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Abstract—For real-time systems we need time-predictable pro-
cessors. This paper presents a method cache as a time-predictable
solution for instruction caching. The method cache caches whole
methods (or functions) and simplifies worst-case execution time
analysis. We have integrated the method cache in the time-
predictable processor Patmos.

We evaluate the method cache with a large set of embedded
benchmarks. Most benchmarks show a good hit rate for a method
cache size in the range between 4 and 16 KB.

I. INTRODUCTION

Embedded real-time systems are commonly used in com-
puter applications in our daily life. In such systems, the
execution time, and especially the worst-case execution time
(WCET), are important. With our design we focus on the
WCET such that timing constraints can be met and the system
executes safely.

A performance issue in modern computer architectures is
the increasing gap between processor speed and memory
access latency, which is solved by introducing caches and
building memory hierarchies. Traditional caches are optimized
for the average case and are hardly time-predictable, which
makes them unpractical for real-time systems. Therefore, we
build time-predictable caches that are easy to integrate in
modern WCET analyzers. A possible alternative to conven-
tional instruction caches is the method cache. The idea of
a method cache was first proposed by Schoeberl [15]. An
implementation is currently used in two Java processors: in
JOP [16] and in SHAP [21]. As Java uses the term “method”,
the cache is called “method” cache, but is also applicable for
functions and procedures. In the remainder of this paper we
talk about the method cache, but use functions that are cached,
as our current processor is mainly programmed in C.

This paper presents the method cache design and its im-
plementation in the time-predictable processor Patmos [20].
The method cache caches full functions and therefore cache
misses can only occur on a function call or on a return
from a function. All other instructions are guaranteed hits.
We explore two variants of the method cache: (1) the fixed-
block method cache and (2) the variable-size method cache.
With the fixed-block method cache the cache is divided into
blocks (like cache lines in a standard cache) and the allocation
granularity of the cache for a function is in those blocks. The
variable-size method cache is more flexible, as the allocation
granularity is at word level. We find, by benchmarking the

method cache with embedded benchmarks, that the variable-
size method cache performs equal or better than the fixed-
block method cache. However, this flexibility comes at the
price of an increased hardware cost between 40 % and 65 %.

This method cache provides an important part of a time-
predictable memory hierarchy, which is one of the research
focuses of the T-CREST project. The work was carried out
within the T-CREST project, which is a research project
supported by the European Union in its FP7 funding program.

A. The T-CREST Project

The T-CREST1 project aims at building a time-predictable
multicore platform suited for hard real-time systems with a
predictable and low WCET. Schoeberl has argued that time
predictability is not quantifiable but that one can compute the
WCET of a task and compare it on different architectures [17].
Being time-predictable is then an interaction between:

• the hardware architecture,
• the compiler, and
• the static WCET analysis tool.
The T-CREST platform takes this into account and proposes

novel solutions for all these parts. The hardware consists
of time-predictable processor cores (called Patmos) [20] that
are connected through a statically scheduled time-division-
multiplexed network-on-chip [18]. A time-predictable memory
controller supports analyzable access to main memory [4]. The
compiler for Patmos is an adaption of the LLVM compiler
infrastructure [14]. Furthermore, AbsInt’s WCET tool aiT [7]
was adapted to support Patmos.

B. Patmos

The Patmos processor core is designed as a VLIW architec-
ture and consists of five pipeline stages in the classical RISC
style [20]. As the main goal of Patmos is to be highly time-
predictable, all components are built so that they can be mod-
eled efficiently for the WCET analyzer. The memory hierarchy
consists of different caches suited for WCET analysis.

Some memory accesses to specific types of data such
as instructions or stack frames allow for a more precise
static cache analysis than in the general case. Directing such
accesses through dedicated caches prevents interference from
unpredictable memory accesses in the static analysis and thus

1see http://www.t-crest.org/

http://www.t-crest.org/


improves the WCET analysis. The split cache architecture of
Patmos supports stack-allocated data [1] and heap-allocated
data with two independent caches. For the instruction cache,
the method cache, as presented in this paper, is used to achieve
a time-predictable memory hierarchy.

