. The proposal deals to a great extent with a new cache archi-
tecture for objects. However, no implementation or estimation of
the implementation complexity is given. The jHISC project [14]
proposes a high-level instruction set architecture for Java. This
project is closely related to the proposed approach. However, the
resulting design is probably not very well balanced. The proces-
sor consumes 15500 LCs compared to about 3000 LCs for JOP.
The maximum frequency in a Xilinx Virtex FPGA is 30 MHz com-
pared to 100 MHz for JOP. According to [14] the prototype can
only run simple programs and the performance is estimated with a
simulation.

The rest of the paper is organized as follows: Section 2 gives an
overview of OO instructions in Java as defined by the JVM specific-
tion [7]. In Section 3 we investigate the hardware implementation
of OO instructions in a quantitative approach and evaluate the re-
sults in Section 4 by implementing array instructions in hardware
on JOP. Section 5 concludes the paper and gives directions for fu-
ture development.

2. OO INSTRUCTIONS
The JVM specification [7] defines bytecodes for OO instructions.

Those instructions fall into four categories:

• Object and array creation

• Method invocation

• Field access

• Array access

All those instructions are related to either an object2 or a class.
That means that the instructions operate on a reference to an ob-
ject or class. Therefore, the object and class structure layout of the
runtime system influences the complexity of the instruction. When
e.g., the JVM uses a compacting garbage collector (GC) the ob-
ject references are usually implemented by an indirection through

1JOP is open-source and all sources, including the changes pro-
posed in this paper, are available at http://www.jopdesign.com/
2Arrays are considered objects in Java

a handle. In that case the movement of objects by the GC is simpli-
fied, but the object access involves an additional memory load.

Java is a safe language with runtime checks to avoid hard to find
pointer errors such as in C. Each reference to an object is symbolic.
That means that no addresses to data structures are available at the
JVM level. No efficient pointer arithmetic is possible. Furthermore,
each usage of a reference is checked at runtime to be not null. A
null reference has to raise an exception.

2.1 Object and Array Creation
Class instances and arrays are created with single bytecodes such

as new or newarray. The objects are allocated on a heap and are
deleted by a garbage collector (GC) when not referenced anymore.
The creation bytecodes interact closely with the GC and are there-
fore usually implemented by software on a Java processor.

2.2 Method Invocation
Methods in Java come in two flavors: static methods that be-

long to the class and virtual methods that belong to an object. A
virtual method is the main vehicle to implement polymorphism.
The receiver method depends on the object type. Therefore, the
target method is selected at runtime. To avoid searching the re-
ceiver method in the class hierarchy the common implementation
of method lookup is through a virtual method dispatch table. The
table for a class (object type) contains references to all inherited
methods and overridden or additional methods. Additional to the
method address some auxiliary information, such as number of pa-
rameters and number of local variables, is necessary for an efficient
method invoke. The JVM defines four bytecodes for method invo-
cation:

invokestatic: A class method (declared static) is invoked. As the
target does not depend on an object, the method reference
can be resolved at load/link time.

invokevirtual: An object reference is resolved and the correspond-
ing method is invoked. The resolution is usually done with
a dispatch table per class containing all implemented and in-
herited methods. With this dispatch table, the resolution can
be performed in constant time.

invokeinterface: An interface allows Java to emulate multiple in-
heritance. A class can implement several interfaces, and dif-
ferent classes (that have no inheritance relation) can imple-
ment the same interface. This flexibility results in a more
complex resolution process. One method of resolution is a
search through the class hierarchy that results in a variable,
and possibly lengthy, execution time. A constant time resolu-
tion is possible by assigning every interface method a unique
number. Each class that implements an interface needs its
own table with unique positions for each interface method of
the whole application.

invokespecial: Invokes an instance method with special handling
for superclass, private, and instance initialization. This byte-
code catches many different cases. This results in expensive
checks for common private instance methods.

2.3 Field Access
Fields, similar to methods, come in two flavors: static or class

fields that belong to a class and object (or class instance) fields.
Static fields are accessed by the bytecode getstatic and putstatic.
As the addresses for the static fields are defined during class load
and link time the access is usually faster than for object fields.

public int test(int cnt) {

int a = 0;
int i;

for (i=0; i<cnt; ++i) {
a += arr[i&0x3ff];

}
return a;

}

public int overhead(int cnt) {

int a = 0;
int i;

for (i=0; i<cnt; ++i) {
a += abc&0x3ff;

}
return a;

}

Figure 1: Micro benchmark to measure iaload

Object fields are inherited in the same way as methods. A similar
trick such as the method dispatch table can be applied to object
fields: objects contain the inherited fields at the same position as in
the super class. Additional fields are added at higher positions. This
position can be determined at class load/link time and no runtime
resolution is necessary.

