
Non-blocking Root Scanning
for Real-Time Garbage Collection

Wolfgang Puffitsch
Institute of Computer Engineering

Vienna University of Technology, Austria
wpuffits@mail.tuwien.ac.at

Martin Schoeberl
Institute of Computer Engineering

Vienna University of Technology, Austria
mschoebe@mail.tuwien.ac.at

ABSTRACT
Root scanning is a well known source of blocking times due to
garbage collection. In this paper, we show that root scanning
only needs to be atomic with respect to the thread whose stack is
scanned. We propose two solutions to utilize this fact: (a) block
only the thread whose stack is scanned, or (b) shift the responsi-
bility for root scanning from the garbage collector to the applica-
tion threads. The latter solution eliminates blocking due to root
scanning completely. Furthermore, we show that a snapshot-at-
beginning write barrier is sufficient to ensure the consistency of the
root set even if local root sets are scanned independently of each
other. The impact of solution (b) on the execution time of a garbage
collector is shown for two different variants of the root scanning
algorithm. Finally, we evaluate the resulting real-time garbage col-
lector in a real system to confirm our theoretical findings.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.3.4 [Programming Languages]:
Processors—Memory management (garbage collection)

General Terms
Theory, Experimentation

Keywords
garbage collection, real-time, root scanning

1. INTRODUCTION
Tracing garbage collectors traverse the object graph to identify

the set of reachable objects. The starting point for this tracing is
the root set, a set of objects which is known to be directly accessi-
ble. On the one hand, these are references in global (static in Java)
variables, on the other hand these are references that are local to
a thread. The latter comprise the references in a thread’s runtime
stack and thread-local CPU registers. The garbage collector must
ensure that its view of the root set is consistent before it can pro-
ceed, otherwise objects could be erroneously reclaimed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES ’08 September 24-26, 2008, Santa Clara, California, USA
Copyright 2008 ACM 978-1-60558-337-2/08/9 ...$5.00.

For stop-the-world garbage collectors, the consistency of the ob-
ject graph is trivially ensured. Incremental garbage collectors how-
ever require the use of barriers, which enforce the consistency of
marking and the root set [3, 6, 19, 20]. While barriers are an ef-
ficient solution for the global root set, they are considered to be
too inefficient to keep the local root sets consistent. Even frequent
instructions like storing a reference to a local variable would have
to be guarded by such a barrier, which would cause a considerable
overhead and make it difficult if not impossible to compute tight
bounds for the worst case execution time (WCET). The usual so-
lution to this problem is to scan the stacks of all threads in a single
atomic step and stall the application threads while doing so.1 The
atomicity entails that the garbage collector may not be preempted
while it scans a thread’s stack, which in turn causes a considerable
release jitter even for high-priority threads.

However, the atomicity is only necessary w. r. t. the thread whose
stack is scanned, because a thread can only modify its own stack.
If the garbage collector scans a thread’s stack, the thread must not
execute and atomicity has to be enforced. Other mutator threads
are allowed to preempt the stack scanning thread. If a thread scans
its own stack, it is not necessary to prohibit the preemption of the
thread – when the thread continues to execute, the stack is still in
the same state and the thread can proceed with the scanning with-
out special action. Consequently, preemption latencies due to root
scanning can be avoided. With such a strategy, it is also possible
to minimize the overhead for root scanning. It can be scheduled in
advance such that the local root set is small at the time of scanning.

In this paper, we show the feasibility of this approach. We
present two solutions for periodic and sporadic threads, and evalu-
ate their trade-offs. Furthermore, we show how the worst case time
until all threads have scanned their stacks can be computed.

We consider a garbage collection approach that uses a sepa-
rate thread for the garbage collector, as suggested by Henriksson
[10]. Such an approach is also used by Robertz [12] and in IBM’s
Metronome garbage collector [2] to improve timely determinism
of garbage collection. For our experiments, we used a concurrent-
copy garbage collector as described in [15] and [17]. Our theo-
retical findings are however not specific to any particular tracing
garbage collection algorithm.

The contributions of this paper are:

• Stack scanning performed by the garbage collection thread
needs only be atomic w. r. t. to the thread whose stack is
scanned.

• Delegating the stack scanning to the mutator threads com-
pletely avoids blocking time due to root scanning.

1The former implies the latter on uniprocessors, but not on
multi-processors.

• A snapshot-at-beginning write barrier [20] is sufficient to
protect against losing an object when a reference migrates
from a not-yet-scanned stack to a scanned stack.

The paper is organized as follows: In the following section, we
describe related work on root scanning in real-time garbage collec-
tors. In Section 3 we present our approach to root scanning and
establish its correctness. An implementation of the approach is
evaluated in Section 4. Section 5 concludes the paper and presents
an outlook on future work.

2. RELATED WORK
The idea of delegating local root scans to the mutator threads is

proposed by Doligez, Leroy and Gonthier in [8] and [7]. They point
out that this allows for more efficient code and reduces the disrup-
tiveness of garbage collection. Mutator threads should check an
appropriate flag from time to time and then scan their local root set.
However, the authors remain vague on when the mutators should
check this flag and do not investigate the effect of various choices.
As they aim for efficiency rather than real-time properties, they do
not consider a thread model with known periods and deadlines.

The approach presented in this paper builds to some degree on
an approach by Schoeberl and Vitek [17]. They propose a thread
model which does not support blocking and where threads can-
not retain a local state across periods. They also propose that the
garbage collector runs at the lowest priority, which entails that the
stacks of all threads are empty when a garbage collection cycle
starts. Consequently, the garbage collector only needs to consider
the global root set. Although the initial motivations differ, the work
presented in this paper can be regarded as generalization of this
earlier approach, especially w. r. t. the thread model.