The Patmos processor profits from the customized compiler
support [14]. For example, the compiler splits oversized func-
tions to fit them into the method cache. This is performed by a
function splitter, which ensures a correct splitting of functions
into smaller sub-functions.

C. Simulator

At the start of the development of Patmos, a cycle-
accurate software simulator was developed within the T-
CREST project [3]. This simulator serves as the reference for
the hardware implementation of Patmos, for the development
of the compiler, and the porting of real-time operating systems.
Furthermore, the simulator provides variants of caches and
memory controller models and can thus be used for design-
space exploration of caches.

Due to its focus on high-level simulation without modeling
the underlying hardware in detail, architecture variations such
as different method cache designs and spilling strategies can
be quickly implemented. The simulator of Patmos thus serves
well for quick evaluation of different design options.

D. Chisel

We use Chisel [2] for the implementation and simulation of
the core design. Chisel was developed at the UC Berkeley
and is a hardware-construction language, embedded in the
programming language Scala. Consequently, Chisel allows the
programmer to design efficient hardware components in a
high level language. Scala, and therefore Chisel, are object-
oriented and functional languages, enabling hardware design
in an object-oriented way.

The Chisel back-end can generate both Verilog and C++
code. While Verilog is used to implement a design on an
ASIC or FPGA, the C++ code implements a fast high-level
simulation of the hardware and provides a test environment.
We call the Chisel-generated C++ simulation the emulator, to
distinguish it from the software-based simulator.

E. Contributions

This paper presents the method cache design, a hardware
implementation of the cache, and its integration into Patmos.
Furthermore, the paper describes method cache variations,
and compares them with respect to hardware resources and
performance. A simulation model of the processor verifies the
hardware results.

This paper is organized in six sections. Section II presents
related work. Section III presents the basic idea of a method
cache and variations of it. Section IV presents the design and
implementation of the method cache for Patmos. Section V
evaluates the proposed design and compares different method
cache design. Section VI concludes the paper.

II. RELATED WORK

A method cache with a first-in/first-out (FIFO) replacement
strategy was first implemented and tested in the Java optimized
processor (JOP) [16]. Within the JOP project, WCET analysis
for the proposed method cache was studied in detail [19]. An
IPET-based analysis and a variant using model checking are
presented. The IPET analysis models the method cache FIFO
replacement policy by bounding by the number of different
blocks accessed during the execution of a given code region.
If the method cache has the capacity to hold N blocks in the
memory and a block is loaded to the cache, it stays there
for at least N further cache misses and is therefore loaded at
most once if at most N different cache blocks are accessed
during an execution of a scope. The model-checking-based
WCET analysis leads to tighter (between 2% and 7%) WCET
bounds than the IPET-based WCET analysis [19]. However,
the analysis runtime with model checking is prohibitively high.

Metzlaff et al. propose a dynamically managed instruction
scratchpad (D-ISP) to increase the predictability of the pro-
cessor architecture [9]. The instructions are loaded into the
scratchpad memory at run-time, where the function start is
used as a “reload point”. The D-ISP loads whole functions
and is therefore similar to a method cache.

A hardware implementation of the D-ISP and an evaluation
of its average-case performance is presented in [8]. The eval-
uation compares the D-ISP to a conventional direct-mapped
cache and a statically managed instruction scratchpad, using
three different benchmark suites. Results show that the D-ISP
performs slightly worse than a conventional instruction cache
but better than a static scratchpad.

Metzlaff and Ungerer present a comparison between differ-
ent replacement strategies for the D-ISP with regard to the
WCET [10]. FIFO-replacement, LRU-replacement, and stack
replacement policies are compared. Timing analysis results
show that the stack and LRU replacement perform better than
FIFO, although the stack approach lacks performance when
the scratchpad size increases.