2.4 Array Access
Arrays are first class objects in Java. An array is allocated on the

heap and can only be deleted by the GC. As with objects a reference
indirection through a handle is usually needed for a compacting
GC. Furthermore, besides the usual null pointer check, a JVM has
to perform array bounds checks at runtime. All those operations
result in a way slower array access as compared to a C style array.

2.5 Execution Time
We have measured the execution time of some simple bytecodes

and OO bytecodes on two Java processors. As we cannot directly
measure the execution time of a single bytecode3 we use an in-
direct approach. We measure the execution time of two different
bytecode sequences in a loop. One sequence contains the bytecode
to measure, the other sequence not. The difference between the
two execution times (divided by the loop count) is the execution
time of the bytecode under test. However, as almost all bytecodes
manipulate the stack we have to include at least a second bytecode
to compensate this change.

Figure 1 shows an example to measure the execution time of
iaload. The execution time of overhead() is subtracted from the
execution time of test(). Figure 2 lists the bytecodes of the code
within the loop for method test() and method overhead(). The dif-
ference of the two methods are the bytecodes iload_3 and iaload.
That means we can only measure the execution time for both byte-
codes.

Furthermore, the benchmark framework is adaptive to provide
meaningful results for different platforms. The loop bound (cnt) is
3It would be possible by instrumenting the bytecode and when a
clock cycle counter is available that can be accessed at the bytecode
level. This is possible in JOP, but not in the general case on a JVM.

test loop:
9: iload_2
10: getstatic #2; //Field arr:[I
13: iload_3
14: sipush 1023
17: iand
18: iaload
19: iadd
20: istore_2

overhead loop:
9: iload_2
10: getstatic #3; //Field abc:I
13: sipush 1023
16: iand
17: iadd
18: istore_2

Figure 2: Bytecode listing of the iaload benchmark

increased (exponentially) until the test method runs for more than
1 second. With this relative long measurement we can use Sys-
tem.currentTimeMillis() to measure execution times of short byte-
code sequences.

Table 1 shows execution time measurements of simple bytecodes
and OO-related bytecodes on JOP and on the aJile aJ100 [1]. As
explained above, those measurements include additional bytecodes.
The first row shows the execution time of an iload_3 and an iadd.
For the JOP case both instructions execute in a single cycle. The
measurement of iaload contains an additional iload_3 (as seen in
Figure 2). Therefore, the iaload alone takes 35 cycles.

From the table we can see that OO bytecodes are quite expen-
sive. Field and array access is in the range of 10 to 30 cycles.
Invoke instructions are even more expensive and take around 100
clock cycles on JOP and the aJ100. In JOP the OO related byte-
codes are implemented in microcode [10]. Similar to the way those
bytecodes are implemented on a RISC processor without support
for OO instructions.

3. A QUANTITATIVE APPROACH
Hennessy and Patterson’s warning

Virtually every practicing computer architect knows
Amdahl’s Law. Despite this, we almost all occasion-
ally expend tremendous effort optimizing some feature
before we measure its usage. Only when the overall
speedup is disappointing do we recall that we should
have measured first before we spent so much effort en-
hancing it!

was prominent in the 1st edition of [4] (1990) and is still included in
the 4th edition (2006). We will follow their advice and first measure
the potential speedup that can be gained by a hardware support for
object-oriented instructions.

3.1 Amdahl’s Law
Amdahl’s Law gives us the tool to calculate the performance gain

(speedup) of the complete system when part of the system is im-
proved. The central message is that the overall speedup depends on
the speedup of the enhanced feature and the fraction in time this
feature is used.

The basic processor performance equation [4] gives us the CPU

Instruction JOP aJile

iload iadd 2 8
if_icmplt taken 6 18
if_icmplt n/taken 6 14
getfield 22 23
getstatic 15 15
iaload 36 13
invokevirtual 138 115
invokestatic 100 95
invokeinterface 144 153

Table 1: Bytecode benchmarks for JOP and the aJile aJ100
(Execution time in clock cycles)

time texe with the instruction count IC, the clock cycles per instruc-
tion CPI, and the clock cycle time tclock:

texe = IC×CPI× tclock (1)

When we keep IC and the clock cycle time constant by our im-
provement we can get our speedup factor by just comparing the
original CPI and the enhanced CPI.