In the JamaicaVM’s garbage collector, the mutator threads are
also responsible of keeping their root set up to date [18]. How-
ever, the JamaicaVM’s garbage collector employs a work-based
approach, which means that the garbage collector does not execute
in a separate thread – garbage collection is distributed among the
mutator threads. Therefore, considerations on the correctness and
execution time are hardly comparable. In [18], the average over-
head for root scanning is estimated as 11.8%.

Yuasa claims in [20] that the time for saving the root set of a
thread can be made sufficiently short by using block transfer mech-
anisms. Our experience however shows that the atomic copying of
the stack takes too long to keep the jitter reasonably low for tasks
with sub-millisecond periods.

A later approach by Yuasa [21] introduces a return barrier. In
a first step, the garbage collector scans the topmost stack frames
of all threads atomically. Then it continues to scan one frame at
a time. When a thread returns to a frame that has not yet been
scanned, it scans it by itself. Return instructions consequently carry
an overhead for the respective check. Furthermore, the proposed
policy makes it difficult to compute tight WCET bounds, because
it is difficult to predict when a scan by a thread is necessary. A
critical issue is also that the topmost frames of all threads have to
be scanned in a single atomic step. The worst case blocking time
therefore increases with the number of threads. An overhead of 2
to 10% percent due to the necessary checks for the return barrier is
reported in [21]. Depending on the configuration, 10 to 50 µs were
measured as worst case blocking time on a 200 MHz Pentium Pro
processor.

Cheng et al. propose a strategy for lowering the overhead and
blocking of stack scanning in [5]. The mutator thread marks the
activated stack frames and the garbage collector scans only those
frames which have been activated since the last scan. However,

this technique is only useful for the average case. In the worst case,
it is still necessary to scan the whole stack atomically.

3. PREEMPTIBLE ROOT SCANNING
Due to the volatile nature of a thread’s stack, the garbage collec-

tor and the mutator thread must cooperate for proper scanning. If
a thread executes arbitrary code while its stack is scanned, the con-
sistency of the retrieved data cannot be guaranteed. Therefore, a
thread is usually suspended during a stack scan. In order to ensure
the consistency of the root set, the stack is scanned atomically to
avoid preemption of the garbage collector and inhibit the execution
of the respective thread.

When the garbage collection thread scans a stack it is not al-
lowed to be preempted by that thread. However, as the stack is
thread local, preemption by any other mutator thread is not an is-
sue. Therefore, a thread will only suffer blocking time due to the
scanning of its own stack. A high priority thread, which has proba-
bly a shallow call tree, will not suffer from the scanning of deeper
stacks of more complex tasks. The protection of the scan phase
can be achieved by integrating parts of the garbage collection logic
with the scheduler. During stack scanning, only the corresponding
mutator thread is blocked.

We generalize this idea by moving the stack scanning task to
the mutator threads. Each thread scans its own stack at the end
of its period. In that case mutual exclusion is trivially enforced:
the thread performs either mutator work or stack scanning. The
garbage collector initializes a garbage collection period as usual. It
then sets a flag to signal the threads that they shall scan their stacks
at the end of their period. When all threads have acknowledged the
stack scan, the garbage collector can scan the static variables and
proceed with tracing the object graph. Why the static variables are
scanned after the local variables is discussed in Section 3.1.4.

By using such a scheme, it is not necessary to enforce the atom-
icity of a stack scan. Furthermore, the overhead for a stack scan
is low; at the end of each period, the stack is typically small if
not even empty. Such a scheme also simplifies exact stack scan-
ning, because stack scanning takes place only at a few predefined
instants. Instead of determining the stack layout for every point at
which a thread might be preempted, it is only necessary to compute
the layout for the end of a period. The required amount of data is
reduced considerably as well, which lowers the memory overhead
for exact stack scanning.

3.1 Correctness
We identified three properties which must be fulfilled to ensure

the correctness of our proposed garbage collection scheme:

• The local root set remains unmodified during scanning
(Property 1).

• Modification of the object graph during scanning does not
void correctness (Property 2).

• Migration of references between local root sets does not void
correctness (Property 3).

Property 1 refers to the situation, where a thread moves a refer-
ence from a not-yet-scanned local variable to a scanned local vari-
able and clears the not-yet-scanned variable afterwards. In such a
case, the respective root reference would be lost.

Property 2 addresses the fact that two local root sets are scanned
at different times. They do not necessarily correspond to the same
state of the object graph. It must be shown that this does not invali-
date the correct view of the object graph at mark time. This allows
threads to execute between the scanning of two local root sets.

Symbol Description
G Object graph
τi Thread i
V (G) Nodes of an object graph G (objects)
E(G) Edges of an object graph G (references)
R(G) Root set of an object graph G, R(G)⊆V (G)
ρ(G) Reachability function, set of reachable nodes in G
µ(G) Marking function, approximation of ρ(G)

Table 1: Symbol descriptions

Property 3 is similar to Property 1, but now a reference is moved
between local root sets. This is also an issue if the stack of each
thread is scanned atomically. The error scenario for this property
is when a reference is transferred from a not-yet-scanned stack to
a scanned stack and removed from the not-yet-scanned stack after-
wards.

In the following, we will sketch the proofs why the Properties
1-3 are fulfilled in our proposed garbage collection scheme. The
symbols we use throughout this section are described in Table 1.
An object graph can also be written as tuple of its nodes, edges
and root set: G = 〈V (G), E(G), R(G)〉. We consider only the
objects that are referenced by local variables as part of the root set
R(G). Objects which are referenced by static variables are handled
separately, as described in Section 3.1.4.