An extension of the analysis of the D-ISP is presented by
Metzlaff and Ungerer in [11]. The work compares different on-
chip memory allocation strategies with regard to their WCET
properties. An instruction cache (fully associative with LRU
replacement) is compared to a statically allocated instruction
scratchpad and a D-ISP. The evaluation shows a better WCET
estimation for the D-ISP compared to the other solutions,
especially with an increasing size of the on-chip memory.
One major benefit is that the D-ISP avoids interference
from unpredictable off-chip memory accesses. Therefore better
memory access times can be assumed in the analysis. The
paper also evaluates different off-chip memory latencies. An
increasing memory latency favors the D-ISP compared to the
other approaches.

Preußer et al. propose a stack-oriented variant of a method
cache [13] for the SHAP processor [21]. Results show that the
stack-oriented allocation policy provides average-case perfor-
mance similar to a method cache using FIFO replacement.



III. THE METHOD CACHE AND VARIATIONS

A method cache is organized to cache full functions [15].
The concept was originally developed for JOP [16], which
executes Java bytecode. As Java uses the term “method”, the
cache is called “method” cache, but is also applicable for
functions and procedures.

A function may be loaded into the cache on a call and
on a return when the caller has been evicted from the cache.
On a call, the cache checks whether the called function is
in the cache. If it is a miss, the function is loaded into the
cache. On a return, the caller is checked and loaded on a miss.
The advantage is that all other instructions are guaranteed
hits and can be ignored by the cache analysis. Only the call
tree needs to be considered to analyze cache hits and misses.
Furthermore, cache entries never conflict due to their addresses
in the method cache, eliminating the need for code placement
optimizations.

In this paper we present two variants of the method cache:
(1) the fixed-block method cache and (2) the variable-size
method cache.

The basic organization of the fixed-block method cache
is a local memory that is divided into blocks. A loaded
function can span multiple blocks, but the function needs to
be loaded into contiguous blocks. This organization allows
two replacement policies: (1) first-in/first-out (FIFO), which
works like a ring buffer, and (2) a stack-oriented replacement
where the allocation of blocks follows the same regime as
the allocation of stack frames. However, the stack-oriented
replacement leads to conflicts for functions at the same depth
in the call tree. This conflict results in continuous replacement
of functions when called in a loop.

For a fixed-block method cache, a tag entry is associated
with each block. The entry for the first block of the function
contains the tag entry (address of the function in the memory).
The tags for other blocks of the function are cleared on
a function load. With FIFO replacement, this mechanism
automatically removes the tag entry of a function when the first
block of a function is overwritten by a newly loaded function.

A variation of the method cache is to decouple the tag
memory organization from cache blocks. This allows to reduce
the block size to single instruction words and to use every tag
memory entry for a different function. We call this organiza-
tion variable-size method cache. The D-ISP is organized in a
similar way [8], [9]. With this variant, the tag memory also
contains the position of the function in the cache and the size
of the function. The number of tag entries limits the number
of functions that can be in the cache at the same time.

With a variable-size method cache, the cache memory is
better utilized, because functions are loaded back to back. Only
a single area in the memory remains that might be unused. For
the fixed-block method cache, each loaded function has one
block that might contain unused space.

A function is always loaded into the cache as a whole.
Therefore, functions must not exceed the cache size. The Pat-
mos compiler ensures this property by splitting large functions
into smaller functions.

IV. METHOD CACHE DESIGN AND IMPLEMENTATION

Figure 1 gives an overview of the method cache structure.
The figure shows the interaction between the pipeline stages
of the processor and the sub-components of the method cache.
Furthermore, the external memory (in our implementation an
SSRAM) is shown as main memory, the source for function
loads. Patmos fetches instructions in the fetch stage, while it
detects misses and stalls the pipeline in the memory stage.
Detecting all possible misses in the same pipeline stage
has the benefit that only one miss is outstanding. If two
instructions can miss in different stages, the WCET analysis
might sometimes need to be conservative and assume a longer
latency for an instruction cache miss due to a concurrent data
cache miss.

The method cache acts in parallel to the processor pipeline.
The on-chip memory that contains instructions is conceptually
located in parallel to the fetch stage, while the hit detection is
in parallel to the execute stage. The pipeline is stalled from an
instruction in the memory stage. If a function has to be loaded
from external memory into the cache, the processor pipeline
is stalled by the memory transfer unit, which is shown as a
finite state machine (FSM) in the figure.