With ICi and CPIi of instruction i the overall CPI is

CPI =
∑

n
i=1 ICi×CPIi

IC
(2)

We just need the individual CPI values and the instruction count
or relative instruction frequency of each instruction. For the pro-
cessor used in this example the CPI values are listed in [10]. We
can measure ICi by generating traces from benchmarks. However,
(2) is a simplified version which does not include any pipeline stalls
through data dependencies or cache misses.

With CPIstall for cycles caused by pipeline stalls and CPImiss for
cache miss cycles CPI for a single scalar pipeline is

CPI =
∑

n
i=1 ICi×CPIi

IC
+CPIstall +CPImiss (3)

As CPIstall and CPImiss cannot be looked up in a data sheet or eas-
ily measured we take an indirect approach to estimate the overall
speedup by architectural changes.

A simpler and more accurate approach is to artificially increase
the execution time of a single instruction and measure the resulting
execution time tnew. Using Amdahl’s law with fraction enhanced
fi and speedup si of the enhanced feature (instruction) the overall
application speedup s is

s =
told

tnew
=

1

(1− fi +
fi
si

)
(4)

Hence we can evaluate fi4 for instruction i by

fi =
si

1− si
(

1
s
−1) (5)

This approach is very efficient when using an FPGA for the eval-
uation of the architecture. Increasing the execution time of an in-
struction is simple and we can run the benchmarks in real-time on
the target. The same measurements within a VHDL simulation
would just take too long and would not allow us to run the same
amount of benchmarks.

4Note that fi is the execution time fraction for bytecode i and not
the instruction frequency.

Benchmark JOP aJile

Kfl 17120 14148
UdpIp 6781 6415
Lift 13574 –

Table 2: Application benchmarks results for JOP and the aJile
aJ100 (in iteration/s)

Instruction si s fi

invoke 0.5 0.81 23.8%
getfield 0.5 0.89 11.9%
putfield 0.5 0.99 1.1%
getstatic 0.5 0.93 7.4%
putstatic 0.5 0.98 1.8%
xaload 0.5 0.89 12.1%
xastore 0.5 0.92 9.0%

all 0.5 0.59 68.6%

Table 3: Execution time fractions of OO bytecodes

3.2 Measurements
We use the embedded Java benchmark suite JavaBenchEmbed-

ded5 V1.1 for our measurement as described in [9]. The benchmark
suite contains three application benchmarks: Kfl, UdpIp, and Lift.
Kfl and Lift are two real-time applications in use in an industrial en-
vironment. The benchmarks are adapted by a simulation of the en-
vironment, i.e. sensor inputs, to generate a realistic execution pro-
file. UdpIp is small UDP client-server application that tests an em-
bedded TCP/IP stack, written completely in Java. We would prefer
to use a standard benchmark, such as SPECjvm98 [13]. However,
most of the SPECjvm98 benchmarks cannot run within the 1 MB
memory we have available in our embedded system. Furthermore,
all of them need a file system which is not available in many em-
bedded systems.

The benchmark measures iterations per second, which means a
higher value represents a better performance. Table 2 shows the re-
sults for a 100 MHz JOP version with 4 KB instruction cache and
the aJile aJ100 [1] at 103 MHz. Both systems use 1 MB SRAM,
with 15 ns and 10 ns access time respectively, as their main mem-
ory.

In our measurement we increase the execution time of a byte-
code artificially by a factor of 2. Therefore, the speedup si for this
bytecode is 0.5. All three benchmarks are combined by the geomet-
ric mean. The result is compared to the original, unaltered version.
With the resulting application speedup s we calculate the fraction
of the execution time fi for instruction i with (5).

Table 3 summarizes the results. Column s gives the application
speedup (told

tnew
) and fi the execution time fraction.

The row with invoke includes all four variants of invoke byte-
codes (invokevirtual, invokestatic, invokeinterface, and invokespe-
cial). getfield and putfield are the bytecodes to access object fields,
getstatic and putstatic to access static fields (i.e. class fields). The
rows xaload and xastore include all versions of array access (iaload,
saload,...).

