
6

Nonblocking Real-Time Garbage Collection

MARTIN SCHOEBERL and WOLFGANG PUFFITSCH
Vienna University of Technology

A real-time garbage collector has to fulfill two basic properties: ensure that programs with bounded
allocation rates do not run out of memory and provide short blocking times. Even for incremental
garbage collectors, two major sources of blocking exist, namely, root scanning and heap compaction.
Finding root nodes of an object graph is an integral part of tracing garbage collectors and cannot
be circumvented. Heap compaction is necessary to avoid probably unbounded heap fragmentation,
which in turn would lead to unacceptably high memory consumption. In this article, we propose
solutions to both issues.

Thread stacks are local to a thread, and root scanning, therefore, only needs to be atomic with
respect to the thread whose stack is scanned. This fact can be utilized by either blocking only
the thread whose stack is scanned, or by delegating the responsibility for root scanning to the
application threads. The latter solution eliminates blocking due to root scanning completely. The
impact of this solution on the execution time of a garbage collector is shown for two different
variants of such a root scanning algorithm.

During heap compaction, objects are copied. Copying is usually performed atomically to avoid
interference with application threads, which could render the state of an object inconsistent. Copy-
ing of large objects and especially large arrays introduces long blocking times that are unacceptable
for real-time systems. In this article, an interruptible copy unit is presented that implements non-
blocking object copy. The unit can be interrupted after a single word move.

We evaluate a real-time garbage collector that uses the proposed techniques on a Java processor.
With this garbage collector, it is possible to run high-priority hard real-time tasks at 10 kHz parallel
to the garbage collection task on a 100 MHz system.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]:
Real-Time and Embedded Systems; D.3.4 [Programming Languages]: Processors—memory
management (garbage collection)

General Terms: Performance, Design

Additional Key Words and Phrases: Garbage collection, real-time, root scanning, nonblocking
copying

The research leading to these results has received funding from the European Community’s Sev-
enth Framework Programme [FP7/2007-2013] under grant agreement number 216682 (JEOP-
ARD).
Authors’ address: Martin Schoeberl and Wolfgang Puffitsch, Institute of Computer Engineer-
ing, Vienna University of Technology, Treitlstr. 3, A-1040 Vienna, Austria, email: {mschoeberl;
wpuffitsch}@mail.tuwien.ac.at.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1539-9087/2010/08-ART6 $10.00
DOI 10.1145/1814539.1814545 http://doi.acm.org/10.1145/1814539.1814545

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

6:2 • M. Schoeberl and W. Puffitsch

ACM Reference Format:
Schoeberl, M. and Puffitsch, W. 2010. Nonblocking real-time garbage collection. ACM Trans. Em-
bedd. Comput. Syst. 10, 1, Article 6 (August 2010), 28 pages.
DOI = 10.1145/1814539.1814545 http://doi.acm.org/10.1145/1814539.1814545

1. INTRODUCTION

Garbage collection (GC) is a feature of modern object-oriented languages, such
as Java and C#, that increases programmer productivity and program safety.
However, dynamic memory management is usually avoided in hard real-time
systems. Even the real-time specification for Java (RTSJ) [Bollella et al. 2000],
which targets soft real-time systems, defines an additional memory model, with
immortal and scoped memory, to avoid GC.

However, the memory model introduced by the RTSJ is unusual to most
programmers. It also requires that the Java virtual machine (JVM) checks all
assignments to references. If a program does not adhere to the specified model,
runtime exceptions are triggered. Arguably, this is a different level of safety
than most Java programmers would expect. Therefore, much research activity
is spent to enable GC in real-time systems.

In a system with a concurrent garbage collector, the GC thread and the
mutators (i.e., the application threads, which mutate the object graph) have
to synchronize their work. Several operations (e.g., barrier code, stack scan-
ning, and object copy) need to be performed atomically. Stack scanning and
object copy in atomic sections can introduce considerable blocking times. In
this article, we propose two solutions that eliminate the blocking of these two
tasks.

On the software side, we integrated the proposed solutions into a copying
GC algorithm. The hardware portions of the presented approaches were imple-
mented in the Java processor JOP [Schoeberl 2008], which runs at 100MHz.
This platform was used to evaluate the usefulness of our concepts. It is possible
to run a 10kHz high-priority task without a single deadline miss with ongoing
GC. The maximum task frequency is limited by the scheduler and not by the
garbage collector. It has to be noted that the proposed root scanning strategy
and copy unit are not JOP specific. The copy unit can also be integrated in a
standard RISC processor that executes compiled Java.

This article is based on prior work on nonblocking root scanning [Puffitsch
and Schoeberl 2008] and nonblocking object copy [Schoeberl and Puffitsch
2008]. The evaluation section provides the results for the combination of both
concepts. The article is organized as follows. In the remainder of this section, we
discuss the issues to be solved in the areas of root scanning and object copy in a
real-time garbage collector. Section 2 provides an overview of the related work
in these fields. In Section 3, our solutions to make root scanning preemptible
are presented. A hardware unit to allow nonblocking copying of objects is pro-
posed in Section 4. Section 5 provides details of our implementation, which is
then evaluated in Section 6. Section 7 concludes the article and provides an
outlook on future work.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

Nonblocking Real-Time Garbage Collection • 6:3

1.1 Root Scanning

Tracing garbage collectors traverse the object graph to identify the set of reach-
able objects. The starting point for this tracing is the root set, a set of objects
that is known to be directly accessible. On the one hand, these are references
in global (static in Java) variables, on the other hand these are references that
are local to a thread. The latter comprise the references in a thread’s runtime
stack and thread-local CPU registers. The garbage collector must ensure that
its view of the root set is consistent before it can proceed, otherwise objects
could be erroneously reclaimed.

For stop-the-world garbage collectors, the consistency of the object graph
is trivially ensured. Incremental garbage collectors however require the use
of barriers, which enforce the consistency of marking and the root set [Baker
1978; Dijkstra et al. 1978; Steele 1975; Yuasa 1990]. While barriers are an
efficient solution for the global root set, they are considered to be too inefficient
to keep the local root sets consistent. Even frequent instructions like storing a
reference to a local variable would have to be guarded by such a barrier, which
would cause a considerable overhead and make it difficult if not impossible to
compute tight bounds for the worst-case execution time (WCET). The usual
solution to this problem is to scan the stacks of all threads in a single atomic
step and stall the application threads while doing so.1 The atomicity entails
that the garbage collector may not be preempted while it scans a thread’s stack,
which in turn causes a considerable release jitter even for high-priority threads.

However, the atomicity is only necessary with respect to the thread whose
stack is scanned, because a thread can only modify its own stack. If the garbage
collector scans a thread’s stack, the thread must not execute and atomicity
has to be enforced. Other mutator threads are allowed to preempt the stack
scanning thread. If a thread scans its own stack, it is not necessary to prohibit
the preemption of the thread – when the thread continues to execute, the stack
is still in the same state and the thread can proceed with the scanning without
special action. Consequently, preemption latencies due to root scanning can be
avoided. With such a strategy, it is also possible to minimize the overhead for
root scanning. It can be scheduled in advance such that the local root set is
small at the time of scanning.

In this article, we present two solutions for periodic and sporadic threads
that make use of this approach, and evaluate their trade-offs. Furthermore, we
show how the worst case time until all threads have scanned their stacks can
be computed.

1.2 Object Copy

Heap fragmentation is one of the main reasons to avoid dynamic memory
management in hard real-time systems and safety critical systems. The worst-
case memory consumption within a fragmented heap [Wilson and Johnstone
1993] is too high to be acceptable. A garbage collector that performs heap
compaction as part of the collection task eludes this fragmentation issue.

1The former implies the latter on uniprocessors, but not on multi-processors.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

6:4 • M. Schoeberl and W. Puffitsch

Heap compaction comes at a cost: objects need to be moved in the heap. This
object copy consumes processor execution time, memory bandwidth, and needs
to be performed atomically. We can accept the first two cost factors as a trade-
off for safer real-time programs. However, the blocking time introduced by the
atomic copy operation can be in the range of milliseconds on actual systems.
This value can be too high for many real-time applications.

In this article, we propose a memory unit for nonblocking object copy. The
memory copy is performed independent of the activity in the CPU, similar to
a direct memory access (DMA) unit. The copy unit executes at the priority of
the GC thread. When a higher priority thread becomes ready, the copy unit
is interrupted. The memory unit stores the state of the copy task. The object
field and array access is also performed by this memory unit. When a field of
an object under copy is accessed by the mutator, the memory unit redirects the
access to the correct version of the object: to the original object when the field
has not yet been copied or to the destination object when the field has already
been copied.