A. Relative Addressing

Loading full functions on a cache miss enables relative
addressing within the cache. The relative address is calculated
after each call or return. If a new function is called, the
program counter is set to the position of the function in
the on-chip memory, relative to the on-chip memory’s base
address. This relative addressing simplifies the hardware im-
plementation, because there is no need to translate between
the absolute address of an instruction and its location in the
on-chip memory.

When returning to a function, the method cache needs the
function’s base address to perform hit detection and load the
function into the on-chip memory on a miss. Furthermore, the
instruction to return to must be identified. For this purpose we
use the offset of the return location relative to the function’s
base address. The value of the program counter after a return
is then the function’s position in the on-chip memory plus this
offset.

B. Hardware Implementation

We have implemented the method cache in Chisel [2],
an object-oriented hardware-construction language. Therefore,
hardware components are class instances.

The main class MCache serves as a top-level component
and instantiates and interconnects all sub-components of the
method cache. Furthermore, MCache contains the interface to
the Patmos processor pipeline. The following sub-components
implement the method cache:

• MCacheMem implements the on-chip memory,
• MCacheRepl implements the underlying replacement strat-

egy, and
• MCacheCtrl implements the state machine, which controls

the transfer from external memory.



Fig. 1. The method cache and the relation to the processor pipeline and the external memory

The MCacheMem component implements on-chip memory,
which stores the instructions of the cached functions. The
implementation considers the underlying dual-issue pipeline,
which fetches one or two instructions in every clock cycle.
Therefore, the on-chip memory is split into two memories:
the “even” or the “odd” memory for even and odd addresses.
This memory structure allows to fetch two instruction words
concurrently, even if they are not aligned to a double-word
boundary.

The MCacheRepl component implements the replacement
strategy for the method cache. Since different strategies can
be used for function replacement, we propose different classes
for the individual replacement policies. Each loaded function
has an entry in the tag memory. A function is identified inside
the tag memory by the base address (i.e., the start address of
the function), which is provided on calls and returns.

Furthermore, the MCacheRepl component performs the
hit/miss detection when a call or return instruction is executed.
The entries of the tag field memory have to be searched for a
valid address. If a hit is detected, the position of the function
in the cache is used to compute the new program counter.
A miss leads to a stall of the pipeline and the component
waits until the function is loaded into the cache. When a
function is loaded, the update of the tag field is signalized
by the update tag signal from the control unit. The base
address is then written to the tag field at the replaced index.
An additional state machine handles the invalidation of tag
fields for functions that are overwritten by the new function.

The method cache is also responsible for calculating a new
relative address on every call or return. This is done by the
MCacheRepl component, which calculates the new program

counter using the base address from the execute stage and the
position of the function in the cache. After the call or return
is executed, the value is provided to the fetch stage and the
execution continues with the updated program counter.

The MCacheCtrl component implements the transfer from
the external memory to the on-chip cache memory. A finite
state machine (FSM) handles the correct sequence of com-
munication between the external memory controller and the
method cache. As long as the replacement unit reports a hit,
the controller stays idle. A miss causes the unit to load the
requested function from the connected external memory. A
subset of the OCP protocol [12] is used as an interface between
the method cache and the memory controller.

The first state of the FSM requests the size of the function,
which is located immediately before a function’s instructions.
The OCP protocol allows burst reads from addresses that are
aligned to the bust size. Therefore, the function size is not
always the first word in the received burst. As soon as the
size is loaded, subsequent words are written to the on-chip
memory through the MCacheRepl component. The transfer state
requests new burst reads until the function is fully loaded into
the cache. The processor pipeline is stalled during the whole
transaction and resumes execution when the function is loaded.

C. Method Cache Variations

We have implemented two variants of the method cache: (1)
the version with fixed block sizes, similar to the original JOP
method cache, and (2) a version with variable-size method
allocation. Both variations use a FIFO replacement strategy.