We also measured the slowdown when all object related byte-
codes are slowed down by the factor of 2. The result is shown in
the last row all. It shows that all OO instructions account for about

5Available at http://www.jopdesign.com/. The benchmark suit
also contains the micro benchmarks for bytecode measurements as
performed in Section 2.5.

Instruction si fi s

invoke 5 23.8% 1.24
getfield 2 11.9% 1.06
putfield 2 1.1% 1.01
getstatic 2 7.4% 1.04
putstatic 2 1.8% 1.01
xaload 2.33 12.1% 1.07
xastore 2.33 9.0% 1.05

all 67.0% 1.73

Table 4: Speedup estimates by enhanced OO bytecodes

69% of the execution time in the current implementation of JOP for
our three application benchmarks.

The invoke instructions dominate the execution time of the OO
related instructions. The speedup s of the applications is about 0.81
when the execution time for the invoke instructions are doubled
(si = 0.5), resulting in fi of 24%. This can be explained by two
factors:

1. Methods in Java are usually very short and the execution fre-
quency ICinvoke

IC of the invoke instructions are relative high

2. The invoke instruction for Java is quite expensive. It involves
saving the context on a stack frame, looking up the receiver
method in a method table, looking up the number of argu-
ments and local variables, and preparing the new stack frame.
In the current implementation of JOP and similar Java pro-
cessors, such as the aJile [1], the invoke takes around 100
cycles (see Table 1). In JOP this instruction is coded in mi-
crocode.

The next best candidate for optimization are the array access
bytecodes (xaload and xastore) that account together for 21% of
the execution time in the current implementation. What surprises a
little bit is that array store operations account for almost the same
execution time fraction as the array load operations. We expected
that array loads would be more common than array stores.

The relation between load and store instructions (get and put in
JVM bytecode terminology) is as expected. Loads are generally
more common than stores and the execution time of the two in-
structions is similar (e.g. getstatic needs 14 cycles and putstatic 15
cycles on JOP with a memory with one wait-state).

From Table 3 we can see that the invoke instruction clearly dom-
inates our execution time. It is therefore the prime candidate for
optimization.

3.3 Estimations
Based on the measurement we can estimate the speedup by im-

proving OO instruction through hardware support. It has to be
noted that the estimated cycles in this section for enhanced oper-
ations are rough guesses as we do not know the details before we
actually implement the enhancements. Actual cycle counts for the
implementation of the array access are given in Section 4.

Knowing the execution time fraction fi of instruction i we can es-
timate the speedup gained by improvement through hardware sup-
port. In the microcode for the invoke instruction a lot of bit ma-
nipulation is performed to extract information from the method in-
formation fields. This part can be easily speed up by hardware.
Lookup of the method information can benefit moderately from
hardware support. We estimate that the invoke instruction can be
executed in about 20 cycles in hardware compared to 100 cycles

in microcode, resulting in a speedup si of 5. The estimation of 20
cycles in hardware is based on the inspection of the microcode that
currently implements the invoke instruction.

The array access takes 35 cycles. Most of the cycles are spent for
the null pointer check and the array bounds check. Performing this
checks and the indirect memory access in hardware can probably
be performed in 15 cycles (si = 2.33). For the object and class field
access we assume a cut of the execution time by 2.

According to Amdahl’s law we calculate the overall speedup s
for each category. The results are shown in Table 4. The highest
speedup of 1.24 can be gained by an enhancement of the invoke
instruction. This instruction has a high individual speedup si of 5
and consumes 24% of the execution time in the original version.
The next best candidates are the array access instructions.

The last row (all) shows the estimated speedup when we enhance
all OO related bytecodes. It is calculated as follows:

s =
1

(1−∑ fi +∑
fi
si

)
(6)

4. EVALUATION
We evaluate the suggested OO hardware on JOP by implement-

ing the array bytecodes in hardware. We have chosen the array
bytecodes as they consume a relevant portion of the execution time,
but are easier to implement than an invoke instruction. The imple-
mentation of array instructions also involves quite similar opera-
tions (e.g., null pointer check, pointer indirection) that are needed
for the field access. Therefore, they provide the basis for the imple-
mentation of those instructions.

4.1 Array Load and Store
Arrays in Java are very similar to objects – actually the Java lan-

guage definition calls them objects. Objects (and arrays) are allo-
cated on the heap and are candidates for garbage collection (GC).
For a compacting GC the arrays and objects have to be moved in
the heap. To simplify the GC [12] an array/object reference does
not point directly to the data. It points to a handle that contains the
real pointer to the data. In case of a move only this handle and not
all references have to be updated. When an object reference is used
it has to be checked to be not null at runtime.