We define the operations ∪ and ⊇ on object graphs as
component-wise application of these operations to the nodes, edges
and root sets of two object graphs:

G∪G′ := 〈V (G)∪V (G′), E(G)∪E(G′), R(G)∪R(G′)〉
G⊇ G′ := V (G)⊇V (G′)∧E(G)⊇ E(G′)∧R(G)⊇ R(G′)

We define a relation G ./ G′ (“G bow tie G′”) of two graphs as
follows:

G ./ G′⇔ ∀v1 ∈V (G)∩V (G′) :

〈v1,v2〉 ∈ E(G)⇒ 〈v1,v2〉 ∈ E(G′), v2 ∈V (G′) ∧
〈v1,v2〉 ∈ E(G′)⇒ 〈v1,v2〉 ∈ E(G), v2 ∈V (G)

We call two graphs G and G′ out-edge consistent if G ./ G′. This re-
lation holds if out-edges of shared nodes are present in both graphs.
The out-edge consistency of object graphs is important when rea-
soning about how different threads see a shared object graph. As-
suming the out-edge consistency of sub-graphs greatly simplifies
formal handling.

Due to the relatively loose requirements on data consistency of
the Java memory model [9], two threads do not necessarily share
the same view of an object.2 While one thread assumes that a field
obj.f references an object x, another thread may assume that the
same field references an object y. Such a situation is problematic
for a garbage collector, because it would leave either object x or
object y unvisited.

Such inconsistencies originate from the fact that threads are al-
lowed to cache data locally. On uniprocessors, cache coherence is
not an issue – all threads share the same cache – but thread-local
registers may be used to store reference fields. As these registers
are scanned for the computation of the local root set of a thread, it
is ensured that references cached in registers are visited as well as

2Proper synchronization of course eliminates coherence prob-
lems, but the authors consider correctness of synchronization to
be an unreasonably strong precondition. Flawed synchronization
should not cause a failure of the garbage collector.

Operation Description
fnew Create a new object
fload Add a reference to the root set
fkill Remove a reference from the root set
fwrite Replace an edge with a new edge

Table 2: Description of operations

references stored in the heap. It is therefore safe to assume that all
threads have an out-edge consistent view of the object graph.

On multi-processors, cache coherence must be ensured to allow
consistent tracing of the object graph. It is then also safe to assume
the out-edge consistency of the threads’ views of the object graph.
It is beyond the scope of this paper how this cache coherence can
be achieved efficiently.

The reachability function is formally defined as follows:

ρ(G) := {v ∈V (G) | ∃ a chain of edges e1, . . . ,en ∈ E(G) :
e1 = 〈r,v1〉,e2 = 〈v1,v2〉, . . . ,en = 〈vn−1,v〉, r ∈ R(G)}

In other words, a node v is reachable, if there exists a path from a
root node r ∈ R(G) to v.

The reachability function ρ has three important properties:

• ρ is monotone:
G⊇ G′⇒ ρ(G)⊇ ρ(G′)

• ρ is closed:
G′ = 〈V (G), E(G), R(G)∪{v}〉, v ∈ ρ(G)⇒ ρ(G) = ρ(G′)

• ρ is distributive for out-edge consistent graphs:
G ./ G′⇒ ρ(G∪G′) = ρ(G)∪ρ(G′)

The monotony of ρ is a fairly intuitive property: adding a node or
an edge to a graph cannot make fewer nodes reachable. ρ is closed
in the sense that adding a reachable node to the root set does not
change the set of reachable nodes. This property becomes clearer
when considering that root nodes are just known to be reachable a
priori, but are not special in any other way.

The distributivity of ρ allows to determine the set of reachable
node globally or locally. Consider two threads τ and τ′ and their
views of the object graph, G and G′. It is possible to compute
R(G)∪R(G′) and start tracing from that root set; it is also possible
to compute ρ(G) and ρ(G′) independently and merge the results.
Distributivity ensures that the final result is the same for both ap-
proaches.

An important observation is that a thread may only access ob-
jects that are reachable, or create new objects. This insight may
seem trivial; still, it should be kept in mind for the following con-
siderations.

There are four fundamental operations on an object graph, which
are shown in Table 2. We use the following formal definitions for
these graph operations:

fnew(G) := 〈V (G)∪{v}, E(G), R(G)〉, v /∈V (G)
fload(G) := 〈V (G), E(G), R(G)∪{v}〉, v ∈V (G)
fkill(G) := 〈V (G), E(G), R(G)\{v}〉

fwrite(G) := 〈V (G), (E(G)\{〈v1,v2〉})∪{〈v1,v3〉}, R(G)〉

It must be noted that each thread can only operate on its local view
of the object graph. Therefore, fload and fkill can only modify the
local root set of a mutator thread. Furthermore, these are “minimal”
definitions; they have to be extended for actual garbage collection
algorithms, e. g., to model a write barrier.

We assume that any changes to the shape of the object graph
retain the out-edge consistency of the local views. As already
mentioned, this is a safe assumption for uniprocessors. For multi-
processors, this assumption is only safe if cache coherence is en-
sured.

3.1.1 Property 1: Atomicity
The runtime stacks of any two threads are disjoint – otherwise

they could not execute independently of one another. There is no
way how a Java thread can access the stack of any other thread.
Only JVM-internal threads like the garbage collection thread can
access the stack of another thread. Therefore, the execution of a
Java thread cannot modify the stack of a different thread.

If the garbage collector scans a thread’s stack, it is hence not
necessary to enforce absolute atomicity. It is only necessary to pre-
vent the thread whose stack is scanned from executing – all other
threads cannot modify the stack of this thread. Such a strategy
needs support from the scheduler and does not eliminate blocking
completely. However, blocking can be reduced considerably, be-
cause threads only need to wait while their own stack is scanned
and high frequency threads typically have a shallow stack.

It also follows that a thread may be preempted while scanning
its own stack without compromising the consistency of the scanned
data. When the thread continues execution, the stack is unchanged
and the local root set is the same as if the thread had not been pre-
empted. It is not necessary to enforce atomicity if a thread scans its
own stack.