1) Fixed-Block Method Cache: A simple implementation
of a replacement strategy for the method cache is to use FIFO



(a) Method cache filled with functions F1-F4

(b) F5 replaces F1 and F2

Fig. 2. Fixed-block method cache with FIFO replacement

replacement when a new function has to be moved to the
cache. According to the FIFO policy, the new function replaces
the oldest entry in the cache. In practice, the implementation
requires only a pointer to the next block to be replaced. The
cache operates like a ring buffer and starts again at the head
when the pointer overruns the cache size. The update of the
replace position can be described by the following formula:

NewPos = (OldPos+#UsedBlocks×BlockSize)

mod M$Size

The on-chip memory used for the cache is divided into
blocks with a fixed size. The tag memory has one entry for
each block. Therefore, the maximum number of cached func-
tions is limited by the number of blocks. In our implementation
we allow a function to span several blocks. In case a function
uses more than one block, the associated function tag is stored
in the first block. All tag fields of the additional blocks are
invalidated, since the old functions are overwritten by the new
content.

Figure 2 shows an example of a fixed-block method cache
and the associated tag field where FIFO replacement is applied
to fixed blocks. The cache in this example is 4 KB large
and consists of eight blocks, each being 512 bytes large. The
method cache is already filled with four functions (a) where
the values in parentheses state the occupancy of each block.
Consider a call that calls function F5, which requires three
consecutive blocks. The code for F5 replaces all of F1 and part
of the code of F2 (b); the tag for F1 is overwritten with the
tag for F5. The tag field for F2 must be invalidated, since only
a fragment of the function remains in the cache. This depicts
a drawback of a block arrangement. The cache is never fully
utilized and the function allocation is limited by a fixed block
structure. Therefore, a good tradeoff between cache size, block
size and maximal function size has to be chosen. We explore
different cache configurations in the evaluation section.

2) Variable-Size Method Cache: A basic problem of the
replacement with fixed blocks is the waste of memory in

(a) Method cache filled with functions F1-F4

(b) F5 fills free space and replaces F1

Fig. 3. Variable-size method cache with FIFO replacement

blocks which are not fully filled. This problem arises espe-
cially when the function sizes vary greatly and the cache could
hold more function tags but is limited by functions wasting
unused space in the memory. A solution is to build a more
flexible cache structure in which functions are not stored into
blocks of a predefined size, but are allocated variably in the
cache memory. We still use a FIFO replacement strategy, but
in order to provide a tight arrangement of the functions in
the cache we place them back-to-back. A function can be
located at any address in the cache with the restriction of a
double word address alignment. In a similar way to a fixed-
block replacement, the cache operates like a ring buffer and an
overflowing function rolls over the ending and starting address
of the memory. The new replace position is updated as follows:

NewPos = (OldPos+ FunctionSize) mod M$Size

In a fixed-block method cache, positions in on-chip memory
are implicitly tied to particular entries in the tag memory. In
contrast, a variable-size method cache has to explicitly store
a function’s position in the on-chip memory. Furthermore, we
have to keep track of the currently available space in the cache
and the function sizes. If a function is replaced in the cache,
the size is freed for the new function. A pointer is used to track
the tag field that is going to be replaced next. If a function
requires more space than actually allocated by the replaced
function, further functions have to be overwritten and their
tag fields have to be invalidated. This is done by a second
state machine that sequentially invalidates all further address
tags until enough space is available. As the functions have
to be loaded into the cache as a whole, a gap of free space
between the end of the loaded function and the function to be
replaced next will probably arise. This free space is tracked
and integrated into the calculation of the available space for
the next replacement.

Figure 3 shows an example of a variable-size method cache.
The cache is 4 KB large and its tag memory can hold up to



TABLE I
HARDWARE COSTS OF A 4 KB METHOD CACHE IN LOGIC CELLS

# functions LC (V) LC (F)

4 1098 886
8 1445 1054

16 2083 1369
32 3381 2025

eight references to functions. As in the example in Figure 2,
four functions, F1 to F4, are already loaded into the cache (a).
In contrast to the example in Figure 2, the cache still has a
free space of 1152 bytes without replacing currently loaded
functions. An invocation of function F5 fills another tag field
and recalculates the free space (b). Since the function size
overflows the current free space, the next function in the FIFO
buffer (signalized by the replNext pointer) is invalidated and
replaced by the new instruction code. This example points
out the advantage of a variable-sized block compared to the
scenario in Figure 2, where two functions in the cache have
to be replaced.