2. RELATED WORK

Real-time GC research dates back to the 1970s where collectors for LISP and
ML have been developed. Therefore, a vast number of papers on real-time GC
have been published. A good introduction to GC techniques can be found in
Wilson’s survey [Wilson 1994] and in Jones [1996].

2.1 Root Scanning

The idea of delegating local root scans to the mutator threads was proposed
by Doligez and Leroy [1993] and Doligez and Gonthier [1994]. They point out
that this allows for more efficient code and reduces the disruptiveness of GC.
Mutator threads should check an appropriate flag from time to time and then
scan their local root set. However, the authors remain vague on when the
mutators should check this flag and do not investigate the effect of various
choices. As they aim for efficiency rather than real-time properties, they do not
consider a thread model with known periods and deadlines.

Levanoni and Petrank [2001] coined the term “sliding view” for the indepen-
dent scanning of local thread states in a reference counting garbage collector.
This scheme was later extended to a mark-sweep garbage collector [Azatchi
et al. 2003]. Again, these works do not consider the implications on the timing
of a real-time system.

The approach presented in this article builds to some degree on an approach
by Schoeberl and Vitek [2007]. They propose a thread model which does not
support blocking for I/O and where threads cannot retain a local state across
periods. They also propose that the garbage collector runs at the lowest priority,
which entails that the stacks of all threads are empty when a GC cycle starts.
Consequently, the garbage collector only needs to consider the global root set.

Yuasa introduces a return barrier in Yuasa [2002]. In a first step, the garbage
collector scans the topmost stack frames of all threads atomically. Then, it
continues to scan one frame at a time. When a thread returns to a frame that

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

Nonblocking Real-Time Garbage Collection • 6:5

has not yet been scanned, it scans it by itself. Return instructions consequently
carry an overhead for the respective check. Furthermore, the proposed policy
makes it difficult to compute tight WCET bounds, because it is difficult to
predict when a scan by a thread is necessary. A further critical issue is that
the topmost frames of all threads have to be scanned in a single atomic step.
Therefore, the worst-case blocking time increases with the number of threads.
An overhead of 2 to 10 percent due to the necessary checks for the return barrier
is reported in Yuasa [2002]. Depending on the configuration, 10 to 50 μs were
measured as worst-case blocking time on a 200-MHz Pentium Pro processor for
two single-threaded benchmarks.

Cheng et al. [1998] propose a strategy for lowering the overhead and blocking
of stack scanning. The mutator thread marks the activated stack frames and
the garbage collector scans only those frames that have been activated since
the last scan. However, this technique is only useful for the average case. In
the worst case, it is still necessary to scan the whole stack atomically.

In the JamaicaVM’s garbage collector, the mutator threads are responsible
of keeping their root set up to date in “root arrays” [Siebert 2001]. The average
overhead for keeping these root arrays up to date is estimated as 11.8%.

2.2 Object Copy

The JamaicaVM takes a simple approach to avoid blocking times due to object
copying: it avoids moving objects at all [Siebert 2000]. Objects and arrays are
split into fix sized blocks and are never moved. This approach trades external
fragmentation for internal fragmentation. However, the internal fragmentation
can be bounded.

The Metronome garbage collector splits arrays, similar to the JamaicaVM
approach, into small chunks called Arraylets [Bacon et al. 2003b]. Metronome
compacts the heap to avoid fragmentation and the Arraylets reduce blocking
time on the copy of large arrays. Both approaches, the JamaicaVM garbage
collector and Metronome, have to pay the price of a more complex (and time
consuming) array access. The defragmentation algorithm in Metronome evac-
uates the objects from almost empty pages to nearly full pages [Bacon et al.
2003a]. This minimizes the amount of data to be moved, and the overall effort
for defragmentation. However, it still requires to atomically move considerable
amounts of data.

Another approach to allow interruption of GC copy is to perform field writes
to both copies of the object or array [Huelsbergen and Larus 1993]. This ap-
proach slows down write access, but those are less common than read accesses.
The writes to the two copies must be performed atomically to ensure the consis-
tency of the data. An additional pointer is also needed between the two copies
of the object. We consider the overhead for establishing the atomicity for the
two writes too high for this solution to be practical. Nettles and O’Toole [1993]
propose a garbage collector where the mutator is allowed to modify the original
copy of the objects. All writes are recorded in a mutation log and the garbage
collector has to apply the writes from this log after updating the pointer(s) to
the new object copy.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

6:6 • M. Schoeberl and W. Puffitsch

The clever usage of atomic two-field compare-and-swap (CAS) operations
for an incremental object copy is proposed by Pizlo et al. [2007]. During the
copy process, an object is expanded to an intermediate wide version and an
uninitialized narrow version in tospace. The wide version is protected by CAS
operations. However, this solution introduces some overheads to the mutator
field access especially during the copy process. In the worst case, the muta-
tor has to expand the object to the wide version on a field write. Pizlo et al.
[2008] explored two more variants of using CAS for consistent object copying,
which rely on a probabilistic understanding of time bounds. Furthermore, it is
admitted for the original variant that “In a small probability worst-case race
scenario, repeated writes to a field in the expanded object may cause the copier
to be postponed indefinitely.” As a hard real-time system has to guarantee time
bounds also in worst-case scenarios, we do not consider these approaches to be
suitable for such systems.

Nilsen and Schmidt [1992] propose hardware support, the object-space man-
ager (OSM), for real-time garbage collector on a standard RISC processor. The
concurrent garbage collector is based on Baker [1978], but the concurrency is
of finer grain than the original Baker algorithm as it allows the mutator to
continue during the object copy. The OSM redirects field access to the correct
location for an object that is currently being copied. Schmidt and Nilsen [1994]
extend the OSM to a GC memory module where a local microprocessor per-
forms the GC work. In the paper the performance of standard C++ dynamic
memory management is compared against garbage collected C++. The authors
conclude that C++ with the hardware supported garbage collection performs
comparable with traditional C++.

One argument against hardware support for GC might be that standard
processors will never include GC specific instructions. However, Azul Sys-
tems has included a read barrier in their RISC based chip-multiprocessor
system [Click et al. 2005]. The read barrier looks like a standard load in-
struction, but tests the TLB if a page is a GC-protected page. GC-protected
pages contain objects that are already moved. The read barrier instruction is
executed after a reference load. If the reference points into a GC-protected
page a user-mode trap handler corrects the stale reference to the forwarded
reference.

Meyer [2006] presents a hardware implementation of Baker’s read-barrier
[Baker 1978] in an object-based RISC processor. The cost of the read-barrier
is between 5 and 50 clock cycles. The resulting minimum mutator utilization
(MMU) for a time quantum of 1 ms was measured to be 55%. For a real-time
task with a period of 1 kHz the resulting overhead is about a factor of 2. We
consider the 50 cycles, even if they are quite low, too expensive for a read-barrier
and use the Brooks-style [Brooks 1984] indirection instead.

The solution proposed by Meyer for object-oriented systems also contains a
GC coprocessor in the same chip. Close interaction between the RISC pipeline
and the GC coprocessor allow the redirection for field access in the correct semi-
space with a concurrent object copy. The hardware cost of this feature is given
as an additional word for the back-link in every pointer register and every
attribute cache line. The only additional runtime cost is on an attribute cache

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

Nonblocking Real-Time Garbage Collection • 6:7

miss. In that case, two instead of one memory accesses resolve the cache miss.
It is not explicitly described in the paper when the GC coprocessor performs
the object copy. We assume that the memory copy is performed in parallel with
the execution of the RISC pipeline. In that case, the GC unit steals memory
bandwidth from the application thread. Our copy unit, in contrast, respects
thread priorities and has no influence on the WCET of hard real-time threads.

The Java processor SHAP [Zabel et al. 2007], with a pipeline and cache
architecture based on the architecture of JOP, contains a memory management
unit with a hardware garbage collector. That unit redirects field and array
access during a copy operation of the GC unit.

The three hardware-assisted GC proposals [Nilsen and Schmidt 1992; Meyer
2006; Zabel et al. 2007] do not address the influence of the copy hardware on the
WCET of the mutator threads. It is known that background DMA complicates
WCET analysis. In our proposal, we allow object copy only when the GC thread
is running. Therefore, that task is simple to integrate into the schedulability
analysis. Scheduling the GC thread at low priority and providing an inter-
ruptible (nonblocking) object copy result in 100% utilization for high priority
real-time tasks.

3. PREEMPTIBLE ROOT SCANNING

Due to the volatile nature of a thread’s stack, the garbage collector and the mu-
tator thread must cooperate for proper scanning. If a thread executes arbitrary
code while its stack is scanned, the consistency of the retrieved data cannot be
guaranteed. Therefore, a thread is usually suspended during a stack scan. In
order to ensure the consistency of the root set, the stack is scanned atomically
to avoid preemption of the garbage collector and inhibit the execution of the
respective thread.