Another feature that makes Java a safer language is array bounds
check. Those checks during runtime also add to the overhead. An
additional memory access is necessary to get the size of the array
on each access. Array access in Java is quite expensive when com-
pared to C.

According to the JVM specification [7] following operations have
to be performed for an array access:

• Check the reference against null

• Check array bounds

• Read or write the array data

Besides the checks an array load instruction needs three memory
accesses:

1. Load the pointer to the array from the handle

2. Load the array size for the bound check

3. Load the real data

An array store needs two load operations and one store operation.

Instruction si s

xaload 3.5 1.10
xastore 3.2 1.06

xaload and xastore 1.18

Table 5: Speedup with array access hardware

The original implementation performs the memory operations
and checks sequentially in microcode. The execution time in clock
cycles for the array load and store bytecodes are

nload = 32+3rws

nstore = 35+2rws +wws

where rws and wws are the wait states for the external memory. On
JOP at 100 MHz with 15 ns SRAM a memory access takes 2 clock
cycles, meaning a single wait state. Therefore the array load in-
struction takes 35 clock cycles and the store 38.

4.2 Hardware Implementation
In our hardware implementation we still need to access the mem-

ory three times. However, we perform the checks concurrent to the
memory access. The null pointer check can be performed while the
real pointer to the array (the handle indirection) is loaded. When
the original reference is null the load of a wrong pointer does not
hurt. The data is just discarded.

The array size is part of the handle and not part of the data. It is at
the address re f erence+1. Therefore we can start this memory load
even before we know the outcome of the first load (the pointer).
During the size load the effective address is calculated (addition of
the array index to the pointer). The index is also checked to be not
negative at the same time (lower bound check).

When the array size is known the index can be checked for the
upper bound. Then the actual array access is allowed. For the array
load we can even perform the bounds check in parallel to the value
load. That means we start the array load before we know the array
size. In case of an array bound exception the wrong data is just
discarded. This optimization is of course not possible on a write.

The resulting execution times for the array operations are

nload = 7+3rws

nstore = 9+2rws +wws

With rws and wws of 1 an array load takes 10 clock cycles and an
array store 12 clock cycles. Therefore the speedup si is 3.5 and
3.17.

4.3 Measurements
During the change of the hardware we performed the bench-

marks as described in Section 3.2. Table 5 shows the results. A
hardware implementation of the array load instructions results in
a 10% speedup and the enhanced store instruction in 6% speedup.
Both values are higher than the estimates in Section 3.3. In the esti-
mations we were conservative with the possible individual instruc-
tion speedups si. Implementing both instruction types in hardware
gives an application speedup of 18%.

Table 6 shows the performance of the individual benchmarks in
the original version and the enhanced version of JOP. The last col-
umn gives the resulting speedup s. The last row gives the geometric
mean of the benchmark results and the speedup of this averages.

We can see that different applications benefit to a different ex-
tent from the enhanced array instructions. The UpdIp benchmark

Benchmark original enhanced s

Kfl 17120 18347 1.07
UdpIp 6781 8520 1.26
Lift 13574 16425 1.21

geo. mean 11637 13693 1.18

Table 6: Individual benchmark speedup

original enhanced ratio

JOP 2691 2906 1.08
jopcpu 2296 2485 1.08
mem.int. 89 304 3.42

Table 7: Processor and memory module size in logic cells (LCs)

contains a TCP/IP stack where a lot of buffer manipulation is per-
formed (e.g. CRC calculation). Those buffer manipulations benefit
from faster array access. At the other end of the spectrum is the
Kfl benchmark. It is a control application written in a conservative
programming style. It uses mostly static variables and performs a
lot of control flow decisions and less array accesses.

4.4 Hardware Cost
One question remains to be answered. Is the investment in addi-

tional hardware for OO instruction support worth the speedup? In
an FPGA the hardware size is measured in number of logic cells
(LC) and number of on-chip memories. A LC, in the FPGA used
for the evaluation, contains a 4-bit lookup table and a single regis-
ter. The implementation of the array instructions needs additional
LCs and no additional on-chip memory.