D. Hardware Cost

Table I shows the hardware cost for the variable-size method
cache (V) and the fixed-block method cache (F) for a 4 KB
method cache for different number of functions/blocks. The
table shows the number of logic cells (LC), the basic building
blocks in an FPGA, for the method cache. Additionally 4 KB
of on-chip memory is needed. We see that the resource con-
sumption increases considerably with the number of functions
handled. This is expected as the hardware implements a fully
associative lookup structure for the tag memory.

The variable-size method cache needs additional tag mem-
ory to store the current position of a function in the cache and
the size of the function. This explains the higher hardware
costs compared to a fixed-block method cache.

To set these numbers in context, a dual issue Patmos, in-
cluding the method cache and a memory controller, consumes
12426 LCs and 20 KB of on-chip memory. The dual-issue
pipeline of Patmos alone consumes 9155 LCs and a single-
issue pipeline of Patmos 3317 LCs. The dual-issue pipeline is
larger because it uses dedicated registers for the register file
and supports full forwarding between the two pipelines.

V. EVALUATION

We evaluate the proposed method cache with embedded
benchmarks from the Mälardalen benchmark suite [5] and
from the MiBench benchmark suite [6], with different hard-
ware settings, and with variations in the compiler settings. The
Patmos processor was configured as follows: (1) 80 MHz clock
frequency, (2) dual issue pipeline, (3) 4 KB direct-mapped
data cache, (4) two 2 KB data and instruction scratch pad
memories, (5) a small boot ROM, and (6) the method cache
with varying sizes and function counts.

The target board is the Altera DE2-70 development board,
which contains a low-cost Altera Cyclone II EP2C70 FPGA.

The external main memory is a synchronous SRAM of 2 MB
with a 32-bit data bus. The memory controller accesses the
external memory with bursts of four 32-bit words. The latency
for the first read is three clock cycles. Therefore, reading 16
bytes takes seven clock cycles.

A. Evaluation Methodology

We have three evaluation platforms available: (1) the proces-
sor executing in real hardware (in an FPGA), (2) the emulator
generated from the Chisel hardware description, and (3) the
software simulator for Patmos. Each of those platforms has
different properties in usage and confidence in the results.

The processor executing in an FPGA is the platform that
delivers the exact results, as this is the current target device.
However, getting performance data out of the hardware is
cumbersome. To check results, we added counters for cache
hits, cache misses, and execution cycles to the processor. These
counters are connected to LEDs on the FPGA board. With this
setup we compared the output of the hardware with the output
of the emulator in 10 different configurations. The results in
the hardware were equal with the results in the emulator,
which confirms that there are no unexpected side-effects of
the simplified boot procedure in the emulator. Therefore, we
continue our evaluation with the emulator.

The emulator is generated from the same hardware de-
scription as the hardware and is therefore cycle accurate. The
emulator is generated C++ code and easy to instrument for
measurements. Therefore, we use it extensively for the evalu-
ation. However, each cache configuration requires regeneration
and recompilation of the emulator. Therefore, we also use the
simulator for the evaluation.

The simulator of Patmos is a cycle-accurate C++ im-
plementation of Patmos. This software simulator is highly
configurable (e.g., cache sizes, external memory latencies)
and delivers detailed simulation results (e.g., execution time
and cache hits/misses, but also profiling information, cache
utilization and method cache size requests). Therefore, it is
convenient for detailed explorations of the method cache.
However, the software simulator is only a model of the real
platform. In order to prevent any deviation of the behavior of
the simulator from the hardware implementation, we use the
emulator and the simulator together to validate the results.

B. Function Inlining and Splitting

Our compiler performs function inlining, which not only
has the advantage of removing call overheads and enabling
further optimization opportunities, it can also eliminate small
functions which would otherwise occupy space in the tag
memory and thus cause the cache to evict functions, even if
the method cache size is not full.