When the GC thread scans a stack it is not allowed to be preempted by that
thread. The runtime stacks of any two threads are however disjoint – otherwise
they could not execute independently of one another. Therefore, preemption by
any other mutator thread is not an issue. When inhibiting the preemption of
the garbage collector only for the thread whose stack is scanned, a thread will
only suffer blocking time due to the scanning of its own stack. A high priority
thread, which has probably a shallow call tree, will not suffer from the scanning
of deeper stacks of more complex tasks. The protection of the scan phase can be
achieved by integrating parts of the GC logic with the scheduler. During stack
scanning only the corresponding mutator thread is blocked.

We generalize this idea by moving the stack scanning task to the mutator
threads. Each thread scans its own stack at the end of its period. In that
case mutual exclusion is trivially enforced: the thread performs either mutator
work or stack scanning. The garbage collector initializes a GC period as usual.
It then sets a flag to signal the threads that they shall scan their stacks at the
end of their period. When all threads have acknowledged the stack scan, the
garbage collector can scan the static variables and proceed with tracing the
object graph. Why the static variables are scanned after the local variables is
discussed in Section 3.1.3.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

6:8 • M. Schoeberl and W. Puffitsch

By using such a scheme, it is not necessary to enforce the atomicity of a
stack scan. Furthermore, the overhead for a stack scan is low; at the end of
each period, the stack is typically small if not even empty. Such a scheme also
simplifies exact stack scanning, because stack scanning takes place only at a
few predefined instants. Instead of determining the stack layout for every point
at which a thread might be preempted, it is only necessary to compute the layout
for the end of a period. The required amount of data is reduced considerably as
well, which lowers the memory overhead for exact stack scanning.

3.1 Consequences

In Puffitsch and Schoeberl [2008], we proved that delegating the scanning of the
thread-local root sets to the mutator threads does not void the correctness of our
garbage collector. It has to be assured that no reference can remain undetected
by the garbage collector. Such a situation could happen, if a reference migrates
from a not-yet-scanned local variable to a local variable that already has been
scanned. We could prove that in such a situation, the proposed GC algorithm
can compute the root set correctly. Threads can exchange data only through
static variables and object fields. An appropriate write barrier can therefore
make migrating references visible to the garbage collector. The proof revealed
some other interesting issues, which we address in the following.

3.1.1 Write Barrier. Formal reasoning showed that a Yuasa-style
snapshot-at-beginning barrier is sufficient to ensure the correctness of the
GC, if new objects are allocated gray in terms of Dijkstra’s tri-color abstraction
[Dijkstra et al. 1978]. The idea behind this is that a snapshot-at-beginning
barrier allows to approximate the history of the object graph if no object is
black. On the one hand, overwritten references are marked gray, that is, they
are visible to the garbage collector. On the other hand, the garbage collector
follows the most recent state of the object graph during tracing. Therefore, the
whole history of the object graph is visible to the garbage collector. If an object
is black, it is not considered by the garbage collector for tracing, and its actual
state would remain invisible to the garbage collector.

The usual solution to keep the view of the heap consistent for such garbage
collectors is a double barrier [Auerbach et al. 2007]. It requires that the write
barrier pushes both the old and the new value onto the mark stack during
root scanning. With respect to predictability, a snapshot-at-beginning barrier
is superior to a double barrier, because only zero or one references may be
pushed onto the mark stack. For a double barrier, zero, one or two references
may be pushed. Obviously, the latter has a higher variability in its execution
time.

We are aware of the fact that allocating new objects gray is against “common
knowledge”, especially for a copying garbage collector. However, in the case
of our GC algorithm (it is described in detail in Section 5.1), the impact of
this can be kept considerably lower than for other garbage collectors. The
notion of gray objects mainly refers to their status with respect to tracing the
object graph. With our garbage collector, it is possible to allocate a new object
in tospace and to also push it onto the mark-stack (one may think of these

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

Nonblocking Real-Time Garbage Collection • 6:9

Fig. 1. Threads may have an inconsistent view of the object graph.

objects as being “anthracite”). The copying step is skipped for such objects,
while tracing takes place as normal. This leaves us with a trade-off between
a double barrier and some additional tracing effort for the garbage collector.
The temporal variability of the allocation is slightly increased, because new
objects are pushed onto the mark stack only during root scanning. Otherwise,
we would not be able to ensure that tracing ever finishes. However, the increase
of the temporal variability is small, compared to the overall costs of allocation.

It has to be noted that reading the old value and writing the new value in
the write barrier has to be atomic, which is the case in our implementation.
When guaranteeing this atomicity is too expensive, the double barrier is an
alternative solution.2

3.1.2 Memory Model. Figure 1 shows a situation, where two threads, A
and B, have an inconsistent view of the object graph. While for thread A the
field x.f references object y, the same field references object z for thread B. Such a
situation is acceptable in the Java memory model [Gosling et al. 2005], but poses
problems for a garbage collector, because it would leave either object y or object
z unvisited. Proper synchronization of course eliminates such coherence issues,
but the authors consider correctness of synchronization to be an unreasonably
strong precondition for GC. Flawed synchronization should not cause a failure
of the garbage collector.

Inconsistent views of the object graph originate from the fact that threads are
allowed to cache data locally. On uniprocessors, cache coherence is not an issue
– all threads share the same cache – but thread-local registers may be used to
store reference fields. As these registers are scanned for the computation of the
local root set of a thread, it is ensured that references cached in registers are
visited as well as references stored in the heap. It is therefore safe to assume
that all threads have a consistent view of the object graph.

On multiprocessors, cache coherence must be ensured to allow consistent
tracing of the object graph. It is beyond the scope of this article how the required
degree of cache coherence can be achieved efficiently.

3.1.3 Static Variables. For our proof, we modeled static variables with
an immutable root, which points to a virtual array that contains the static
variables. This virtual array can then be handled like any other object and the
scanning of static variables becomes part of the marking phase. As marking
has to take place after root scanning, static variables have to be scanned after
the local root sets.

2We thank Bertrand Delsart who pointed out this detail during the presentation at the JTRES
2008.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

6:10 • M. Schoeberl and W. Puffitsch

Fig. 2. Thread model.

There is also a more pragmatic reason for this – it is easy to construct an ex-
ample where scanning static references before scanning local variables breaks
the consistency of a garbage collector that uses a snapshot-at-beginning write
barrier. Consider the case where during the scanning of static variables a ref-
erence is transferred from a local variable to a static variable that already has
been scanned. The value of the local variable might be lost until it is scanned,
and the new value of the static variable is not visible to the garbage collector.
The variable already has been scanned, and the snapshot-at-beginning barrier
retains the old value, but does not treat the new one. Therefore, the respective
object may erroneously appear unreachable to the garbage collector. The con-
sequence of this is that static variable have to be scanned after the local root
sets have been scanned.

3.2 Execution Time Bounds

Functional correctness is not the only concern for real-time systems: the effects
on the timing behavior of the GC thread also have to be analyzed. We found two
solutions to apply the theoretical results: The first solution, which is described
in Section 3.2.2, can be applied only to periodic tasks. The second solution can
be applied to sporadic tasks as well; it is described in Section 3.2.3. The two
solutions also provide a trade-off in terms of timing and memory overheads.

3.2.1 Thread Model. We assume that all threads are either periodic or
have at least a known deadline. This is a reasonable assumption for real-time
threads: it is impossible to decide whether a task delivers its result on time if
no deadline or period is known.3

The thread model has five states: CREATED, READY, WAITING, BLOCKED and DEAD.
Initially, a thread is in state CREATED. When a thread gets available for exe-
cution, it goes to the READY state. When it has finished execution for a period
it becomes WAITING. At the start of the next period, it goes to the READY state
again. If a thread terminates, it becomes DEAD. Threads are in state BLOCKED

while they wait for locks or I/O operations. The time between the instant at
which a thread becomes READY until it goes to state WAITING must be bounded – if
it is not WAITING when its deadline arrives, it has missed the deadline. Figure 2
visualizes the possible state transitions of the thread model.

For the calculation of the execution time bounds, we assume that threads
scan their stack when they become WAITING. For periodic tasks in the RTSJ

3For threads without a known deadline, the garbage collector can fall back to blocking the thread
and scanning the stack itself.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

Nonblocking Real-Time Garbage Collection • 6:11

[Bollella et al. 2000], this can be done implicitly when waitForNextPeriod() is
invoked. There is no need to change the application code. If no such method
needs to be called by tasks, the scanning can be integrated into the scheduler. In
the current version of the RTSJ, sporadic threads do not invoke such a method;
their stack is however empty when they do not execute, which in turn makes
root scanning trivial. The overhead for stack scanning of course has to be taken
into account for calculating the WCET of tasks.

