
Thread-local Scope Caching for Real-time Java

Andy Wellings
Department of Computer Science

University of York, UK
andy@cs.york.ac.uk

Martin Schoeberl
Institute of Computer Engineering

Vienna University of Technology, Austria
mschoebe@mail.tuwien.ac.at

Abstract

There is increasing convergence between the fields of par-
allel and embedded computing. The demand for more func-
tionality in embedded devices means that complex multicore
architectures will be used. In order to promote scalabil-
ity and obtain predictability, on-chip processor-local private
memory subsystems will be used. Whilst at the hardware
level this is technical feasible, the more pressing problem is
how such memory is presented to the programmer and how
its local access is policed.

In this paper we illustrate how Java augmented by the
Real-time Specification for Java can be used to present the
abstraction of a thread-local scoped memory area. We show
how to enforce access to the memory area to a single real-
time thread. We implement the model on the JOP multipro-
cessor system and report on our experiences.

1 Introduction

Today’s computers may have many different types of directly
addressable memory available to them. Each type has its own
characteristics [3] that determine whether it is

• volatile – whether it maintains its state when the power
is turned off,

• writable – whether it can be written at all, written once
or written many times and whether writing is under pro-
gram control,

• erasable at the byte level – if the memory can be over-
written whether this is done at the byte level or whether
whole sectors of the memory need to be erased,

• fast to access – both for reading and writing,

• expensive – in terms of cost per byte or power consump-
tion.

Examples include dynamic and static random access
memory (DRAM and SRAM), read-only memory (ROM and

EPROM) and hybrid memory such as EEPROM (electri-
cally erasable and programmable ROM) or FLASH mem-
ory. Memory may also be added and removed from the sys-
tem dynamically. Furthermore, on-chip and off-chip caching
may occur. The recent popularity of Field Programmable
Gate Arrays (FPGAs) has added to this variety.

Individual computers are often targeted at a particular
application domain, which will often dictate the cost and
performance requirements, and therefore, the memory type
used. For example, embedded computers targeted at, say,
mass-produced consumer products will need to be cheap and,
as a consequence, will only have a limited amount of fast (ex-
pensive) memory. In order to obtain maximum performance
from the given computer, the programmer must make judi-
cious use of the available memory. Placing a heavily used
object in a slow memory area may seriously degrade the pro-
gram’s overall effectiveness, particularly if the system has a
limited cache size or the cache has been turned off (or is not
present at all) to ensure predictability.

As well as having different types of memory, many com-
puters map input and output devices so that their registers can
be accessed through memory location. Hence, some parts of
the processor’s address space will map to real memory and
other parts will access devices. The situation may be further
complicated because a Direct Memory Access (DMA) con-
troller may access the real memory independently of the pro-
cessor (although doing so may steal bus cycles from the pro-
cessor). For multiprocessor systems, the above complexities
are compounded by the possibility of local memory, shared
memory or dual ported memory.

As we move towards more complex multicore architec-
tures, the issue of safely programming these systems be-
comes paramount. The EU JEOPARD project is investigat-
ing the use of Java augmented by the Real-Time Specifica-
tion for Java (RTSJ) as a base technology for programming
these architectures for use in embedded applications.

1.1 Motivation and Scope

A pipelined processor architecture calls for high memory
bandwidth. Chip Multiprocessor (CMP) systems that support

global shared memory increase the pressure on the memory
subsystem. A standard technique to avoid processing bot-
tlenecks due to the lower available memory bandwidth is
caching. However, standard cache organizations improve the
average execution time but are difficult to predict for WCET
analysis [5]. Furthermore, the difficulty of keeping multiple
caches coherent limit the scalability of such systems.

In order to reduce the contention on shared memory sub-
systems, local memory subsystems can be created. The goal
with such memory is to ensure that it is only accessed by one
processor, and hence there is no need to cache its contents for
access by other processors. Whilst at the hardware level this
is technical feasible, the more pressing problem is how such
memory is presented to the programmer and how its local
access is policed.