3.1.2 Property 2: Independence
Due to the distributivity of ρ, it is sufficient to scan the stack of

one thread at a time to determine the global set of reachable nodes.
However, it needs to be shown that the actions of one thread do not
interfere with the view of the object graph of another thread.

fnew allocates a new object, which is not yet visible to other
threads; it can therefore be considered as local action. fload and
fkill only modify the local root set and hence are local actions as
well. Consequently, threads can only communicate through the
fwrite operation. This operation however retains the out-edge con-
sistency, i.e., if one thread changes the shape of the object graph,
other threads see the updated object graph. Therefore, it is not nec-
essary for one thread to know anything about the root set or the
actions of a different thread for the proper computation of ρ. The
root sets can therefore be scanned independently of one another.

3.1.3 Property 3: Consistency
It is necessary that the local root sets and the object graph are

consistent such that no less than the actually reachable nodes are
marked during tracing. It must be ensured that the fundamental
graph operations cannot break this consistency. Please note that
the following reasoning refers to the root scanning phase and not
to the marking phase. This means that no node is black in terms of
Dijkstra’s tricolor abstraction [6].

In order to keep the root set consistent for fnew, it is necessary to
add references to new objects to the root set. Otherwise, recently
created objects could erroneously appear unreachable. In terms of
the tricolor abstraction, this means that new objects are allocated
gray during root scanning. The fnew operation therefore has to be
extended as follows:

fnew(G, type) := {
v := GC. a l l o c a t e (type) ;
GC. markGray (v) ;
V (G) := V (G)∪{v} ;

}

fload can only add references to the root set which are already
reachable. Due to the closed nature of ρ, this does not change the
set of reachable nodes. If a snapshot of the object graph from the
beginning of the garbage collection cycle is maintained, these op-
erations have no effect.

fkill removes a reference from the root set and can therefore
change the set of reachable nodes. If an object is still reachable af-
ter this operation, it must be reachable through a path which starts
at a different root node. As no node is black during root scanning,
this path will be encountered by the marking function. If the most
recent state of the object graph is traced, it is not necessary to take
measures to prevent the loss of a root reference.

If it can be shown that the side effects of fwrite allow that both
the snapshot of the object graph and the current object graph are
traced, both fload and fkill do not require any special action.

We define a history graph H, which subsumes changes to
an object graph. With G being an object graph and f0 . . . fn ∈
{ fnew, fload , fkill , fwrite} being a sequence of graph operations, it
is defined as

V (H) := V (G∪ f0(G)∪ f1(f0(G))∪ . . .∪ fn(. . .(f0(G))))
E(H) := E(G∪ f0(G)∪ f1(f0(G))∪ . . .∪ fn(. . .(f0(G))))
R(H) := R(fn(. . .(f0(G))))

Such a history graph safely approximates the shape of both the
initial object graph and the current object graph. Therefore, the
considerations for object graph operations above apply to a his-
tory graph. An implementation of fwrite which allows to safely
approximate a history graph is consequently sufficient to maintain
the correctness of ρ.

In [1], a double barrier, which saves both references on an as-
signment, is suggested to maintain the consistency of the root set.
The reasoning behind this is that references could otherwise mi-
grate from the local root set of one thread to the root set of a dif-
ferent thread without being noticed. The critical operation for this
assumption is when a reference migrates from a not-yet-scanned
local root set to a local root set which already has been scanned.
However, a thread may only access reachable objects and can there-
fore only add references to its root set which are already reachable.
Therefore, the respective reference is also already reachable from
the scanned root set. In a history graph, this reference remains vis-
ible, even if the addition of the reference to the root set is ignored.

We now show that a snapshot-at-beginning barrier as suggested
in [20] is sufficient to approximate a history graph. Together with
the independence of local root scans and the considerations on the
graph operations above, this proves that such a double barrier is
indeed not necessary.

We use the following abstract definition of fwrite, which models
the Yuasa snapshot-at-beginning write barrier:

fwrite(G,〈v1,v2〉,〈v1,v3〉) := {
i f (c o l o r (v2) = w h i t e) {

GC. markGray (v2) ;
}
E(G) := (E(G)\{〈v1,v2〉})∪{〈v1,v3〉} ;

}

This definition may look unusual when comparing it to actual im-
plementations. It is however just a translation of such an imple-
mentation to the terminology used throughout this paper and does
not add any special semantics. The barrier shades references that
are overwritten gray. The overwritten reference is therefore visible
for the tracing algorithm; in effect, a virtual snapshot of the object
graph is retained.

v1

v2

v1 v1

v2

v2

v3 v3

history graph snapshot-at-beginning

barrier

v1

v3

f write

Figure 1: History graph and snapshot-at-beginning barrier

The marking function µ is an algorithm to compute the set of
reachable nodes. Starting from the root set, the object graph is tra-
versed, until no new objects can be reached. It can be assumed
that the marking function µ safely approximates the reachability
function ρ if no graph transformations occur. This assumption is
fundamental for any tracing garbage collection algorithm and must
be proven for the correctness of any garbage collector, independent
of root scanning and even for stop-the-world garbage collectors.
Note that our considerations apply to the root scanning phase and
not marking itself. Our goal is to show that the root set is com-
puted correctly. Proving the correctness of concurrent marking is a
different issue; such proofs can be found in [6] or [20].

fload and fkill change only the root set of a graph; as the root
set of the history graph is the root set after any transformation,
µ trivially approximates the history graph w. r. t. these operations.
Shaded allocation of new objects ensures that fnew is handled cor-
rectly. This leaves to be shown that the write barrier indeed allows
the approximation of a history graph.