We assume that the GC thread runs at the lowest priority in the system.
On the one hand, a garbage collector usually has a long period (and deadline),
compared to other real-time tasks. It follows from scheduling theory that it
should have a low priority [Liu and Layland 1973].

3.2.2 Solution for Periodic Tasks. For periodic threads, the time between
two releases is known and the time between two successive calls of wait-
ForNextPeriod() is bounded. For this solution, the individual tasks push the
references of the local root set onto the mark stack of the garbage collector
if an appropriate flag is set. The garbage collector must wait until all tasks
have acknowledged the scan before it can proceed. In the worst case, a task
has become WAITING very early in its period when the garbage collector starts
execution and becomes WAITING very late in its next period.

Let Ri be the worst-case response time of a thread τi, Qi its best case response
time and Ti its period. The response time of a task is the time between the
instant at which a thread becomes READY until it goes to the WAITING state
again. Cstackscan is the worst-case time until all threads have scanned their local
root set and the garbage collector may proceed. Cstackscan can be computed as
follows:

Cstackscan = max
i≥0

(Ti − Qi + Ri) (1)

Figure 3(a) visualizes the formula above. It shows that the worst case be-
tween two completions of a thread is T−Q+ R. Consequently, this is the longest
time the garbage collector must wait for this thread.

To avoid the computation of the best and worst-case response times – espe-
cially the former is typically unknown –, this can be simplified to

Cstackscan = 2Tmax (2)

3.2.3 Generalized Solution. The considerations for periodic tasks cannot
be applied to sporadic tasks in the general case. For sporadic tasks, the min-
imum interarrival time is known, but usually not the maximum inter-arrival
time. Therefore, the worst-case time until the garbage collector may proceed is
potentially unbounded. A similar issue occurs with threads that have a very
long period; for such threads, Cstackscan for the simple solution may become
prohibitively large.

The stack of a thread is only modified if the respective thread executes.
Therefore, the garbage collector can reuse data from previous scans and only
needs to wait for threads which may have executed since their last scan. These
are – apart from the initialization and destruction of threads – the threads
which are not in state WAITING.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

6:12 • M. Schoeberl and W. Puffitsch

Fig. 3. Visualization of the WCETs for root scanning.

We adapt the root scanning scheme such that threads save their stack on
every call of waitForNextPeriod() to a root array. For WAITING threads, the content
of the root array from their last scan is used by the garbage collector; for all
other threads, the garbage collector waits until they have updated their root
array. With this scheme, it is sufficient to take into account the worst-case
response time for the execution time of stack scanning.

Cstackscan = Rmax (3)

This time can be further improved: the garbage collector can only execute if
no other thread is READY. If threads scan their stacks when becoming BLOCKED,
the garbage collector can therefore never encounter threads that have executed
since their last stack scan. Trivially, this is also the case, if a system does not
support blocking operations at all. As the information in the root arrays is
always consistent when the garbage collector executes, it is never necessary to
wait for any thread to scan its stack and

Cstackscan = 0 (4)

Enforcing scanning upon blocking requires more effort than enforcing it
upon waiting. It entails that the implementation of wait() needs to be changed

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

Nonblocking Real-Time Garbage Collection • 6:13

accordingly. Depending on the organization of a JVM, this may or may not be
possible.

3.2.4 Discussion. As pointed out by Robertz and Henriksson [2003] and
Schoeberl [2006a], the allocation rate and the size of the heap determine the
maximum GC period. The proposed solutions introduce a waiting time for the
garbage collector and therefore may make it necessary to increase its period.
Such an increase may lead to a situation where it cannot be guaranteed any-
more that the garbage collector can cope with the allocation rate of a system.

Cstackscan has to be added to the response time of the GC thread; the impact
of this delay depends on the thread periods. If the response time of the garbage
collector is far greater than the periods of the mutator threads, the relative
impact is small. If there is some slack between the maximum and the actual
GC period, the effect can probably be hidden.

An advantage of the generalized solution is that Cstackscan is considerably
smaller than for the simple solution. The downside of the generalized solution
is however that a dedicated memory area is needed to save the roots of the
individual threads. It is not possible anymore to let the mutator thread push
its root set onto the mark stack. To avoid blocking in this scheme, it is necessary
to use two memory areas for each thread to allow for double buffering. If the
maximum number of roots is unknown, each of these areas occupies as much
memory as the stack.

The overhead for completing the root scanning is larger on the garbage
collectors side for the generalized solution. This is due to the fact that the
garbage collector itself has to push the references onto the mark stack. On
the threads’ side, the overhead is slightly smaller, because the content of the
stack only has to be transferred to the root array, without performing any
computations. However, the increased overhead for scanning is most likely
far smaller than the time that is spent on waiting for the other threads. It
is mandatory to use such a scheme for sporadic tasks; applying it to periodic
tasks as well allows to trade time to wait for a root scan with additional memory
consumption.

Figure 3 compares the worst case scenarios of the solution for periodic tasks
and the generalized solution. For the generalized solution, the threads save
their stack in a root array at the end of each period. The garbage collector only
has to wait for threads that have executed since their last scan. In Figure 3(b),
thread 3 is BLOCKED when the garbage collector starts execution, but does not
scan its stack. Therefore, the garbage collector has to wait for this thread. In
the worst case, this waiting time equals the maximum response time.

It is possible to mix root scanning strategies to find an optimal solution. For
high frequency threads, jitter is usually very important, and the waiting time
of the solution for periodic threads may be negligible. For medium frequency
threads, the generalized solution with an impact in the order of one period may
be a better trade-off. Low-frequency threads are probably less sensitive to jitter
and root scanning by the garbage collector may not hurt them. However, it is
not possible to propose a generic solution to this problem without knowledge
about the properties of the whole system.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

6:14 • M. Schoeberl and W. Puffitsch

Fig. 4. Memory controller state machine with background copy.

4. NONBLOCKING OBJECT COPY

Copying large arrays and objects in a compacting garbage collector attributes to
the largest blocking times. To avoid losing updates on the object during copying
(write to fields that are already copied), it is usually performed atomically. To
avoid those long blocking times in a real-time garbage collector, we propose an
interruptible copy unit. The copy unit has two important properties.

—It can be preempted at single-word copy boundaries.
—The copy process is executed at the GC thread priority.

A real-time garbage collector needs to be interruptible by higher priority
threads. If the copy task is performed by the hardware, which works au-
tonomously in its own hardware thread, the hardware also needs to be in-
terrupted on a thread switch. Furthermore, the copy task needs to be resumed
at the correct time, that is, when no thread with a priority higher than the GC
thread priority is ready.

A simplified solution is to start the copy as a background DMA operation and
let the GC thread wait for completion before continuing the GC work. However,
this background activity, even when interruptible at word boundaries, changes
the WCET of high priority threads. It steals memory cycles from those threads.
The copy unit starts at idle cycles, but it will still block incoming read or write
requests from the real-time threads during the copy. Therefore, it will delay
most of the load and store instructions.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

Nonblocking Real-Time Garbage Collection • 6:15

Fig. 5. Memory controller state machine with interruptible copy.

Figure 4 shows a simplified state diagram of the memory controller that
performs the background copy. From the idle state either a normal read, normal
write, or a start of the copy task is performed. The states of the copy task are:
start with setting a flag that an object copy is pending, perform the copy (via
states copy read and copy write), and end with the reset of the copy flag. After
each write in the copy loop the CPU is checked for an outstanding read or write
request. In that case the copy task stops and that request is fulfilled. A stopped
copy is resumed from states read and write if the copy flag is set.

For time predictability we need a complete stop of the copy task on a software
thread switch (from the GC thread to an application thread). Two solutions are
possible: (a) integrate the control of the copy task into the scheduler, or (b) let
the copy unit itself detect a thread switch.

For the first solution the stopping of the copy unit is integrated into the
scheduler. On a non-GC thread dispatch, the scheduler has to explicitly stop
the copy task. However, this approach needs integration of GC related work
into the scheduler, which is not possible in all JVMs.

The second approach is to interrupt the copy task by a normal memory
operation (read or write). Interruption can be detected by the memory unit by a
pending read or write request. During the object copy the GC thread performs
a busy wait on the status of the copy. Therefore, the GC thread does not access
main memory at this time. If the memory unit recognizes a read or write
request it comes from an application thread that interrupted the GC thread.
That request is the signal to stop copying. The state machine for this behavior
is depicted in Figure 5. As in the former state machine the copy loop can be

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

6:16 • M. Schoeberl and W. Puffitsch

startCopy(src, dst, size);
while (!copyFinished()) {

if (copyInterrupted()) {
resumeCopy();

}
}
synchronized (GC.mutex) {

updateHandle(handle, dst);
}

Listing 1. Busy waiting copy loop in the GC thread with a copy resume.

interrupted by a pending read or write request. The difference is that there is
no automatic transition from the read and write state back to the copy loop.
The copy task needs to be explicitly resumed from the processor, as indicated
by the transition from idle to copy read.