The Patmos compiler also splits functions into smaller sub-
functions. The first task of this special compiler optimisation
is to ensure that all sub-functions fit into the cache. The second
task is to reduce the amount of code that is loaded into the
cache but not executed, which is done by extracting some



TABLE II
HIT RATE FOR THE fft1 BENCHMARK IN DIFFERENT CACHE VARIATIONS

AND CONFIGURATIONS

Size Functions Hit rate (V) Hit rate (F)

1 KB 8 13.58 % 12.47 %
1 KB 16 13.58 % 13.54 %
1 KB 32 13.58 % 13.54 %
4 KB 8 18.89 % 18.89 %
4 KB 16 37.59 % 35.49 %
4 KB 32 47.57 % 37.90 %
8 KB 8 18.89 % 18.89 %
8 KB 16 37.59 % 35.98 %
8 KB 32 83.71 % 53.15 %

16 KB 8 18.89 % 18.89 %
16 KB 16 37.59 % 37.59 %
16 KB 32 83.71 % 73.19 %
32 KB 8 18.89 % 18.89 %
32 KB 16 37.59 % 37.59 %
32 KB 32 83.71 % 83.71 %

of the conditionally executed code into separate sub-functions
that are only loaded into the cache when needed.

The current function splitter implements a simple heuristic
to optimize the sub-functions. In future work we will improve
the function splitter to also take the maximum number of
functions that can be in the method cache into account.

C. Performance

For comparing individual features we picked the fft1
benchmark. This benchmark performs forward and backward
FFT in floating point. As Patmos does not contain a floating
point unit, this benchmark uses the software floating point li-
brary. The fft1 benchmark consists of 14 functions (including
floating point library functions) that are executed, whose sizes
vary between 72 bytes and 2.3 KB, amounting to a total of
10.6 KB of code. The default compiler setup splits the program
into 48 sub-functions of an average size below 256 bytes.

1) Variable-Size versus Fixed-Block Method Cache: Ta-
ble II compares the variable-size method cache (V) with the
fixed-block method cache (F) for different sizes and different
maximum numbers of functions. The compiler was set to split
the functions into a maximum of 256 bytes. The table shows
hit rates for the caches.

With a 1 KB method cache, the limit is the method cache
size, as the hit rate does not change with the number of
maximum functions. However, from 8 KB up to 32 KB the
hit rate does not change with the cache size, but with the
number of allowed functions. In this case the hit rate is
limited by the maximum number of functions that can be
cached. For 8 KB and 16 KB configurations, we can notice a
significant difference between the variable-size and the fixed-
block method cache. The variable-size method cache provides
a higher hit rate than the fixed-block method cache.

2) Compiler Settings: Table III and Table IV show the
impact of function-splitting for different cache configurations
for the variable-size method cache. Besides the hit numbers,
the tables show the number of method cache stall cycles, the
utilization of the loaded code, and the maximum number of

TABLE III
HIT RATE FOR THE fft1 BENCHMARK IN DIFFERENT CACHE
CONFIGURATIONS WITH PREFERRED FUNCTION SIZE OF 1 KB

Size Functions Hit rate Stall cycles Utilization Max. m.

4 K 8 40.07 % 201775 47.72 % 8
4 K 16 41.92 % 192920 49.77 % 13
4 K 32 41.92 % 192920 49.77 % 13
8 K 8 40.42 % 199969 48.13 % 8
8 K 16 53.18 % 143584 55.69 % 16
8 K 32 98.50 % 3738 74.54 % 25

16 K 8 40.42 % 199969 48.13 % 8
16 K 16 53.18 % 143584 55.69 % 16
16 K 32 98.50 % 3738 74.54 % 27
32 K 8 40.42 % 199969 48.13 % 8
32 K 16 53.18 % 143584 55.69 % 16
32 K 32 98.50 % 3738 74.54 % 27

TABLE IV
HIT RATE FOR THE fft1 BENCHMARK IN DIFFERENT CACHE

CONFIGURATIONS WITH PREFERRED FUNCTION SIZE OF 256 B

Size Functions Hit rate Stall cycles Utilization Max. m.

