
Models of Communication for Multicore Processors

Martin Schoeberl, Rasmus Bo Sørensen, and Jens Sparsø

Department of Applied Mathematics and Computer Science
Technical University of Denmark

Email: [masca, rboso, jspa]@dtu.dk

Abstract—To efficiently use multicore processors we need to
ensure that almost all data communication stays on chip, i.e.,
the bits moved between tasks executing on different processor
cores do not leave the chip. Different forms of on-chip com-
munication are supported by different hardware mechanism,
e.g., shared caches with cache coherency protocols, core-to-
core networks-on-chip, and shared scratchpad memories. In
this paper we explore the different hardware mechanism
for on-chip communication and how they support or favor
different models of communication. Furthermore, we discuss
the usability of the different models of communication for real-
time systems.

Keywords-multicore communication, real-time systems, time-
predictable systems

I. INTRODUCTION

We need a model of communication. Current chip-

multicore processors use shared memory for communication.

The core-to-core communication on the chip is performed

via the cache coherence protocol backed up by a shared

level 2 cache. This has two disadvantages: (1) it does not

scale with the number of processors, as the cache coherence

mechanism and the shared level 2 cache are bottlenecks; (2)

it is hardly time-predictable.

Therefore, we need to focus on different, scalable, and

time-predictable forms of on-chip communication. A time-

division multiplexing (TDM) network-on-chip (NoC) [1], as

developed within the T-CREST project [2], is a first step

in the right direction. We need to explore which models of

communication are efficient and time-predictable: (a) push-

based messages between local memories, (b) pull-based

message passing, or (c) read/write transactions on distributed

local memories. Another option to explore is shared on-

chip memory, to avoid communication going off-chip. A

shared on-chip memory can have a core as owner and this

ownership can be transferred. This model of communication

supports applications with bulk data that needs to be moved

between cores.

This paper presents models of communications for mul-

ticore processors. We enumerate different forms and archi-

tectures to move data between processing cores on-chip and

avoiding off-chip communication. With these architectures

we intend to support future embedded real-time systems

on multicore architectures. Therefore, we restrict our explo-

ration to time-predictable architectures.

The models of communications described in the paper

can be used for general-purpose computers, but we focus

on architectures for real-time systems. Therefore, to allow

static estimation of the worst-case execution time (WCET)

of processes and estimation of end-to-end latencies for

communicating processes we need time-predictable arbitra-

tion for all shared resources. The simplest form of time-

predictable arbitration is TDM with a static schedule. This

TDM arbitration can be applied to shared memory access [3]

as well as to arbitration of packets in a packet switched

NoC [1].

We think that the models of communication shall be

exposed to the programmer. Future software for embedded

systems shall use those models of communication explicitly

to efficiently use multicore processors in embedded real-time

systems.

The contribution of this paper is the enumeration of

models of communication that can be built into future

multicore processors for embedded real-time systems. Only

a few of the listed models of communication have been

explored so far. Some examples, such as shared memory

with ownership and the one way shared memory have not

been presented before.

This paper is organized in 5 sections: The following

section presents models of computation; the more theoret-

ical models for concurrent programs. Section III presents

what we call models of communications, different hardware

mechanism to move data between processing cores. Sec-

tion IV discusses the mappings of the models of computation

to the models of communication. Section V concludes.

II. MODELS OF COMPUTATION

The term “Model of Computation” is used to describe

rules for interaction of concurrently executing processes or

components. An overview of common models of computa-

tion can be found in the Ptolemy II handbook [4].

In this section we will give an overview of the most com-

mon models of computation. These models are theoretical

models and can be implemented in different ways, e.g., by

support for message passing between processes or by shared

memory for communication between processes. With the

models of communication we list different communication

primitives. This section therefore serves as motivation for

models of communication.

2015 IEEE 18th International Symposium on Real-Time Distributed Computing

1555-0885/15 $31.00 © 2015 IEEE

DOI 10.1109/ISORC.2015.57

339

2015 IEEE 18th International Symposium on Real-Time Distributed Computing

1555-0885/15 $31.00 © 2015 IEEE

DOI 10.1109/ISORCW.2015.57

44

2015 IEEE 18th International Symposium on Real-Time Distributed Computing Workshops

1555-0885/15 $31.00 © 2015 IEEE

DOI 10.1109/ISORCW.2015.57

44



In the following subsections we use the term “execution

framework” to cover the compiler, configuration tools for

mapping, and the run-time system for scheduling that might

be needed for the model of computation in question.