The remaining question is how to resume the copy task? Similar to the stop-
ping of the copy unit, two solutions are possible: (a) the scheduler resumes the
copy task, or (b) the GC thread performs the resume. The scheduler integration
works as follows: When the GC thread is about to be rescheduled, the scheduler
has to resume the copy operation as well. This approach is only possible when
the scheduler has knowledge about the thread types (mutator or GC thread).

The proposed solution lets the GC thread resume the copy task when getting
rescheduled. To perform this function, the GC thread needs to know that it
was preempted – an information that is usually not available for a thread.
However, the copy unit preserves this information and the state interrupted
can be queried by the GC thread from the copy unit in the copy loop.

Listing 1 shows the copy code in the garbage collector. The GC thread kicks
off the copy task with startCopy() and performs a busy wait till the copy task
is finished – copyFinished() returns true. Within the loop, the state of the copy
state machine is checked with copyInterrupted() and the copy task is resumed
if necessary. On a resume, the copy unit just continues to copy the object; it is
not a restart of the copy task, as in Gruian and Salcic [2005], that can result in
starvation of the GC copy. It has to be noted that this busy waiting loop does
not consume any memory bandwidth. The code is executed from the instruction
cache, stack operations are performed in the stack cache, and all state queries
go via an on-chip bus directly to the memory controller. The memory controller
can perform the copy at maximum speed during the garbage collector busy
wait. At the end of the copying process, the reference to the object in the handle
is updated atomically. The copy unit still redirects the access to the correct
location to avoid any race condition. The redirection is updated at the next
object copy (with startCopy()).

A further simplification of the copy unit is possible when the GC thread
triggers only single word copies in a tight loop. The copy process is automatically
preempted when the GC thread gets preempted. No resume is necessary due
to the incremental copy trigger and the polling for the finished copy task can
be omitted. The disadvantage of this simplification is the slower copy of the
object.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

Nonblocking Real-Time Garbage Collection • 6:17

5. IMPLEMENTATION

We implemented the proposed nonblocking copy unit in the Java processor
JOP [Schoeberl 2008]. JOP was designed from scratch as a real-time processor
[Schoeberl 2006b] to simplify the low-level part of WCET analysis. The main
benefit of a Java processor for real-time Java is the possibility to perform WCET
analysis at bytecode level [Schoeberl and Pedersen 2006].

In the following section, the GC algorithm that is part of the JOP runtime
environment is briefly described. It has to be noted that the proposed copy unit
is independent of the processor platform and also independent from the GC
algorithm.

The described GC algorithm is intended for hard real-time systems where
allocation rate and object lifetime can be analyzed. As a fallback, when the
analysis was wrong, an allocation will be blocked till the GC has freed enough
memory. The real-time GCs, which are part of practically all available RTSJ
implementations, are usually optimized for soft or mixed real-time applications.
These GCs support applications that are not analyzable by (self-)tuning of GC
parameters.

5.1 The GC Algorithm

The collector for JOP is a concurrent copy collector [Schoeberl 2006a; Schoeberl
and Vitek 2007] based on the garbage collectors of Baker [1978] and Dijkstra
et al. [1978]. Baker’s expensive read-barrier is avoided by using a write barrier
and performing the object copy in the collector thread. Therefore, the collector is
concurrent and resembles the collectors presented by Steele [1975] and Dijkstra
et al. [1978]. The collector and the mutator are synchronized by a read and a
write barrier. A Brooks-style [Brooks 1984] forwarding directs the access to
the object either into tospace or fromspace. Indirection through the forwarding
pointer is implemented in hardware and is therefore an atomic operation. On a
standard uniprocessor preemption points are common practice for short critical
section to synchronized mutator and GC threads. The forwarding pointer is
kept in a separate handle area, as proposed by North and Reppy [1987]. The
separate handle area reduces the space overheads, because only one pointer
is needed for both object copies. Furthermore, the indirection pointer does not
need to be copied. The handle also contains other object related data, such as
type information, and the mark list. The objects in the heap only contain the
fields and no object header. It has to be noted that the size of the handle area
needs to be chosen according to the application characteristics.

The second synchronization barrier is a snapshot-at-beginning write barrier
as proposed by Yuasa [1990]. A snapshot-at-beginning write barrier synchro-
nizes the mutator with the collector on a reference store into a static field, an
object field, or an array. The to be overwritten field is shaded gray as shown
in Listing 2. An object is shaded gray by pushing the reference of the object
onto the mark stack.4 Further scanning and copying into tospace – coloring it

4Although the garbage collector is a copying collector a mark stack is needed to perform the object
copy in the GC thread and not by the mutator.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

6:18 • M. Schoeberl and W. Puffitsch

private static void putfield ref(int ref, int value, int index) {
synchronized (GC.mutex) {

// snapshot-at-beginning barrier
int oldVal = Native.getField(ref, index);

// Is it white?
if (oldVal!=0 && Native.rdMem(oldVal+GC.OFF SPACE)!=GC.toSpace) {

// mark gray
GC.push(oldVal);

}
// assign value
Native.putField(ref, value, index);

}
}

Listing 2. Snapshot-at-beginning write barrier in JOP’s JVM.

black – is left to the GC thread. One field in the handle area is used to imple-
ment the mark stack as a simple linked list.

This write barrier and appropriate stack scanning allow using expensive
write barriers only for reference field access (putfield, putstatic, and aastore
in Java bytecode). Local variables and the operand stack need no barrier
protection.

Note that field and array access is implemented in hardware on JOP. Only
write accesses to reference fields need to be protected by the write barrier,
which is implemented in software. During class linking all write operations to
reference fields (putfield and putstatic when accessing reference fields) are re-
placed by JVM internal bytecodes (e.g., putfield ref) to execute the write barrier
code as shown in Listing 2.

The methods of class Native are JVM internal methods needed to implement
part of the JVM in Java. The methods are replaced by regular or JVM inter-
nal bytecodes during class linking. Methods getField(ref, index) and putField(ref,
value, index) map to the JVM bytecodes getfield and putfield. The method rd-
Mem() is an example of an internal JVM bytecode and performs a memory read.
The null pointer check for putfield ref is implicitly performed by the hardware
implementation of getfield that is executed by Native.getField(). The hardware
implementation of getfield triggers an exception interrupt when the reference
is null. The implementation of the write barrier shows how a bytecode is sub-
stituted by a special version (pufield ref), but uses in the Java method the
hardware implementation of that bytecode (Native.putField()).

In principle, this write barrier could also be implemented in microcode to
avoid the expensive invoke of a Java method. However, the interaction with
the garbage collector, which is written in Java, is simplified by the Java im-
plementation. As a future optimization we intend to inline the write barrier
code.

The collector runs in its own thread and the priority is assigned according
to the deadline, which equals the period of the GC cycle. As the GC period is
usually longer than the mutator task deadlines, the garbage collector runs at
the lowest priority. When a high priority task becomes ready, the GC thread will

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

Nonblocking Real-Time Garbage Collection • 6:19

Fig. 6. Redirection of a putfield operation by the memory unit.

be preempted. Atomic operations of the garbage collector are protected simply
by turning the timer interrupt off.5 Those atomic sections lead to release jitter
of the real-time tasks and shall be minimized. It has to be noted that the GC
protection with interrupt disabling is not an option for multiprocessor systems.

5.2 Root Scanning

The implementation of the new root scanning strategies is straight forward. The
logic for stack scanning is inserted into the implementation of waitForNextPe-
riod(). The garbage collector is modified such that it waits for the application
threads to scan their stacks instead of doing it itself. A third change is the gray
allocation of new objects during the root scanning phase, which is not necessary
for atomic stack scanning. In total, less than 100 lines of Java code are specific
to the root scanning strategies proposed in Section 3.2.

5.3 The Memory Controller

The memory controller in JOP already implements the field and array access
in hardware. The hardware implementation of those functions reduces the
overhead of the read-barrier (the handle indirection) and speeds up null pointer
and bounds checks [Schoeberl 2007]. This memory controller is extended with
a copy function and the redirection of field and array accesses to the correct
part of the object.