Figure 1 shows the effect of an fwrite(G) = G′ operation. The
history graph includes all encountered edges, i.e., the replaced edge
〈v1,v2〉 and the new edge 〈v1,v3〉. Consequently, the following
equation holds for H = G∪G′:

v1 ∈ ρ(G)⇒ (v2 ∈ ρ(H)∧ v3 ∈ ρ(H)) (1)

The snapshot-at-beginning barrier does not retain the edge 〈v1,v2〉,
but it marks v2 to be traced. The appropriate equation is:

(v1 ∈ µ(G)⇒ v3 ∈ µ(G′))∧ v2 ∈ µ(G′) (2)

which can be reformulated as

(v1 ∈ µ(G)⇒ v2 ∈ µ(G′)∧ v3 ∈ µ(G′))∧ v3 ∈ µ(G′) (3)

These equations entail that µ induces a superset of ρ if operating
on the same graph. Therefore, a snapshot-at-beginning barrier is
sufficient to ensure the correctness of incremental garbage collec-
tion.

3.1.4 Static Variables
The considerations above cover only the scanning of thread-local

roots, but left out static variables. They can be modeled with an
immutable root, which points to a virtual array that contains the
static variables. This virtual array can then be handled like any
other object and the scanning of static variables becomes part of the
marking phase. As marking has to take place after root scanning,
static variables have to be scanned after the local root sets.

This is not an arbitrary limitation – it is easy to construct an
example where scanning static references before scanning local
variables breaks the consistency of a garbage collector that uses a

CREATED

BLOCKED WAITINGREADY

DEAD

Figure 2: Thread Model

snapshot-at-beginning write barrier. Consider the case where dur-
ing the scanning of static variables a reference is transferred from a
local variable to a static variable which has already been scanned.
The value of the local variable might be lost until it is scanned,
and the new value of the static variable is not visible to the garbage
collector. The variable already has been scanned, and the snapshot-
at-beginning barrier retains the old value, but does not treat the new
one. Therefore, the respective object may erroneously appear un-
reachable to the garbage collector.

In contrast, we were not able to construct an example where a
reference is lost if the scanning of static variables takes place af-
ter the scanning of local variables. As it can then be regarded as
part of the marking phase, the correctness proof of the snapshot-at-
beginning algorithm [20] apply to this part of the algorithm – it is
simply impossible to find a counterexample. Actually, the theoreti-
cal findings presented above were sparked by our unavailing search
for such an example.

3.2 Execution Time Bounds
Now that we have established the correctness of our approach,

we can analyze the effects on the timing behavior of the garbage
collection thread. We found two solutions to apply the theoretical
results: The first solution can be applied only to periodic tasks,
while the second solution can be applied to sporadic tasks as well.

3.2.1 Thread Model
We assume that all threads are either periodic or have at least

a known deadline. This is a reasonable assumption for real-time
threads: it is impossible to decide whether a task delivers its results
on time if no deadline or period is known.

The thread model has five states: CREATED, READY, WAITING,
BLOCKED and DEAD. Initially, a thread is in state CREATED. When
a thread gets available for execution, it goes to the READY state.
When it has finished execution for a period it becomes WAITING.
At the start of the next period, it goes to the READY state again.
If a thread terminates, it becomes DEAD. Threads are in state
BLOCKED while they wait for locks or I/O operations. The time
between the instant at which a thread becomes READY until it goes
to state WAITING must be bounded – if it is not WAITING when its
deadline arrives, it has missed the deadline. Figure 2 visualizes the
possible state transitions of the thread model.

For the calculation of the execution time bounds, we assume that
threads scan their stack when they become WAITING. For periodic
tasks in the Real Time Specification for Java (RTSJ) [4], this can be
done implicitly when waitForNextPeriod() is invoked. There is no
need to change the application code. If no such method needs to be
called by tasks, the scanning can be integrated into the scheduler. In
the current version of the RTSJ, sporadic threads do not invoke such
a method; their stack is however empty when they do not execute,
which in turn makes root scanning trivial. The overhead for stack
scanning of course has to be taken into account for calculating the
WCET of tasks.

We assume that the garbage collection thread runs at the lowest
priority in the system. On the one hand, a garbage collector usually

thread 1

thread 3

thread 2

GC thread

Q T-Q R

Cstackscan

... mark roots... execute ... wait for mutator threads

(a) Solution for Periodic Tasks

thread 1

thread 3

thread 2

GC thread

Cstackscan

R

... save roots

(b) Generalized Solution

Figure 3: Visualization of the WCET for root scanning

has a long period (and deadline), compared to other real-time tasks.
It follows from scheduling theory that it should have a low priority
[11]. On the other hand, a real-time scheduler does not even need to
be aware of the garbage collector to achieve full mutator utilization
in such a setting.

3.2.2 Solution for Periodic Tasks
For periodic threads, the time between two releases is known

and the time between two successive calls of waitForNextPeriod() is
bounded. For this solution, the individual tasks push the references
of the local root set onto the mark stack of the garbage collector
if an appropriate flag is set. The garbage collector must wait until
all tasks have acknowledged the scan before it can proceed. In the
worst case, a task has become WAITING very early in its period
when the garbage collector starts execution and becomes WAITING
very late in its next period.

Let Ri be the worst case response time of a thread τi, Qi its best
case response time and Ti its period. The response time of a task
is the time between the instant at which a thread becomes READY
until it goes to the WAITING state again. Cstackscan is the worst
case time until all threads have scanned their local root set and the
garbage collector may proceed. Cstackscan can be computed as fol-
lows:

Cstackscan = max
i≥0

(Ti−Qi +Ri) (4)

Figure 3(a) visualizes the formula above. It shows that the worst
case for two responses of a thread is T −Q+R. Consequently, this
is the longest time the garbage collector must wait for this thread.

To avoid the computation of the best and worst case response
times – especially the former is typically unknown –, this can be
simplified to

Cstackscan = 2Tmax (5)

Cstackscan has to be added to the response time of the garbage
collection thread; the impact of this delay depends on the thread
periods. If the minimal period of the garbage collector is far greater
than the periods of the mutator threads, the relative impact is small.
If there is some slack between the minimal and the actual garbage
collection period, the effect can probably be hidden. If the maxi-
mum period of the mutator threads is relatively long, this may have
a notable effect on the minimal garbage collection period.