A. Kahn Process Networks

A Kahn process network (KPN) [5] describes a network

of processes that communicate through unidirectional first-in

first-out (FIFO) channels with unbounded capacity. In a KPN

a process is a continuously executing program, also referred

to as a coroutine [6], that reads tokens on input channels

and produces tokens on output channels. When processes

communicate through a FIFO channel, the read operation is

blocking and the write operation is non-blocking. The KPN

model requires that the behavior of processes/coroutines is

deterministic and that changing timing or execution order

does not affect the result of the computations.

Executing a KPN in general, requires the execution frame-

work to determine the maximum FIFO capacity and to

schedule the execution order of the processes [7]. Due to

the expressiveness of KPN, the problem of bounding the

maximum FIFO capacity may be undecidable.

An efficient approach for executing KPNs on multicores

has been proposed [8]. Executing a KPN on a multicore plat-

form requires the execution framework to group processes

on cores on the platform. The order of processes executing

on a core depends on how the execution framework groups

processes on cores. When grouping processes the execution

framework needs to balance the load on the individual

cores and minimize the communication overhead. Due to

the dynamic behavior a KPN processes can exhibit, the

execution framework might need to take dynamic scheduling

decisions when executing a group of processes on a core.

The achievable core utilization or speedup depends on the

communication overhead. In real-time systems this depen-

dence is the worst-case communication overhead.

B. Synchronous Data Flow

Synchronous data flow (SDF) [9] is a restriction of KPNs.

The processes in an SDF model are called actors and the

execution of an actor is called a firing. The most noticeable

restriction in SDF compared to KPN is that the number of

tokens that are produced and consumed in each actor firing

is fixed. An actor fires exactly when the specified number

of tokens are available on all the input channels. SDF fits

very well for signal processing applications. As the number

of tokens can be different on different channels, SDF also

supports multi-rate digital signal processing applications.

The relation of different number of tokens produced and

consumed on a channel with the fire frequency of the

involved actor is called balance equation. From the bal-

ance equations, the execution framework can create a static

schedule where each actor fires a predetermined number

of times. From that schedule the execution framework can

calculate the maximum capacity of the buffers for the SDF

channels. For multicore execution, the execution framework

needs to divide the firings of the static schedule on to the

cores in the platform. The execution framework needs to

account for the dependencies between firings, when dividing

the firings to cores. Due to the static structure of an SDF

application, the communication through the bounded FIFO

channels maps well to asynchronous message passing. An

efficient algorithm for SDF allocation and scheduling on

multicore platforms has been proposed [10].

C. Cyclo-static Data Flow

Cyclo-static data flow [11] is an extension of SDF that

supports cyclically changing algorithms. Cyclo-static data

flow allows the designer to implement a wider range of

algorithms than with SDF. It is different from SDF because

the number of tokens that are produced and consumed do not

need to be the same in every firing. The number of tokens

can change with a fixed repeating schedule, also known as

a cyclo-static schedule.

D. Synchronous Programming Languages

The model of synchronous programming, implemented in

Esterel [12], LUSTRE [13], and SIGNAL [14], is similar

to the model of homogenous synchronous data flow, with

the two main differences being that there is no buffering

on communication channels and that the absence of a token

value can have a meaning. The semantics of synchronous

programming restricts tasks to produce or consume a single

token only on each channel in every synchronous time step.

The semantics allow that a task does not produce a token

in a synchronous time step, but if a token is present on an

input channel the task has to consume the token.

The concept of synchronous programming has a similar

feel as synchronous pipelined digital logic. The synchronous

time steps resemble the global clock ticks of digital logic.

The advantage of this similarity is that the performance is

very easy to calculate, as with synchronous digital logic each

task can be analyzed on its own. When the designer has

analyzed all tasks, he can set the rate of the global clock

ticks to match the performance of the task finishing last. One

disadvantage of synchronous programming is that multi-rate

applications cannot easily be implemented as with SDF.

The execution of each round of a synchronous program

is triggered by a timer interrupt with a fixed rate. When

the system executes a round of a synchronous program, the

system executes the tasks in an predetermined order that

ensures the signals between tasks resolve as fast as possible.