Figure 6 shows an example of the write access to an object that is under copy
from address src to address dst. The index i points to the next word that will
be moved. The object contains four fields (a, b, c, and d). Gray memory cells
show the current locations of the fields. Fields a and b are already in tospace,

5If interrupt handlers are allowed to change the object graph, those interrupts also need to be
disabled.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

6:20 • M. Schoeberl and W. Puffitsch

fields c and d are in the original object in fromspace. The upper figure shows
the access to field d that goes to the original object. The lower figure shows the
redirection of the access to field b into the tospace copy of the object.

We have implemented the simplified version of the copy unit with the simple
interaction with the GC thread. Instead of kicking off the whole copy task once
and resuming it after preemption, the copy task is continually triggered for
individual words in the garbage collector loop. The following code fragment
shows that loop.

for (i=0; i<size; i++) {
Native.memCopy(dst, src, i);

}

The method memCopy() is mapped to a JVM internal bytecode and triggers
the hardware to perform a single word copy from src to dst at offset i. Note that
this loop is not protected by a synchronized block and can be preempted when
a high priority thread becomes ready. The copy task is preempted implicitly
as well. When the GC thread is running again, it just continues to copy the
object.

The advantage of our implementation is a simple state machine in the mem-
ory unit and less hardware resource consumption. The disadvantage is the
slower copying of the object. A hardware implementation of the copy operation
could perform a single word copy in 5 cycles (two cycles to read the word and
3 cycles to write the word) on the actual platform. Copy of a single word with
the simplified solution takes 27 cycles: 12 cycles are spent in the JVM inter-
nal bytecode and 15 cycles are loop overhead and pushing the arguments for
memCopy() onto the operand stack. The maximum blocking time of the copy
operation is the execution of the internal bytecode,6 therefore, 12 clock cycles.

One important feature of the memory controller is the redirection of field and
array access to the correct copy of the object. Field and array access are already
part of the memory unit [Schoeberl 2007]. Therefore, the pointer of the access
just needs to be compared with the pointer of the object currently copied and
the index with the copy pointer. If the index is higher than the copy pointer the
access is performed normal – the pointer in the handle indirection points to the
old copy until the whole copy is performed. The handle is updated afterwards
atomically by the GC thread. If the access goes to a field or array element
that is already copied, the access is redirected. To speedup the redirection, the
memory unit precalculates the distance between the old copy and the new copy
of the object at the start of the copy operation. This offset is simply added at
the effective address calculation when a redirection is necessary.

The redirection is performed in the same cycle as the effective address calcu-
lation. Therefore, field and array access takes the same time as in the original
implementation. The calculation of the offset and the redirection is carefully
designed to avoid introduction of a slow critical path in the memory unit that
would reduce the maximum operation frequency of the processor.

6Interrupts are only accepted at bytecode boundaries.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

Nonblocking Real-Time Garbage Collection • 6:21

Table I. Thread Properties of the Test Programs

Thread Period Deadline Priority
τhf 100 μs 100 μs 6
τp 2 ms 2 ms 5
τc 10 ms 10 ms 4
τs 15 ms 15 ms 3
τlog 25 ms 25 ms 2
τgc 50 ms 50 ms 1

Table II. Release Jitter with Blocking Copy, Task Set
{τhf , τp, τc, τlog, τgc}, Varying Array Sizes

Jitter (μs)
Array Size base single scan save
256 B 536 136 82 91
512 B 533 130 82 91
1 KB 537 135 84 90
2 KB 535 142 128 134
4 KB 531 244 241 237
8 KB 537 447 445 455
16 KB 856 857 856 866
32 KB 1677 1671 1677 1685
64 KB 3313 3316 3311 3323

The hardware resource consumption of the copy unit is moderate. The ad-
ditional registers, adders, and multiplexors in the memory unit consume 322
additional logic cells (LC). This is about 10% of the complete processor. How-
ever, it doubled the size of the memory unit from 301LC to 623LC. The memory
unit is now almost as large as the execution unit (679LC).

6. EVALUATION

For the evaluation we used following hardware setup: JOP implemented in an
FPGA and configured for 100MHz.7 JOP is configured with 4KB instruction
cache and 1KB stack cache. The main memory consists of 1MB static RAM
with 15ns access time, resulting in a single word read access in two clock cycles
and a single word write access in three clock cycles.

For jitter measurements, we used 6 different tasks, which are similar to the
tasks presented in Puffitsch and Schoeberl [2008] and Schoeberl and Puffitsch
[2008]. We chose to unify these two slightly different experiments, so we can
present consistent figures throughout all aspects of our evaluation. Rate mono-
tonic priority ordering is used to determine the tasks’ priorities. The task prop-
erties are described in the following and subsumed in Table I. The figures
presented in Tables II, III, IV, and V were obtained by measuring the maxi-
mum release jitter of the highest priority thread during a run of 15 minutes.
For the measurements, we slightly modified the periods of the threads. We used
prime numbers (e.g., 2003μs instead of 2000μs) to avoid a regular phasing of
the threads, which could have led to too optimistic results.

7The actual synthesis results with medium effort on optimization for the low-cost Altera Cyclone-I
FPGA is 97MHz.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

6:22 • M. Schoeberl and W. Puffitsch

Table III. Release Jitter with Copy Unit, Task Set
{τhf , τp, τc, τlog, τgc}, Varying Array Sizes

Jitter (μs)
Array Size base single scan save
256 B 532 132 73 86
512 B 532 125 73 75
1 KB 528 126 73 75
2 KB 527 125 73 74
4 KB 527 131 73 86
8 KB 526 131 73 86
16 KB 526 126 75 86
32 KB 526 124 72 86
64 KB 525 122 71 74

Table IV. Release Jitter with Blocking Copy, Varying Task Sets, Array Size 4 KB

Threads Jitter (μs)
Task Set τhf τp τc τs τlog no GC base single scan save
A � � � 76 517 199 78 86
B � � � � 70 531 244 241 237
C � � � � � 84 683 242 230 247

Table V. Release Jitter with Copy Unit, Varying Task Sets, Array Size 4 KB

Threads Jitter (μs)
Task Set τhf τp τc τs τlog no GC base single scan save
A � � � 70 531 196 80 74
B � � � � 69 527 131 73 86
C � � � � � 75 683 198 82 92

The most important thread with respect to the measurements is the high-
frequency task τhf with a frequency of 10kHz. It computes its own release jitter
and does nothing else. This task has the highest priority of all tasks and all
jitter figures in this section refer to the release jitter of this thread.

Two more threads, τp and τc, act as producer/consumer pair exchanging
arrays. τp produces one array every two milliseconds and τc consumes the
available arrays every 10ms. A simple list is used to pass the objects from τp to
τc. These threads have the second- and third-highest priorities in the system.
τp′ is a variant of τp, which uses a preallocated pool of objects instead of dynamic
allocation. It is used to evaluate the behavior of the system if no GC takes place
or if GC could not cope with the allocation rates.

τs is a thread that occupies the stack such that it is not empty when wait-
ForNextPeriod() is invoked. Consequently, a strategy as proposed by Schoeberl
and Vitek [2007] cannot be used if this thread is part of the task set, because
the strategy assumes that the threads’ stacks are empty at the time of root
scanning. It is also the thread with the deepest stack. The period of τs is 15ms.

To record the measurements, we used a logging thread τlog with a period
of 25ms. It prints results every 40th iteration, that is, once per second. The
artificially short period is necessary to keep the waiting time for the scan
strategy sufficiently low. The GC thread, τgc, has a period of 50 ms and is

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

Nonblocking Real-Time Garbage Collection • 6:23

consequently the lowest-priority thread in the system. The GC period was
chosen shorter than necessary to force the GC thread to run practically as a
background thread. This setting maximizes the interference between the GC
thread and the mutator threads.

The careful reader will note that the release jitter in Tables II, III, IV,
and V exceeds the period of τhf for some measurements. In the scheduler we
used for this experiment, we chose not to adjust the following release times in
these cases. On the one hand, this may lead to queuing up of releases, heavily
overloading the system. On the other hand, this allows the threads to “catch
up” in the following releases and avoids the release times to drift off. At least for
our experiment, the latter behavior is more useful, because a single deadline
miss then does not affect the measurement for all following releases.

We evaluated four different root scanning strategies. The strategy labeled
“base” in Tables II, III, IV, and V scans the stacks of all threads in one atomic
step. The “single” strategy scans one stack at a time atomically. The “scan” and
“save” strategies implement the solution for periodic tasks and the generalized
solution as described in Section 3.2. For the “scan” strategy, tasks push their
local root set onto the mark stack at the end of their period. For the “save”
strategy, tasks save their stack into root arrays, and the garbage collector
pushes the references onto the mark stack.