3.2.3 Generalized Solution
The considerations for periodic tasks cannot be applied to spo-

radic tasks in the general case. For sporadic tasks, the minimum
inter-arrival time is known, but usually not the maximum inter-

arrival time. Therefore, the worst case time until the garbage col-
lector may proceed is potentially unbounded.

The stack of a thread is only modified if the respective thread
executes. Therefore, the garbage collector can reuse data from pre-
vious scans and only needs to wait for threads which may have
executed since their last scan. These are – apart from the initializa-
tion and destruction of threads – the threads which are not in state
WAITING.

We adapt the root scanning scheme such that threads save their
stack on every call of waitForNextPeriod() to a root array. For
WAITING threads, the content of the root array from their last scan
is used by the garbage collector; for all other threads, the garbage
collector waits until they have updated their root array. With this
scheme, it is sufficient to take into account the worst case response
time for the execution time of stack scanning.

Cstackscan = Rmax (6)

For schedulers which never execute lower priority threads if a
higher priority thread is READY and which do not support blocking
operations, the garbage collector will never encounter any threads
which are not WAITING. Consequently, it is never necessary to wait
for any thread to scan its stack and

Cstackscan = 0 (7)

The downside of this approach is that a dedicated memory area
is needed to save the roots of the individual threads. It is not pos-
sible anymore to let the mutator thread push its root set onto the
mark stack. To avoid blocking in this scheme, it is necessary to use
two memory areas for each thread to allow for double buffering.
If the maximum number of roots is unknown, each of these areas
occupies as much memory as the stack.

For this strategy, the overhead for completing the root scanning
is larger on the garbage collectors side. This is due to the fact that
the garbage collector itself has to push the references onto the mark
stack. On the threads’ side, the overhead is slightly smaller, be-
cause the content of the stack only has to be transferred to the root
array, without performing any computations.

An advantage of this strategy is that Cstackscan is considerably
lower – the increased overhead for scanning is most likely far
smaller than the time that is spent on waiting for the other threads.
It is mandatory to use such a scheme for sporadic tasks; applying it
to periodic tasks as well allows to trade off time to wait for a root
scan with additional memory consumption.

Figure 3 compares the worst case scenarios of the solution for
periodic tasks and the generalized solution. For the generalized
solution, the threads save their stack in a root array at the end of

each period. The garbage collector only has to wait for threads
which have executed since their last scan. In Figure 3(b), thread 3 is
BLOCKED when the garbage collector starts execution. Therefore,
the garbage collector only has to wait for this thread. In the worst
case, this waiting time equals the maximum response time.

3.2.4 Discussion
As pointed out in [12] and [15], the allowable allocation rates

and the minimum garbage collection period are related. Increasing
the period of the garbage collector effectively lowers the allowable
allocation rates. The proposed solutions introduce a waiting time
for the garbage collector and therefore may make it necessary to
increase its period.

However, it is possible to mix root scanning strategies to find an
optimal solution. For high frequency threads, jitter is usually very
important, and the waiting time of the solution for periodic threads
may be negligible. For medium frequency threads, the generalized
solution with an impact in the order of one period may be a better
trade-off. Low frequency threads are probably less sensitive to jitter
and root scanning by the garbage collector may not hurt them. It is
however not possible to propose a generic solution to this problem
without knowledge about the properties of the whole system.

4. EVALUATION
We used the Java Optimized Processor (JOP) [14] for the eval-

uation. The processor is implemented in an FPGA and runs at
100 MHz. The platform we used features 1 MB of SRAM with
15 ns access time. The garbage collection algorithm used by
JOP [17] is an incremental garbage collector, with a snapshot-at-
beginning write barrier [20]. It is based on the copying collector by
Baker [3], but uses a forwarding pointer placed in an object handle
to avoid the costly read barrier. While the absolute times reported
in this section are of course platform dependent, the evaluated con-
cepts are not specific to JOP and its garbage collector.

A special feature of our garbage collector is hardware support for
interruptible copying [16]. A special hardware module translates
accesses to objects and arrays that are copied, such that copying
is transparent to the mutator threads. Accesses to fields that have
not been copied yet are directed to the source location; accesses to
already copied fields are directed to the destination location. Only
single words need to be copied atomically. This allows even large
arrays to be copied without introducing blocking times.

For jitter measurements, we used 6 different tasks. Deadline
monotonic priority ordering is used to determine the tasks’ priori-
ties; unless otherwise stated, the deadline of a task equals its period.
The task properties are described in the following and subsumed in
Table 3. The figures presented in Table 4 were obtained by mea-
suring the maximum release jitter of the highest priority thread
during a run of more than one hour. For the measurements, we
slightly modified the periods of the threads. We used prime num-
bers (e.g., 1009 µs instead of 1000 µs) to avoid a regular phasing of
the threads, which could have led to too optimistic results.

The most important thread w. r. t. the measurements is the high-
frequency task τh f with a period of 100 µs. It computes its own
release jitter and does nothing else. This task has the highest prior-
ity of all tasks and all jitter figures in this section refer to the release
jitter of this thread.

Two more threads, τp and τc, implement a producer/consumer
pattern. τp produces one object every millisecond and τc consumes
the available objects every 10 milliseconds. A simple list is used
to pass the objects from τp to τc. These threads have the second-
and third-highest priorities in the system. τp′ is a slightly modified
version of τp, which does not actually allocate an object. Instead, it

Thread Period Deadline Priority
τh f 100 µs 100 µs 6
τp 1 ms 1 ms 5
τc 10 ms 10 ms 4
τs 15 ms 15 ms 3
τlog 1000 ms 100 ms 2
τgc 200 ms 200 ms 1

Table 3: Thread properties of the test program

emulates the blocking behavior of new, i.e., it contains a synchro-
nized block which requires as long as the largest synchronized sec-
tion in the implementation of new. This task is used to distinguish
between the impact of synchronization of threads and the impact of
garbage collection.