The tasks of a synchronous reactive program behave like

combinatorial components. When a clock period starts the

state/signals propagate through each component in an order

determined by the structure of the program. For systems with

feedback loops, the system designer needs to insert delays

3404545



in the feedback loops to ensure the executions of the system

can evaluate the values of all signal causally.

The main difficulty of executing synchronous reactive pro-

grams on multicores is to resolve the values of signals [15]

across all cores. In shared memory systems, a task waiting

for a signal to resolve, will try to grab a read lock on the

signal object. In applications with more than a few tasks and

signals, the locking will create memory contention.

The signal values are propagated between tasks as asyn-

chronous message passing, but as there is no buffering of

the values, the communication delay is in the critical path.

Executing a synchronous reactive program on a multicore

platform requires tight synchronization between consecu-

tively executing tasks, this synchronization maps very well

to message passing.

E. Communicating Sequential Processes

C.A.R. Hoare introduced the Communicating Sequential

Processes (CSP) model [16]. CSP has the notion of se-

quential processes that operate independently and interact

with each other only through messages. Processes may be

structured in sequential, parallel, or alternative compositions.

Using synchronous message passing for communication

enforces tight synchronization between the communicating

processes. The compositions of processes and how they

communicate with each other are precisely defined through

algebraic operators. This formal basis made CSP appealing

to a wide range of domains, including specification, mod-

eling, verification and analysis of various complex systems

(hardware, dependable and safety-critical systems, protocols,

etc.)

Occam [17] as a programming and specification language

implements CSP and the Transputer [18], [19] was designed

to execute Occam programs. Transputers where a first, rel-

ative successful, attempt to provide direct hardware support

for a model of computation. The hardware support consisted

of serial links that implement Occam channels. Transputers

have been used to build massively parallel multiprocessors

with up to thousands of processors.

Although Java supports shared memory and threads with

lock protection natively in the languages, CSP has been

explored in Java [20]. Even hardware support for CSP in

form of a NoC has been explored on a Java multicore

processor [21].

F. Shared Memory with Threads

Currently the most common used model of computation

is shared memory with thread. For eample, it is directly

supported in the popular programming language Java. Con-

current threads exchange information via shared data struc-

tures (e.g., objects). To allow atomic changes of more than

a single memory cell these data structures are protected by

locks (or critical sections) [22].

However, shared memory with threads does not have a

single formal definition. Furthermore, the memory model,

when data changes becomes visible to other processor cores,

in C is a function of the cache coherence hardware, the

compiler, and of libraries. Java defines a memory model,

which basically guarantees that updates become visible

when synchronized code blocks are executed. Therefore, all

concurrent programs need to carefully protect their shared

data with locks.

Classic real-time systems are organized as periodic

and sporadic tasks with rate-monotonic priority assign-

ments [23]. Communication between threads is usually also

performed with shared data structures allocated in shared

memory and protected by locks. Real-time priorities can

also be used for NoC based messages and the worst-case

latency of all messages can be anlyzed [24]. Response

time analysis of real-time tasks [25] can then be extended

to include the maximum message latencies of NoC mes-

sages [26].

It is interesting to note that the Ptolemy II handbook [4]

that lists many models of computation does not describe

shared memory and threads as one of them. This is an

indication that the weak definition of the semantics of shared

memory and threads makes it not the first choice for appli-

cations that need to be statically verified for certification.

For the above reason and as access to shared memory

does not scale with the number of cores we agree that

other models of computation shall be used for real-time

systems. In the following section we enumerate different

on-chip architectures that support time-predictable on-chip

communication. We think that those mechanism shall be

visible to the application programmer and future software for

embedded systems shall use those forms of communication.

III. MODELS OF COMMUNICATION

While models of computation describe different formal

systems and their rules for interaction between concurrent

processes, this section describes different models how data

(bits) can be communicated in hardware.

The hardware architectures described in this section can

be used for general purpose computers, but we focus on

architectures for real-time systems. Therefore, we need time-

predictable arbitration for shared resources. The simplest

form of time-predictable arbitration is TDM with a static

schedule. TDM arbitration can be applied to shared memory

access [3] as well as to arbitration of packets in a packet

switched NoC [1].