Table 7 shows the resource consumption of the original and en-
hanced version of JOP. The row JOP includes the processor and
some minimal peripheral devices. The row jopcpu shows the size
of the processor core without the peripheral devices. From the last
column we see that the implementation of the array instructions in
hardware increases the chip size by 8% – a moderate cost for the
performance gain of 18%.

The main change of JOP is just in the memory interface module
as listed in the last row (mem.int.). The core pipeline of the proces-
sor is, besides additional exception signalling, not touched by the
change. The maximum frequency of the design is not affected by
the change in the memory module. The critical path is still in the
core pipeline.

5. CONCLUSION
In this paper we argue for computer architectural support of

object-oriented languages. Some operations, such as virtual method
dispatch, object field access, and array access, are quite complex
and result in a lower performance of OO programs than procedural
programs. To enable an OO oriented programming style in embed-
ded systems, where computing resources are usually restricted, we
propose a processor architecture with support of OO operations.

We have measured the fraction of time spent for OO instruc-
tions in a Java processor with microcode implementation of those
instructions. About 69% of the execution time is spent on those
instructions. We estimated a possible whole application speedup of
1.7 when those instructions are supported by the micro-architecture.

For an evaluation of the proposed architecture we implemented
array load and store bytecodes within JOP, a Java processor. The
individual instruction speedup is larger than 3 and resulted in a

application speedup of 1.18. The hardware cost for this micro-
architecture change is about 8% of the whole processor. Therefore
we got 18% speedup for just 8% more transistors.

As future work we plan to implement the field instructions and
invoke instructions in hardware. We expect that the field access
will be cheap in hardware based on the array access already im-
plemented. Both operations can be implemented in the memory
access module and need no change in the core pipeline. However,
the invoke instructions interacts with the on-chip stack cache and
the registers (e.g. stack pointer, variable pointer). The invoke im-
plementation requires changes in the core pipeline and we assume
a higher hardware cost. However, the estimated speedup of another
24% is a good argument to pay for the additional hardware.

6. REFERENCES
[1] aJile. aj-100 real-time low power Java processor. preliminary

data sheet, 2000.
[2] T. R. Halfhill. Imsys hedges bets on Java. Microprocessor

Report, August 2000.
[3] D. S. Hardin. Real-time objects on the bare metal: An

efficient hardware realization of the Java virtual machine. In
Proceedings of the Fourth International Symposium on
Object-Oriented Real-Time Distributed Computing, page 53.
IEEE Computer Society, 2001.

[4] J. Hennessy and D. Patterson. Computer Architecture: A
Quantitative Approach, 4th ed. Morgan Kaufmann
Publishers, 2006.

[5] Imsys. Im1101c (the cjip) technical reference manual /
v0.25, 2004.

[6] J. Kreuzinger, U. Brinkschulte, M. Pfeffer, S. Uhrig, and
T. Ungerer. Real-time event-handling and scheduling on a
multithreaded Java microcontroller. Microprocessors and
Microsystems, 27(1):19–31, 2003.

[7] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, Reading, MA, USA, second
edition, 1999.

[8] J. M. O’Connor and M. Tremblay. picoJava-I: The Java
virtual machine in hardware. IEEE Micro, 17(2):45–53,
1997.

[9] M. Schoeberl. Evaluation of a Java processor. In
Tagungsband Austrochip 2005, pages 127–134, Vienna,
Austria, October 2005.

[10] M. Schoeberl. JOP: A Java Optimized Processor for
Embedded Real-Time Systems. PhD thesis, Vienna
University of Technology, 2005.

[11] M. Schoeberl. A Java processor architecture for embedded
real-time systems. Journal of Systems Architecture,
doi:10.1016/j.sysarc.2007.06.001, 2007.

[12] M. Schoeberl and J. Vitek. Garbage collection for safety
critical java. In Proceedings of the 5th international
workshop on Java technologies for real-time and embedded
systems (JTRES 2007), 2007.

[13] SPEC. The spec jvm98 benchmark suite. Available at
http://www.spec.org/, August 1998.

[14] Y. Tan, C. Yau, K. Lo, W. Yu, P. Mok, and A. Fong. Design
and implementation of a java processor. Computers and
Digital Techniques, IEE Proceedings-, 153:20–30, 2006.

[15] N. Vijaykrishnan and N. Ranganathan. Supporting object
accesses in a Java processor. Computers and Digital
Techniques, IEE Proceedings-, 147(6):435–443, 2000.