τs is a thread which occupies the stack such that it is not empty
when waitForNextPeriod() is invoked. Consequently, a strategy as
proposed by Schoeberl and Vitek in [17] cannot be used if this
thread is part of the task set. The period of τs is 15 ms.

To record the measurements, we used a logging thread τlog with a
period of 1000 ms and a deadline of 100 ms. The garbage collection
thread, τgc, has a period of 200 ms and is consequently the lowest-
priority thread in the system.

We used various combinations of the tasks described above to
evaluate the different root scanning strategies. The simplest task
set comprises only the high-frequency task τh f . The jitter for this
task indicates if the system is able to run this task at the requested
frequency at all. The task sets {τh f ,τlog} and {τh f ,τs,τlog} are
used to measure the jitter due to task switches. As no garbage
collection takes place and none of the tasks uses synchronized
blocks, this is the only source of jitter for these two task sets.
The jitter due to the combination of task switches and synchro-
nized blocks are evaluated through the task sets {τh f ,τp′ ,τc,τlog}
and {τh f ,τp′ ,τc,τs,τlog}. The other task sets present in Table 4
are used to evaluate the impact of garbage collection on τh f . τs
has a relatively deep stack – task sets which contain τs therefore
challenge the root scanning phase. τp and τc produce and consume
objects and test the impact of the actual garbage collection on τh f .

The first row in Table 4 shows the trivial task set {τh f }. The
results for the task sets without garbage collection can be found in
the next four rows. The bottom four rows present the results for the
task sets with garbage collection.

We evaluated five different root scanning strategies. The strategy
labeled base in Table 4 scans the stacks of all threads in one atomic
step. The single strategy scans one stack at a time atomically. The
strategy as proposed by Schoeberl and Vitek [17], which assumes
that the thread stacks are empty at the time of root scanning, is la-
beled empty. The scan and save strategies implement the solution
for periodic tasks and the generalized solution as described in Sec-
tion 3.2. For the scan strategy, tasks push their local root set onto
the mark stack at the end of their period. For the save strategy, tasks
save their stack into root arrays, and the garbage collector pushes
the references onto the mark stack.

4.1 Results
The results in Table 4 show that the base, single and empty strate-

gies behave identical if no garbage collection takes place. This
is no surprise, because the implementation of the scheduler is the
same. The scan strategy behaves slightly worse, and the save strat-
egy adds up to 27 µs of jitter (73 µs for base, single and empty
compared to 100 µs for save in row 5 of Table 4). As we made
only minimal changes to the scheduler, we had expected only a

Thread Set Jitter (µs)
τh f τp τc τs τlog τgc base single empty scan save
X 0 0 0 0 0
X X 41 41 41 55 47
X X X 68 68 68 66 57
X Xa X X 67 67 67 67 70
X Xa X X X 73 73 73 80 100
X X X 321 110 57 56 56
X X X X 488 180 − 70 65
X X X X X 514 120 71 77 93
X X X X X X 685 182 − 91 106

Table 4: Jitter Measurements
aτp′ , a slightly modified version of τp, was used for this

measurement.

smaller deviation in the results. We observed that small changes in
the application code sometimes have a considerable effect on the
performance of the method cache [13] of JOP. However, further re-
search will be necessary to find out if this is the actual source of
the jitter increase. In the following, we do not attribute this jitter to
garbage collection itself.

If garbage collection takes place, the base strategy performs
worst w. r. t. the release jitter of τh f . The jitter introduced by this
strategy is several times larger than for the other strategies. 685 µs
were measured as worst case jitter. The high jitter is caused by the
atomic scan of all stacks; it increases with the number of threads.

The single strategy yields less jitter than base, but still more than
the other strategies. The jitter for this strategy depends on the size
of the largest thread stack; it is highest if τs is part of the thread set.
Up to 182 µs jitter were observed during our experiments.

The empty, scan and save strategies induce a similar amount of
jitter. However, empty cannot be applied if τs is part of the task set,
because it cannot handle stacks which are not empty at the time of
root scanning. A side effect of scan is that it implicitly extends the
garbage collection period to 1000 ms. The reason for this is that the
garbage collector cannot proceed until all other threads have run.
τgc always has to wait until τlog has executed once and therefore is
locked to the frequency of the latter. The save strategy solves the
problems of empty and scan at the expense of an increased memory
consumption.

4.2 Discussion
Our goal was to minimize the impact of garbage collection on

other threads. The figures in Table 4 show that a considerable
amount of jitter is caused by scheduling and synchronized sections.
Scheduling introduces jitter of 41 to 68 µs; scheduling and syn-
chronized blocks together result in a jitter of 67 to 73 µs. For the
base and single strategy, 50 to 600 µs are added to the jitter by
the garbage collection thread. The empty, scan and save strategies
perform considerably better in this regard.

The scan strategy adds 1 to 11 µs, when comparing the task sets
with and without garbage collection. The save strategy adds 23 µs
of jitter to the task set {τh f ,τp,τc,τlog} and less than 10 µs to the
other task sets. As blocking was eliminated from the root scan-
ning phase, this can obviously not be the reason for the increased
jitter. We assume three possible sources for the jitter increase: in-
creased scheduling overhead, degraded performance of the instruc-
tion cache and imprecise measurements. On the one hand, longer
measurements could have increased the measured jitter for some
test cases. On the other hand, it is possible that the worst case be-
havior of some parts of the code only occurs if garbage collection

actually takes place. Still, the jitter introduced by the two new root
scanning strategies is considerably lower than the jitter introduced
by scheduling and synchronization. Future work will have to show
how far these two sources of jitter can be eliminated.

5. CONCLUSION AND OUTLOOK
We investigated the root scanning phase of garbage collection

on a theoretical basis and could prove three important properties:
First, that atomicity for stack scanning is only necessary w. r. t. the
thread whose stack is scanned. Second, that atomicity is not re-
quired at all if mutator threads scan their own stack. And third, that
a snapshot-at-beginning write barrier is sufficient to allow complete
decoupling of local stack scans.