A. Shared External Memory

Access to external memory is currently the bottleneck

for single core processors and even more for multicore

processors. The current solution to reduce the bottleneck

is to build a memory hierarchy. Small first level caches,

separate for instructions and data, are core local. It is

3414646



common that platforms have another one or two levels of

on-chip caches, shared between the cores. Those second and

third level caches are usually unified, which means they

support instructions and data in the same cache. The further

away a cache is from the processor cores, the larger and the

slower that cache is. Second and third level caches usually

have a high associativity to provide a very low miss rate.

With the help of the second level cache, the pressure on the

hit rate of the first level caches is reduced, because a miss in

a first level cache that causes a hit in the second level cache

is less expensive. However, the core local caches needs be

kept coherent with the other core local caches and the rest

of the memory hierarchy. That cache coherence is a type of

all-to-all communication that scales poorly with the number

of cores.

The currently most common way to support communi-

cation between individual threads is to use data structures

allocated in shared memory and protected by locks. With the

help of caching, those data structures may stay on-chip when

needed for communication. When those threads execute on

different cores the effective communication happens through

cache coherence protocols on-chip. However, as mentioned

above, cache coherence based communication does not scale

beyond a small number of cores.

Furthermore, cache coherence based communication is

highly unpredictable with respect to execution time. The

authors are not aware of any WCET analysis tool that sup-

ports cache coherence induced load and store latencies. Ad-

ditionally the second and third level caches, shared between

cores, introduce another highly unpredictable interaction

between threads executing on different cores. As state-of-

the-art WCET analysis tools can only handle single threaded

functions without interaction with other threads, those shared

caches are currently not analyzable.

Our early conclusion is that communication through

shared memory has limits in the scalability and the execution

time of loads and stores is highly unpredictable. Therefore,

we need to add further on-chip communication mechanisms

to future multicore processors that are used in real-time

systems. Even processors not used in the real-time domain

may benefit from additional, application program visible, on-

chip communication mechanisms.

B. On-Chip Memory

On-chip memory in the form of cache memory is not

visible to the program. However, we can make this very same

memory available for explicit program managed use. Such

a memory is called a scratchpad memory (SPM). Classic

SPMs are core local as the first level caches and are used for

temporal data, e.g., stack frames. However, we can extend

the idea of local memory for temporal data to memories

that are also used to communicate data between processors.

We can share scratchpad memories similar to level 2 and

3 caches. We can have them physically distributed, but

accessible as distributed shared memory. Furthermore, we

can restrict access to some SPMs by defining a notion of

ownership for SPMs.

1) Shared Scratchpad Memory: Similar to a shared L2

cache we can put a shared SPM on a multicore processor. A

part of the address range of all processor cores is mapped to

this on-chip memory and can be used as (1) an SPM just for

core local data and (2) a shared memory for communication

between cores. In contrast to L2 caching the allocation of

data and the management of data is under program control.

To make the access to the shared SPM time-predictable

we need to use time-predictable arbitration. The simplest

form is a TDM based arbiter. The arbitration spans the

whole chip and might benefit from pipelining. Therefore,

the arbiter can be organized as a distributed and pipelined

tree of multiplexers [3].

2) Distributed Shared Memory: Another form of shared

on-chip memory is distributed shared memory. In this case

each core has a local memory that is mapped into a unique

address space for all cores. Access to such a memory is

possible with normal load and store operations. If the address

of a load or a store operation maps into the local memory,

the latency is low, probably one or two clock cycles. If the

address of the load store operation maps into to a memory

location in a remote core, the operation is translated into

a NoC packet and sent to the remote core over the NoC.

A store can simply be posted into the NoC. For a read

operation two packets need to travel over the NoC: (1)

the read request packet containing the read address and (2)

the reply packet containing the read value. To make such

a NoC time-predictable we use TDM based scheduling of

packets [1]. In TDM based scheduling, the latency of a

read operation depends on the number of cores, the TDM

schedule, and the route of the packets. However, with a TDM

schedule this latency, or the upper bound of this latency, is

statically computable.

The programming model for distributed shared memory

is the same as when using a single shared SPM. The

main difference is the latency of the individual memory

accesses. In the shared SPM the upper bound of the latency

is independent of the memory address. For the distributed

shared memory the access latency depends on the memory

location. In principle the distributed memory provides more

bandwidth than a single shared memory. How exactly the

upper bounds of the maximum latency compares with these

two configurations is an interesting question to explore in

the future.