Tables II and III show results for a fixed task set and various arrays sizes.
The size of the arrays that τp and τc exchange is shown in the first column. The
task set for arrays of up to 4 KB is {τhf , τp, τc, τlog, τgc}. For larger arrays, it was
necessary to use the task set {τhf , τp′ , τc, τlog, τgc}, i.e., preallocated arrays are
used. The garbage collector could not keep up with the allocation rates with
dynamic allocation. Still, it tries to garbage collect the preallocated arrays and
therefore has an effect on the system behavior. While Table II presents the
numbers for a system that copies objects atomically, the results in Table III
were obtained on a system with a copy unit.

The “base” strategy yields a release jitter of around 535μs, for arrays of
up to 8KB. The jitter due to the root scanning is large enough to hide the
jitter that is caused by the atomic copying of the arrays up to this size. The
single strategy lowers the release jitter to around 135μs for small arrays. In
Table II, the jitter increases linearly with the array size, starting at 2KB, to up
to 3316μs. The copy unit removes this effect, such that the single strategy can
achieve a release jitter of around 130μs for all array sizes. The results for the
scan and save strategies are similar: both lower the jitter to around 85μs for
small arrays. Again, the jitter for larger arrays increases without the copy unit.
Table III shows that with the copy unit low jitter can be achieved also for large
arrays. Tables II and III show that the copy unit and the new root scanning
strategies allow to achieve low release jitter for high frequency threads.

One question to be answered as well is in how far GC affects the release
jitter when comparing it to a system without GC. In Tables IV and V, various
task sets are compared. The first column displays the labels for the task sets,
the following six columns indicate which tasks are part of a specific task set.
For the measurements in the column labeled “no GC”, τp is replaced with τp′ ,
which uses a pool of preallocated objects instead of dynamic allocation, but

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

6:24 • M. Schoeberl and W. Puffitsch

Fig. 7. Release jitter with copy unit, varying task sets, array size 4 KB.

otherwise is equivalent to τp. For these measurements, τgc is not part of the
task set, while it is part of the task set for all other measurements. Therefore,
the figures in the “no GC” column indicate how a system without GC would
behave. The size of the arrays that are passed between τp and τc is 4 KB for all
measurements in Tables IV and V. Figure 7 shows a graphic representation of
the numbers in Table V; the evaluated task sets and strategies are the same.

As in Tables II and III, the base strategy introduces a considerable amount
of jitter. Up to 683μs of release jitter could be observed for task set C, which
is almost one order of magnitude larger than the jitter without GC. Scanning
the stacks of individual threads atomically results in a lower jitter, but the
atomic array copying results in up to 244μs in Table IV. This jitter is removed
in Table V, resulting in up to 198μs of jitter for the “single” strategy. Comparing
the task sets with and without τs confirms that the effect depends on the size
of the largest thread stack.

When comparing the system without dynamic memory allocation to the
“scan” and “save” strategies, the jitter is increased by less than 20μs. Up to
75μs of jitter can be observed without GC, and must therefore be attributed to
scheduling and synchronization in the application logic. Future work will have
to concentrate on this area to allow the scheduling of real-time threads with
periods of less than 100μs.

The new strategies “scan” and “save” slightly degrade the scheduling quality.
Up to 82μs of jitter could be observed for the “scan” strategy, up to 92μs for
the “save” strategy. As we made only minimal changes to the scheduler, and
no significant atomic sections were introduced, we had expected only a smaller
deviation in these results. However, further research will be necessary to find
the source of the jitter increase.

6.1 Discussion

The results presented in the previous section demonstrate that traditional root
scanning techniques are inadequate when considering high frequency real-time
threads. Scanning all thread stacks in a single atomic step easily increases the

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

Nonblocking Real-Time Garbage Collection • 6:25

release jitter by one order of magnitude, scanning one thread stack at a time
atomically almost triples the jitter. Of course, the effects depend on the actual
application, but they tend to become worse with larger applications.

The copying of large arrays is also a key factor in achieving a high scheduling
quality. The impact of atomic copying grows linearly with the array sizes;
without appropriate measures to reduce this effect, it can easily introduce an
unacceptable amount of jitter.

One important result derived from the Tables IV and V is that it is neces-
sary to use both a nonblocking root scanning strategy and a nonblocking copy
mechanism to achieve low jitter. Improved root scanning is futile if the copying
of large arrays introduces considerable jitter. Lowering the preemption latency
of array copying to the granularity of single words is rendered useless if whole
thread stacks are scanned in one atomic step.

The results presented in Figure 7 demonstrate that the the GC techniques
proposed in this article can lower the jitter to almost the same level as in a
system without GC. For the evaluated system, scheduling is the largest source
of jitter. For high frequency tasks, it is therefore necessary to improve the
scheduler; the garbage collector is not the limiting factor anymore.

Of course, GC does not come for free. It introduces memory and performance
overheads and may therefore make it necessary to use more expensive hard-
ware for a given system. On the other hand, dynamic memory management
increases programmer productivity and program safety. The low intrusiveness
of the proposed GC mechanisms allows deciding on this trade-off without sac-
rificing scheduling quality.

7. CONCLUSION AND OUTLOOK

We investigated the root scanning phase of GC and could show three impor-
tant properties. First, atomicity for stack scanning is only necessary with
respect to the thread whose stack is scanned. Second, atomicity is not re-
quired at all if mutator threads scan their own stack. And third, a snapshot-at-
beginning write barrier is sufficient to allow complete decoupling of local stack
scans.

Furthermore, we provided two approaches for how these theoretical prop-
erties can be utilized and showed the implications on the execution time of a
garbage collector. The first approach can only be applied to periodic tasks and
delays the garbage collector by up to two times the longest task period. The
second approach is more general and has a smaller impact on the execution
time of the garbage collector, but has a higher memory overhead.

In this article, we also proposed and evaluated a hardware extension to
eliminate the blocking time due to atomic copying of large arrays. A copy unit
performs the object and array copy and redirects field and array access to the
correct version of the object or array. An important feature of the proposed
copy unit is scheduling the copy task at GC priority. Therefore, a high-priority
real-time thread can interrupt the copy task at single word copy boundaries.
As the copy task is completely interrupted (no background activity), it does not
influence the WCET of real-time threads.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

6:26 • M. Schoeberl and W. Puffitsch

An evaluation of the proposed solutions confirmed the theoretical results.
Jitter of high priority threads, which can be attributed to GC, could be reduced
considerably. The impact of the new root scanning strategies on the jitter due
to scheduling and synchronization however still needs to be analyzed.

Future work will investigate if a tighter coupling of scheduling and root
scanning is profitable. Merging the root arrays of the generalized solution with
the memory areas for the thread contexts could lower the memory consumption
without impairing the performance.

Exact stack scanning has not been handled in this paper. The proposed
solutions lower the overhead for exact scanning, but tools to make use of this
need to be developed. Furthermore, for hard real-time systems the execution
time of the GC task needs to be bounded. We consider WCET analysis of the
GC as future work.

The current implementation of our concepts is based on a uniprocessor. We
plan to implement them also in the chip-multiprocessor (CMP) version of JOP.
The copy unit needs to redirect access from all processors during the copy.
Therefore, part of the functionality has to be placed after the memory arbiter.
In a CMP setting with a time-sliced arbiter [Pitter 2008], the bandwidth is re-
served for the copy task – the copy unit will act just like another CPU. In that
case the copy task does not need to be interrupted as proposed for the unipro-
cessor version. With regard to our root scanning approach, we are confident
that the theoretical basis is applicable to CMP systems. Actual implementa-
tions may however offer new obstacles as well as new opportunities, especially
in the area of cache consistency.

ACKNOWLEDGMENTS

We thank the reviewers for the detailed comments, which have helped to clarify
the description of the presented ideas.

REFERENCES

AUERBACH, J., BACON, D. F., BLAINEY, B., CHENG, P., DAWSON, M., FULTON, M., GROVE, D., HART, D.,
AND STOODLEY, M. 2007. Design and implementation of a comprehensive real-time java virtual
machine. In EMSOFT ’07: Proceedings of the 7th ACM and IEEE International Conference on
Embedded Software. ACM, New York, 249–258.

AZATCHI, H., LEVANONI, Y., PAZ, H., AND PETRANK, E. 2003. An on-the-fly mark and sweep garbage
collector based on sliding view. In Proceedings of the ACM Conference on Object-Oriented Systems,
Languages and Applications (OOPSLA’03). ACM, New York.

BACON, D. F., CHENG, P., AND RAJAN, V. 2003a. Controlling fragmentation and space consumption
in the Metronome, A real-time garbage collector for Java. In Proceedings of the ACM SIGPLAN
Conference on Languages, Computers, and Tools for Embedded Systems (LCTES’03).

BACON, D. F., CHENG, P., AND RAJAN, V. 2003b. A real-time garbage collecor with low overhead and
consistent utilization. In Conference Record of the 30th Annual ACM Symposium on Principles
of Programming Languages. New York.