Furthermore, we provided two approaches how these theoretical
properties can be utilized and showed the implications on the exe-
cution time of a garbage collector. The first approach can be applied
only to periodic tasks and delays garbage collection by up to two
times the largest task period. The second approach is more gen-
eral and has a smaller impact on the execution time of the garbage
collector, but has a higher memory overhead.

An evaluation of the two new approaches to root scanning con-
firmed the theoretical results. Jitter of high priority threads, which
can be attributed to garbage collection, could be reduced consider-
ably. The impact of the new root scanning strategies on the jitter
due to scheduling and synchronization however still needs to be
analyzed.

Future work will investigate if a tighter coupling of scheduling
and root scanning is profitable. Merging the root arrays of the gen-
eralized solution with the memory areas for the thread contexts
could lower the memory consumption without impairing the per-
formance.

Exact stack scanning has not been handled in this paper. The
proposed solutions lower the overhead for exact scanning, but tools
to make use of this need to be developed.

Future work will also have to extend the proposed solutions to
multi-processor systems. We are confident that the theoretical basis
is applicable to such systems as well, but actual implementations
may offer new obstacles as well as new opportunities.

6. ACKNOWLEDGEMENT
The research leading to these results has received funding

from the European Community’s Seventh Framework Programme
[FP7/2007-2013] under grant agreement number 216682 (JEOP-
ARD).

7. REFERENCES
[1] J. Auerbach, D. F. Bacon, B. Blainey, P. Cheng, M. Dawson,

M. Fulton, D. Grove, D. Hart, and M. Stoodley. Design and
implementation of a comprehensive real-time Java virtual
machine. In EMSOFT ’07: Proceedings of the 7th ACM &
IEEE international conference on Embedded software, pages
249–258, New York, NY, USA, 2007. ACM.

[2] D. F. Bacon, P. Cheng, and V. Rajan. A real-time garbage
collector with low overhead and consistent utilization. In
Conference Record of the Thirtieth Annual ACM Symposium
on Principles of Programming Languages, ACM SIGPLAN
Notices, New Orleans, LA, Jan. 2003. ACM Press.

[3] H. G. Baker. List processing in real-time on a serial
computer. Communications of the ACM, 21(4):280–94, 1978.
Also AI Laboratory Working Paper 139, 1977.

[4] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and
M. Turnbull. The Real-Time Specification for Java. Java
Series. Addison-Wesley, June 2000.

[5] P. Cheng, R. Harper, and P. Lee. Generational stack
collection and profile-driven pretenuring. In Proceedings of
SIGPLAN’98 Conference on Programming Languages
Design and Implementation, ACM SIGPLAN Notices,
Montreal, June 1998. ACM Press.

[6] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and
E. F. M. Steffens. On-the-fly garbage collection: An exercise
in cooperation. Communications of the ACM,
21(11):965–975, Nov. 1978.

[7] D. Doligez and G. Gonthier. Portable, unobtrusive garbage
collection for multiprocessor systems. In Conference Record
of the Twenty-first Annual ACM Symposium on Principles of
Programming Languages, ACM SIGPLAN Notices,
Portland, OR, Jan. 1994. ACM Press.

[8] D. Doligez and X. Leroy. A concurrent generational garbage
collector for a multi-threaded implementation of ML. In
Conference Record of the Twentieth Annual ACM Symposium
on Principles of Programming Languages, ACM SIGPLAN
Notices, pages 113–123. ACM Press, Jan. 1993.

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification, Third Edition. The Java Series.
Addison-Wesley Professional, Boston, Mass., 2005.

[10] R. Henriksson. Scheduling real-time garbage collection. In
Proceedings of NWPER’94, Lund, Sweden, 1994.

[11] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J. ACM,
20(1):46–61, 1973.

[12] S. G. Robertz and R. Henriksson. Time-triggered garbage
collection — robust and adaptive real-time GC scheduling
for embedded systems. In ACM SIGPLAN 2003 Conference
on Languages, Compilers, and Tools for Embedded Systems
(LCTES’2003), San Diego, CA, June 2003. ACM Press.

[13] M. Schoeberl. A time predictable instruction cache for a Java
processor. In On the Move to Meaningful Internet Systems
2004: Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES 2004), volume 3292 of LNCS,
pages 371–382, Agia Napa, Cyprus, October 2004. Springer.

[14] M. Schoeberl. JOP: A Java Optimized Processor for
Embedded Real-Time Systems. PhD thesis, Vienna
University of Technology, 2005.

[15] M. Schoeberl. Real-time garbage collection for Java. In
Proceedings of the 9th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed
Computing (ISORC 2006), pages 424–432, Gyeongju,
Korea, Apr. 2006.

[16] M. Schoeberl and W. Puffitsch. Non-blocking object copy for
real-time garbage collection. In Proceedings of the 6th
International Workshop on Java Technologies for Real-time
and Embedded Systems (JTRES 2008), 2008.

[17] M. Schoeberl and J. Vitek. Garbage collection for safety
critical Java. In Fifth International Workshop on Java
Technologies for Real-Time Systems (JTRES), pages 85–93,
Vienna, Austria, Sept. 2007. ACM Press.

[18] F. Siebert. Constant-time root scanning for deterministic
garbage collection. In Tenth International Conference on
Compiler Construction (CC2001), Genoa, Apr. 2001.

[19] G. L. Steele. Multiprocessing compactifying garbage
collection. Communications of the ACM, 18(9):495–508,
Sept. 1975.

[20] T. Yuasa. Real-time garbage collection on general-purpose
machines. Journal of Systems and Software, 11(3):181–198,
1990.

[21] T. Yuasa. Return barrier. In Proceedings of the International
Lisp Conference 2002, 2002.