3) Shared Scratchpad Memory with Ownership: The ac-

cess to a shared SPM is time-predictable with TDM based

arbitration. However, with the increasing number of cores

this access latency increases, even when not all cores access

this SPM at the same time. E.g., for a producer/consumer

relation, data is first written into the shared SPM and later

read from that SPM. In this example there is no need to

3424747



provide the access bandwidth for both partners at the same

time.

Therefore, we introduce an SPM with ownership. To

access the SPM, a core must first get the ownership of

that SPM. When that core has the ownership, all other

cores are blocked when trying to access the SPM. With

this mechanism not only is the data structure in the SPM

protected, but also the access time for the owning core

is constant low. When the core is done with the data in

the SPM, the ownership is released and transferred to the

core that shall use the data. This mechanism is good for

communicating bulk data.

We can further extend this idea to a pool of SPMs with

ownership. A core can request a SPM out of a pool of free

SPMs, write data into it, and transfer the ownership to the

consumer. The consumer uses the data and returns the SPM

into the pool of free SPMs. With this pool we support several

parallel bulk data communication channels.

4) Memory Between Pairs of Cores: Another efficient

way to exchange data between a pair of cores is to place an

SPM between this pair of cores. True dual-ported memories

are not very expensive, e.g., current FPGAs support true

dual-ported memories. Therefore, we can use a dual-ported

memory as a high-bandwidth path between two cores. Each

of the two cores has single-cycle load and store access to

such a memory.

Applications with processing pipelines, where streaming

data has to pass several processing steps, are well suited for

this form of memory distribution. The processing steps can

be distributed to processor cores that are connected by the

SPM between processing cores.

5) One-Way Shared Memory: Another unconventional

architecture is what we call “one-way shared memory”. This

architecture consists of local SPMs and a NoC supporting

transfer of data between SPMs. However, the NoC packets

continuously copy data out of the sender SPM into the

receiver SPM. There is no flow control and no notification

that no new data arrived. Therefore, this communication can

be implemented very efficiently.

What this mechanism gives is a continuous copy and

update of data. Therefore, the destination core of such a

communication channel sees an update of the changed data

the sending processor writes, with some delay. This mech-

anism might be a good fit for state based communication.

Message based communication can be built on top of this

one-way shared memory in software.

C. Networks-on-Chip

The evolution from single core, over multicore, towards

many-core processor platforms has been accompanied by a

change from bus-based interconnects to networks-on-chips

[27], [28]. This change has great impact on what models

of communication can be supported effectively (hardware

cost, transaction latency, and energy consumption). NoC

research is still a relatively young discipline characterized

by a plethora of architectures and designs [29]. A NoC

generally consists of a packet switched network of routers

and links (typically connected in some two-dimensional

topology like mesh or torus) to which processor cores are

connected using network interfaces (NIs).

The NIs encapsulate the fundamental message passing

functionality and provide higher level communication prim-

itives towards the processor cores. The NIs are typically

rather complex circuits and depending on what communica-

tion primitives they offer towards the processor cores they

can be quite different [30]. The NIs may provide read-write

transactions into a distributed shared address space and/or

offer end-to-end (virtual) circuit connections. In the former

case the NoC may be thought of as multi-ported bus entity

and in the latter case the NoC may be thought of as a set of

channels supporting message passing or streaming of data.

In practice, when looking at the underlying hardware and

the raw transfer of data, the picture is more blurred and the

distinction between message passing and shared memory is

less pronounced. In a distributed shared memory multicore

platform asynchronous message passing (sending a block

of data) can be emulated/implemented by a sequence of

posted, i.e., unacknowledged, write-transactions, executed

by the processor or a DMA controller in the sending

processor core. CSP-style synchronous message passing can

be supported in software by sending an acknowledgment in

the other direction (a non-posted write from the receiver to

the sender).

Alternatively, if the NoC offers non-posted write transac-

tions (write transactions with acknowledgements) the sender

can, at least in principle, perform a sequence of such non-

posted writes. A problem here would be that every non-

posted write implies a round-trip delay crossing the NoC

twice. Finally, we mention the similarity between a pull-

channel and a read-transaction.