BAKER, H. G. 1978. List processing in real-time on a serial computer. Comm. ACM 21, 4, 280–94.
BOLLELLA, G., GOSLING, J., BROSGOL, B., DIBBLE, P., FURR, S., AND TURNBULL, M. 2000. The Real-Time

Specification for Java. Java Series. Addison-Wesley, Reading, MA.
BROOKS, R. A. 1984. Trading data space for reduced time and code space in real-time garbage col-

lection on stock hardware. In Conference Record of the ACM Symposium on Lisp and Functional
Programming, ACM, New York, 256–262.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

Nonblocking Real-Time Garbage Collection • 6:27

CHENG, P., HARPER, R., AND LEE, P. 1998. Generational stack collection and profile-driven pre-
tenuring. In Proceedings of the SIGPLAN’8 Conference on Programming Languages Design and
Implementation. ACM, New York.

CLICK, C., TENE, G., AND WOLF, M. 2005. The pauseless GC algorithm. In Proceedings of the 1st
International Conference on Virtual Execution Environments, (VEE’05), ACM, New York, 46–56.

DIJKSTRA, E. W., LAMPORT, L., MARTIN, A. J., SCHOLTEN, C. S., AND STEFFENS, E. F. M. 1978. On-the-fly
garbage collection: An exercise in cooperation. Comm. ACM 21, 11, 965–975.

DOLIGEZ, D. AND GONTHIER, G. 1994. Portable, unobtrusive garbage collection for multiproces-
sor systems. In the Conference Record of the 21st Annual ACM Symposium on Principles of
Programming Languages. ACM, New York.

DOLIGEZ, D. AND LEROY, X. 1993. A concurrent generational garbage collector for a multi-threaded
implementation of ML. In the Conference Record of the 20th Annual ACM Symposium on Prin-
ciples of Programming Languages. ACM, New York, 113–123.

GOSLING, J., JOY, B., STEELE, G., AND BRACHA, G. 2005. The Java Language Specification, 3rd Ed.
The Java Series. Addison-Wesley, Reading MA.

GRUIAN, F. AND SALCIC, Z. 2005. Designing a concurrent hardware garbage collector for small
embedded systems. In Proceedings of Advances in Computer Systems Architecture: 10th Asia-
Pacific Conference, (ACSAC’03). Springer-Verlag, Berlin, 281–294.

HUELSBERGEN, L. AND LARUS, J. R. 1993. A concurrent copying garbage collector for languages that
distinguish (im)mutable data. In Proceeding of the 4th Annual ACM Symposium on Principles
and Practice of Parallel Programming. ACM, New York, 73–82.

JONES, R. E. 1996. Garbage Collection: Algorithms for Automatic Dynamic Memory Management.
Wiley, Chichester. (With a chapter on Distributed Garbage Collection by R. Lins).

LEVANONI, Y. AND PETRANK, E. 2001. An on-the-fly reference counting garbage collector for Java.
In Proceedings of the ACM Conference on Object-Oriented Systems, Languages and Application
(OOPSLA’01), ACM, New York.

LIU, C. L. AND LAYLAND, J. W. 1973. Scheduling algorithms for multiprogramming in a hard-real-
time environment. J. ACM 20, 1, 46–61.

MEYER, M. 2006. A true hardware read barrier. In Proceedings of the 4th International Sympo-
sium on Memory Management (ISMM’06), ACM, New York, 3–16.

NETTLES, S. M. AND O’TOOLE, J. W. 1993. Real-time replication-based garbage collection. In Pro-
ceedings of SIGPLAN Conference on Programming Languages Design and Implementation. ACM,
New York.

NILSEN, K. D. AND SCHMIDT, W. J. 1992. Cost-effective object-space management for hardware-
assisted real-time garbage collection. Lett. Prog. Lang. Syst. 1, 4, 338–354.

NORTH, S. C. AND REPPY, J. H. 1987. Concurrent garbage collection on stock hardware. In Confer-
ence Record of the Conference on Functional Programming and Computer Architecture. Lecture
Notes in Computer Science, vol. 274. Springer-Verlag, Berlin, 113–133.

PITTER, C. 2008. Time-predictable memory arbitration for a Java chip-multiprocessor. In Pro-
ceedings of the 6th international workshop on Java Technologies for Real-Time and Embedded
Systems (JTRES). ACM Press, New York, 115–122.

PIZLO, F., FRAMPTON, D., PETRANK, E., AND STEENSGARD, B. 2007. STOPLESS: A real-time garbage
collector for multiprocessors. In Proceedings of the 5th International Symposium on Memory
Management (ISMM’07), ACM, New York, 159–172.

PIZLO, F., PETRANK, E., AND STEENSGAARD, B. 2008. A study of concurrent real-time garbage col-
lectors. In Proceedings of the SIGPLAN Conference on Programming Languages Design and
Implementation. ACM, New York, 33–44.

PUFFITSCH, W. AND SCHOEBERL, M. 2008. Non-blocking root scanning for real-time garbage collec-
tion. In Proceedings of the 6th International Workshop on Java Technologies for Real-time and
Embedded Systems (JTRES’08).

ROBERTZ, S. G. AND HENRIKSSON, R. 2003. Time-triggered garbage collection—robust and adaptive
real-time GC scheduling for embedded systems. In Proceedings of the ACM SILPLAN Conference
on Languages, Compilers, and Tools for Embedded Systems (LCTES’03). ACM, New York.

SCHMIDT, W. J. AND NILSEN, K. D. 1994. Performance of a hardware-assisted real-time garbage
collector. In Proceedings of the 6th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-VI). ACM, New York, 76–85.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

6:28 • M. Schoeberl and W. Puffitsch

SCHOEBERL, M. 2006a. Real-time garbage collection for Java. In Proceedings of the 9th IEEE
International Symposium on Object and Component-Oriented Real-Time Distributed Computing
(ISORC’06). IEEE Computer Society Press, Los Alamitos, CA, 424–432.

SCHOEBERL, M. 2006b. A time predictable Java processor. In Proceedings of the Design, Automa-
tion and Test in Europe Conference (DATE06), 800–805.

SCHOEBERL, M. 2007. Architecture for object oriented programming languages. In Proceedings
of the 5th International Workshop on Java Technologies for Real-Time and Embedded Systems
(JTRES’07). ACM, New York, 57–62.

SCHOEBERL, M. 2008. A Java processor architecture for embedded real-time systems. J. Syst.
Arch. 54/1–2, 265–286.

SCHOEBERL, M. AND PEDERSEN, R. 2006. WCET analysis for a Java processor. In Proceedings
of the 4th International Workshop on Java Technologies for Real-time and Embedded Systems
(JTRES06). ACM, New York, 202–211.

SCHOEBERL, M. AND PUFFITSCH, W. 2008. Non-blocking object copy for real-time garbage collec-
tion. In Proceedings of the 6th International Workshop on Java Technologies for Real-time and
Embedded Systems (JTRES08). ACM, New York.

SCHOEBERL, M. AND VITEK, J. 2007. Garbage collection for safety critical Java. In Proceedings of
the 5th International WOrkshop on Java Technologies for Real-Time Systems (JTRES). ACM,
New York, 85–93.

SIEBERT, F. 2000. Eliminating external fragmentation in a non-moving garbage collector for
Java. In Proceedings of the Symposium on Compilers, Architectures and Synthesis for Embedded
Systems (CASES’00).

SIEBERT, F. 2001. Constant-time root scanning for deterministic garbage collection. In Proceed-
ings of the 10th International Conference on Compiler Construction (CC’01).

STEELE, G. L. 1975. Multiprocessing compactifying garbage collection. Comm. ACM 18, 9, 495–
508.

WILSON, P. R. 1994. Uniprocessor garbage collection techniques. Tech. rep., University of Texas.
WILSON, P. R. AND JOHNSTONE, M. S. 1993. Truly real-time non-copying garbage collection. In

Proceedings of the OOPSLA/ECOOP’93 Workshop on Garbage Collection in Object-Oriented
Systems. ACM, New York.

YUASA, T. 1990. Real-time garbage collection on general-purpose machines. J. Syst. Softw. 11, 3,
181–198.

YUASA, T. 2002. Return barrier. In Proceedings of the International Lisp Conference.
ZABEL, M., PREUSSER, T. B., REICHEL, P., AND SPALLEK, R. G. 2007. Secure, real-time and multi-

threaded general-purpose embedded Java microarchitecture. In Prceedings of the 10th Euromicro
Conference on Digital System Design Architectures, Methods and Tools (DSD’07). 59–62.

Received November 2008; accepted March 2009

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 6, Publication date: August 2010.