1.2 Contributions

In this paper we address the problem of accessing private lo-
cal memory in a CMP system. In particular, we consider how
the facilities of Java (augmented by the Real-Time Specifica-
tion for Java) can be used to define the notion of a thread-
local memory area. We then detail the implementation of
such an area on the JOP processor.

We assume that real-time threads are tied to a particular
processor and do not migrate. This is often an assumption
for schedulability analysis [20].

2 Memory Areas and the RTSJ

Memory areas were originally introduced into the RTSJ in
order to extend the Java memory model so that it could pro-
vide access to non-heap data, and thus avoid the vagaries of
garbage collection. However they also provide a mechanism
by which a programmer can express locality of data: both to
a schedulable object and to a physical region in memory.

The MemoryArea class is an abstract class from which all
RTSJ memory areas are derived. When a particular mem-
ory area is entered, all object allocation is performed within
that area. Using this abstract class, the RTSJ defines various
kinds of memory including the following:

• HeapMemory – Heap memory allows objects to be allo-
cated in the standard Java heap.

• ImmortalMemory – Immortal memory is shared among
all threads in an application. Objects created in immor-
tal memory are never subject to garbage collection de-
lays and behave as if they are freed by the system only
when the program terminates.

• ScopedMemory – Scoped memory is a memory area
where objects with a well-defined lifetime can be allo-
cated.

The ScopedMemory class is an abstract class that has sev-
eral subclasses, including

• VTMemory – A subclass of ScopedMemory where allo-
cations may take variable amounts of time.

• LTMemory – A subclass of ScopedMemory where allo-
cations occur in linear time (that is, the time taken to
allocate the object is directly proportional to the size of
the object).

The memory used for allocated objects when a scoped
memory area is active is called the scoped memory’s back-
ing store. It resides in a part of memory that is otherwise
invisible to the application. It is separate from the memory
required for the scoped memory object itself (which is allo-
cated from the current memory area when the object is cre-
ated). The backing store is usually assigned to the scoped
memory object when the object is created, and it is freed
when the object is finalized. When assigned, memory within
the backing store used for allocated objects can be reclaimed
when the scoped memory becomes inactive (that is, its refer-
ence count goes to zero).

Physical scoped memory areas allow the programmer to
specify that the backing store should be created in memory
with a particular characteristic (for example, shared mem-
ory) as well as the usual requirements for linear time alloca-
tion etc. Immortal physical memory is also provided.1 The
implementation of these physical memory classes assume
the existence of a PhysicalMemoryManager class, which
must be provided by the real-time Java virtual machine.
This class can also make use of implementation-dependent
classes, called filters, which help support and police the var-
ious memory categories. All these classes must support the
PhysicalMemoryTypeFilter interface. The memory manager
can also check that the program has the necessary security
permissions before allowing access to physical memory. The
classes are illustrated in Figure 1.

3 Thread-local Scoped Memory Area for Lo-
cal Caching

In a Java and RTSJ context, local private memory must be
viewed either as scoped or immortal memory. As, by defi-
nition, the Java heap is shared between all schedulable ob-
jects and Java threads. Only physical memory allows the
programmer the ability to specify the location of the back-
ing store. Only scoped memory allows fine control over the
Java object graph to be policed – objects in heap or immortal
memory cannot reference objects in scoped memory. Hence,
we use the notion of physical scoped memory areas as the
programmers’ model of a local read/write private memory

1Note, the backing store for physical immortal memory is never re-
claimed even if the associated object goes out of scope.

ScopedMemory

VTPhysicalMemory LTPhysicalMemoryImmortalPhysicalMemory

MemoryArea

PhysicalMemoryManager

Implementation-Defined Filter «interface»

PhysicalMemoryTypeFilter

implements

registers

Figure 1. Physical Memory Related Classes

subsystem. To further ensure the locality of access we define
the notion of a real-time thread-local scoped memory area.
Such a memory area can only be entered by a single real-
time thread and it can be held in a memory subsystem that is
local to the processor executing the schedulable object. The
goal is to implement such a model using the facilities of the
RTSJ. We assume that RTSJ version 1.1 will support thread
affinity and, therefore, allow real-time threads to be fixed to
a processor and not migrate.