The packet switched mesh-style organization using point-

to-point links to connect routers makes multi-cast and

broadcast complex and expensive to implement. It requires

that routers are capable of duplicating incoming packets to

several outgoing links and it requires some overall protocol

ensuring that the target nodes receives exactly one message.

Broadcast is most often not supported in NoC-based multi-

core platforms.

Similarly recent multicore platforms have abandoned

cache coherency as the required directory based approaches

requires considerable hardware resources. Furthermore, in

the embedded hard real-time domain that we are considering,

it would be hard if not impossible to obtain tight bounds on

the WCET of a program executing on a processor.

In this paper we focus on real-time systems and this

greatly narrows the spectrum of relevant NoC designs to

those that can provide time-predictable communication and

for which worst-case bounds on latency and throughput

3434848



can be made. Here TDM is attractive due to its simple

implementation and straightforward timing analysis. Early

examples of TDM based NoC’s are Nostrum [31] and

Ætheral/aelite [32] that is used in the CompSoC multi-

processor platform [33]. More recently we have developed

the Argo NoC [34], [35], [36], [37]. Argo has a very efficient

implementation due to the use of asynchronous routers and

a novel NI architecture.

1) Push Messages NoC: The simplest, and probably most

efficient, NoC implementation is a NoC that supports push

based messages only. It can be implemented to copy data

from the senders local SPM into the receivers local SPM.

The Argo NoC currently supports push messages. If we

view push messages as write requests into another processors

local memory, a pull message is then a read. The inherent

behavior of a read (e.g., two way communication) results in

higher latency and possibly in more complex hardware or

software.

2) Push and Pull: To additionally support pull requests

in a NoC the available bandwidth needs to be increased, for

single word pulls doubled. A pull request is basically a read

request from a remote SPM. This incorporates two messages

traveling on the NoC: (1) the request message containing the

address (and the number of words to read) and (2) the reply

packet containing the read data.

IV. DISCUSSION

As the number of cores in modern multicore platforms

increase, the gap between the commonly used threads with

shared memory model of computation and what can ef-

ficiently be implemented in hardware become wider. In

the following, we discuss the implications of efficiently

supporting different models of computation. The idea is

according to the HW/SW tradeoff in the RISC versus CISC

discussion (see Hennessy & Patterson [38]).

On one hand, all models of computation can be easily

implemented in the current state-of-the-art multicores: with

data structures allocated in shared memory and protected by

locks. Regarding this form of communication, the perfor-

mance will continue to decrease as core numbers increase

and the analyzability will become even worse. On the other

hand, not all models of computation can be implemented

efficiently on future multicores.

Therefore, we presented various hardware architectures,

which we called models of communication, that are a better

fit for the various models of computation. E.g., a NoC

that supports message passing will be a good platform to

implement KPN or CSP on top of it.

A shared on-chip SPM might be an intermediate step from

moving from external shared memory to on-chip communi-

cation. The main restriction of on-chip SPM is their small

size compared with external memory.

The models of computation, supported by future multicore

platforms, will require the programmers to focus on data

flow rather than control flow. We need to reeducate program-

mers to avoid using shared objects, but incorporating some

form of message passing into the heart of the application.

This is important for future many-core processors in non-

real-time computing, but mandatory for future real-time

embedded systems.

V. CONCLUSION

For future multicore processors we need a model of

communication. Such a model of communication shall help

to keep data communication on chip and to provide time-

predictable communication. In this paper we explored sev-

eral hardware mechanism for this on-chip communication.

We conclude that multicore communication shall be explicit

and visible in application code. Only when the communica-

tion, mainly with a form of message passing, is explicit, it

can be supported by efficient hardware mechanism and can

be implemented time-predictable.

ACKNOWLEDGMENT

The work presented in this paper was partially funded by

the Danish Council for Independent Research | Technology

and Production Sciences under the project RTEMP, contract

no. 12-127600 and the EU COST Action IC1202: Timing

Analysis on Code Level (TACLe).

REFERENCES

[1] M. Schoeberl, F. Brandner, J. Sparsø, and E. Kasapaki,
“A statically scheduled time-division-multiplexed network-
on-chip for real-time systems,” in Proceedings of the
6th International Symposium on Networks-on-Chip (NOCS).
Lyngby, Denmark: IEEE, May 2012, pp. 152–160.