4 K 8 18.81 % 156933 74.34 % 8
4 K 16 37.55 % 122150 81.15 % 16
4 K 32 47.57 % 102620 82.97 % 30
8 K 8 18.81 % 156933 74.34 % 8
8 K 16 37.55 % 122150 81.15 % 16
8 K 32 83.84 % 30646 84.96 % 32

16 K 8 18.81 % 156933 74.34 % 8
16 K 16 37.55 % 122150 81.15 % 16
16 K 32 83.84 % 30646 84.96 % 32
32 K 8 18.81 % 156933 74.34 % 8
32 K 16 37.55 % 122150 81.15 % 16
32 K 32 83.84 % 30646 84.96 % 32

functions that are active at the same time in the cache. The
utilization is the ratio of executed instructions and the number
of instructions in a function, i.e., a higher utilization means
more of the loaded instructions are actually executed.

Table III shows the results with a compiler setting that
splits code into sub-functions of up to 1 KB. Table IV shows
the results for the default setting of splitting into 256 byte
sub-functions. With bigger sub-functions the hit rate increases
since the application is split into only 27 sub-functions instead
of 48 sub-functions as in the default setup, and larger sub-
functions are more likely to be reused. Furthermore, cache
configurations with up to 32 functions and at least 8 KB of
cache size can cache all required sub-functions simultaneously
in the cache, i.e., each sub-function is only missed once and
we observe a huge drop in the number of stall cycles.

In Table IV we observe lower hit rates for a larger number
of smaller sub-functions. However, the stall cycles, and thus
the performance of the cache, improves in most cases over the
previous setup. Smaller sub-functions are less likely to contain
code that is loaded into the cache but not executed, which is
also reflected by a higher utilization rate. The downside of
smaller sub-functions is that even with 32 functions, cache
entries are evicted from the cache even if there is space left
in the method cache, as 32 sub-functions of an average size
of less than 256 bytes take up at most 8 KB of cache. We can
observe this in Table IV, where for 32 functions, increasing
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Fig. 4. Hit rate over code size for 59 different benchmarks for a 8 KB
method cache with maximum 32 methods

the cache size beyond 8 KB has no effect, and for smaller tag
memories doubling the 4 KB cache has no effect.

3) Multiple Benchmarks: In this subsection we use one
method cache configuration (8 KB and 32 functions) and eval-
uate the hit rate for all benchmarks from the Mälardalen [5]
and the MiBench benchmark [6] suites.

Figure 4 shows a scatter plot of the hit rate over the code
size of the benchmark. We see a great variation of the code
sizes with more small benchmarks than large benchmarks. We
observe no correlation between the code size and the hit ratio.
Therefore, the hit rate of the method cache is independent of
the code size.

Figure 5 shows a bar graph with the hit rate for each
evaluated benchmark.2 For the benchmarks close to 100%,
all functions fit into the cache and therefore each function has
to be loaded only once. The benchmarks where the hit rate is
low are small applications with a single main routine and no
further functions. Therefore, the cache loads this main function
on startup and the hit rate is not significant for the execution
since no replacement inside the cache is executed. The rest of
the benchmarks achieve a good hit rate that is above 50%.

VI. CONCLUSION

Real-time systems need time-predictable comport architec-
tures. In this paper we presented a time-predictable instruction
cache; the method cache. The method cache caches whole
functions and therefore misses can only happen at call and
return instructions. This leads to a simplification of the worst-
case execution time analysis.

We implemented the method cache in the time-predictable
processor Patmos and evaluated the performance of differ-
ent configurations. The comparison of the fixed-block and
variable-size method cache shows an improvement of the

2The benchmarks denoted by -tiny are modified setups with decreased loop
counts or smaller input files to keep the runtime on the simulator low.

hit/miss ratio for the latter one. Different compiler settings
demonstrate the dependency of the cache performance on the
function-splitting by the compiler. Results show an improved
performance when splitting into smaller sub-functions.
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