[2] M. Schoeberl, C. Silva, and A. Rocha, “T-CREST: A time-
predictable multi-core platform for aerospace applications,”
in Proceedings of Data Systems In Aerospace (DASIA 2014),
Warsaw, Poland, June 2014.

[3] M. Schoeberl, D. V. Chong, W. Puffitsch, and J. Sparsø, “A
time-predictable memory network-on-chip,” in Proceedings
of the 14th International Workshop on Worst-Case Execution
Time Analysis (WCET 2014), 2014.

[4] C. Ptolemaeus, Ed., System Design, Modeling, and Simulation
using Ptolemy II. Ptolemy.org, 2014.

[5] G. Kahn, “The semantics of a simple language for parallel
programming,” in Information Processing 74: Proceedings of
the IFIP Congress 74, J. L. Rosenfeld, Ed., IFIP. North-
Holland Publishing Co., Aug. 1974, pp. 471–475.

[6] G. Kahn and D. B. MacQueen, “Coroutines and networks of
parallel processes,” in Information Processing 77: Proceed-
ings of the IFIP Congress 77, B. Gilchrist, Ed. New York,
NY: North Holland, Aug. 1977, pp. 993–998.

[7] M. Geilen and T. Basten, “Requirements on the execution
of Kahn process networks,” in Programming languages and
systems. Springer, 2003, pp. 319–334.

3444949



[8] W. Haid, L. Schor, K. Huang, I. Bacivarov, and L. Thiele,
“Efficient execution of Kahn process networks on multi-
processor systems using protothreads and windowed fifos,”
in Embedded Systems for Real-Time Multimedia, 2009. ES-
TIMedia 2009. IEEE/ACM/IFIP 7th Workshop on, Oct 2009,
pp. 35–44.

[9] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,”
Proceedings of the IEEE, vol. 75, no. 9, pp. 1235–1245, Sept
1987.

[10] A. Bonfietti, L. Benini, M. Lombardi, and M. Milano, “An
efficient and complete approach for throughput-maximal sdf
allocation and scheduling on multi-core platforms,” in Design,
Automation Test in Europe Conference Exhibition (DATE),
2010, March 2010, pp. 897–902.

[11] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete,
“Cycle-static dataflow,” Signal Processing, IEEE Transactions
on, vol. 44, no. 2, pp. 397–408, Feb 1996.

[12] G. Berry and G. Gonthier, “The Esterel synchronous program-
ming language: Design, semantics, implementation,” Science
of computer programming, vol. 19, no. 2, pp. 87–152, 1992.

[13] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The
synchronous data flow programming language LUSTRE,”
Proceedings of the IEEE, vol. 79, no. 9, pp. 1305–1320, 1991.

[14] A. Benveniste, P. L. Guernic, and C. Jacquemot,
“Synchronous programming with events and relations:
the SIGNAL language and its semantics,” Science of
Computer Programming, vol. 16, no. 2, pp. 103 – 149, 1991.

[15] S. Yuan, L. H. Yoong, and P. Roop, “Compiling Esterel for
multi-core execution,” in Digital System Design (DSD), 2011
14th Euromicro Conference on, Aug 2011, pp. 727–735.

[16] C. A. R. Hoare, “Communicating sequential processes,” Com-
mun. ACM, vol. 21, no. 8, pp. 666–677, 1978.

[17] D. May and R. Shepherd, “Occam and the transputer,” in
Proc. of the IFIP WG 10.3 workshop on Concurrent lan-
guages in distributed systems: hardware supported implemen-
tation. New York, NY, USA: Elsevier North-Holland, Inc.,
1985, pp. 19–33.

[18] C. Whitby-Strevens, “The transputer,” SIGARCH Comput.
Archit. News, vol. 13, no. 3, pp. 292–300, 1985.

[19] M. Homewood, D. May, D. Shepherd, and R. Shepherd, “The
ims t800 transputer,” IEEE Micro, vol. 7, no. 5, pp. 10–26,
1987.

[20] P. H. Welch, N. Brown, J. Moores, K. Chalmers, and
B. H. C. Sputh, “Integrating and extending JCSP,” in The
30th Communicating Process Architectures Conference, CPA
2007, organised under the auspices of WoTUG and the
University of Surrey, Guildford, Surrey, UK, 8-11 July 2007,
ser. Concurrent Systems Engineering Series, A. A. McEwan,
S. A. Schneider, W. Ifill, and P. H. Welch, Eds., vol. 65.
IOS Press, 2007, pp. 349–370.

[21] F. Gruian and M. Schoeberl, “Hardware support for
CSP on a Java chip-multiprocessor,” Microprocessors and
Microsystems, vol. 37, no. 4–5, pp. 472–481, 2013.

[22] C. A. R. Hoare, “Monitors: An operating system structuring
concept,” Commun. ACM, vol. 17, no. 10, pp. 549–557, Oct.
1974.

[23] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” J. ACM,
vol. 20, no. 1, pp. 46–61, 1973.

[24] Z. Shi and A. Burns, “Real-time communication analysis for
on-chip networks with wormhole switching,” in Networks-
on-Chip, 2008. NoCS 2008. Second ACM/IEEE International
Symposium on, April 2008, pp. 161–170.

[25] M. Joseph and P. K. Pandya, “Finding response times in a
real-time system,” Comput. J, vol. 29, no. 5, pp. 390–395,
1986.

[26] L. S. Indrusiak, “End-to-end schedulability tests for
multiprocessor embedded systems based on networks-on-
chip with priority-preemptive arbitration,” Journal of Systems
Architecture - Embedded Systems Design, vol. 60, no. 7, pp.
553–561, 2014.

[27] W. Dally, “Route packets, not wires: On-Chip interconnection
networks,” in Proc. Design Automation Conference. New
York: ACM Press, Jun. 2001, pp. 684–689.

[28] L. Benini and G. D. Micheli, “Networks on chips: A new SoC
paradigm,” Computer, vol. 35, no. 1, pp. 70–78, Jan. 2002.

[29] T. Bjerregaard and S. Mahadevan, “A survey of research
and practices of network-on-chip,” ACM Computing Surveys,
vol. 38, no. 1, pp. 1–51, 2006.

[30] D. Berozzi, “Network interface architecture and design is-
sues,” in Networks on Chips, G. DeMicheli and L. Benini,
Eds. Morgan Kaufmann Publishers, 2006, ch. 6, pp. 203–
284.

[31] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed
bandwidth using looped containers in temporally disjoint
networks within the nostrum network on chip,” in Proc.
Design, Automation and Test in Europe (DATE). IEEE
Computer Society Press, 2004, pp. 890–895.

[32] K. Goossens and A. Hansson, “The aethereal network on chip
after ten years: Goals, evolution, lessons, and future,” in Proc.
ACM/IEEE Design Automation Conference (DAC), Jun. 2010,
pp. 306 –311.

[33] A. Hansson and K. Goossens, On-chip interconnect with
aelite / Composable and predictable systems. Springer, 2011.

[34] J. Sparsø, E. Kasapaki, and M. Schoeberl, “An Area-efficient
Network Interface for a TDM-based Network-on-Chip,” in
Proc. Design, Automation and Test in Europe (DATE), 2013,
pp. 1044–1047.

[35] E. Kasapaki, J. Sparsø, R. Sørensen, and K. Goossens,
“Router Designs for an Asynchronous Time-Division-
Multiplexed Network-on-Chip,” in Proc. of Euromicro Con-
ference on Digital System Design (DSD), Sep. 2013, pp. 319–
326.

3455050



[36] E. Kasapaki and J. Sparsø, “Argo: A Time-Elastic Time-
Division-Multiplexed NOC using Asynchronous Routers,”
in Proc. IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC). IEEE Computer Society
Press, 2014, pp. 45–52.

[37] R. B. Sørensen, J. Sparsø, M. R. Pedersen, and J. Højgaard,
“A Metaheuristic Scheduler for Time Division Multiplexed

Networks-on-Chip,” in Proc. IEEE/IFIP Workshop on Soft-
ware Technologies for Future Embedded and Ubiquitous
Systems (SEUS), 2014, pp. 309–316.

[38] J. Hennessy and D. Patterson, Computer Architecture: A
Quantitative Approach, 3rd ed. Palo Alto, CA 94303:
Morgan Kaufmann Publishers Inc., 2002.

3465151