3.1 Thread-local Memory Areas

The PhysicalMemoryManager class of the RTSJ provides the
interface between the application and the memory hierarchy
of the machine on which the program is currently execut-
ing. Here we assume that the local private memory is called
ON CHIP PRIVATE:2

public final class PhysicalMemoryManager {
public static final Object ON_CHIP_PRIVATE;
// The PhysicalMemoryManager knows about the
// on-chip memory and keeps track of its use

}

The RTSJ physical scoped memory classes communicate
with the memory manager when the programmer requests the
creation of a physical scoped memory region. Here we will
use the linear time version (LT):

public class LTPhysicalMemory {
public LTPhysicalMemory(Object type, long size);
// The constructor code communicates with

2Where private memory is automatically mapped to a particular address
range by the underlying architecture, an address within that range can also
be used to obtain access to the memory so it can be used as the backing
store.

// the PhysicalMemoryManager asking for
// a memory chunk of the given size and type.
// Throws various exceptions if the manager
// can not oblige.

public LTPhysicalMemory(Object type, long base,
long size);

// The constructor code communicates with
// the PhysicalMemoryManager asking for
// a memory chunk of the given size and
// type starting at a base address.
// Throws various exceptions if the manager
// can not oblige.

public void enter(Runnable R);
public void executeInArea(Runnable R);
// ... other methods

}

In order to implement a local scope, it is important to en-
sure that only one thread can access it at a time. To meet this
requirement, the obvious solution is to use Java’s thread local
data facility. The following illustrates how such a mechanism
can be created.

// This class allows multiple local scopes to
// be created. The use of thread local data
// ensures that an SO can only enter its
// own scope.

public class ThreadLocalScope {
public ThreadLocalScope(long size) {
myMemory = new ThreadLocal<LTPhysicalMemory>();
LTPhysicalMemory myMem =
new LTPhysicalMemory(PhysicalMemoryManager.

ON_CHIP, size);
// can throw out of memory

myMemory.set(myMem);
}

public void enter(Runnable R) {
if (myMemory.get() == null) {
// throw exception, the calling thread
// does not own this scope

}
else myMemory.get().enter(R);

}

public void executeInArea(Runnable R) {
if (myMemory.get() == null) {
// throw exception, the calling
// thread does not own this scope

}
else myMemory.get().executeInArea(R);

}

// other needed scoped memory methods
private ThreadLocal<LTPhysicalMemory> myMemory;

}

In essence, the above class is providing a wrapper around
access to LTPhysicalMemory to ensure that a thread only ac-
cesses its own local ones. If a reference to one threads lo-
cal scope escapes to another thread and that thread attempts

to access it, then it will get an exception thrown. Note that
the above class has full control over the interface it provides.
Some methods available on scoped memory are not appro-
priate in this context (e.g. joinAndEnter) and therefore are
not exposed in the interface.

Unfortunately, this approach does not fully encapsulate
the class. The memory area can escape. In the RTSJ, a real-
time thread can ask the memory area of an object to be re-
turned using the static getMemoryArea method in the Mem-
oryArea class. If a real-time thread does this, and saves the
reference in a static field then another thread can access3 the
memory area directly.

An alternative approach is to subclass the LTPhysi-
calMemory class and provide the explicit checks for the
owner of the scope.

public class PrivateScope extends LTPhysicalMemory {
public PrivateScope(long size) {
super(PhysicalMemoryManager.ON_CHIP, size);
this.owner = RealtimeThread.currentRealtimeThread();

}

public void enter(Runnable R) {
if (RealtimeThread.currentRealtimeThread() != owner)
{
// throw an exception, the calling thread
// does not own this scope

}
else super.enter(R);

}

// similarly for executeInArea, newArray and
// newInstance etc

private RealtimeThread owner;
. . .

}

This is secure, but has the disadvantage that all the func-
tionality of scoped memory not needed in private memory
has to have its associated methods overridden.

Of course the two approaches can be merged, as shown
below.

public class ThreadLocalScope {
public ThreadLocalScope(long size) {
myMemory = new ThreadLocal<PrivateScope>();
PrivateScope myMem = new PrivateScope(size);
// can throw out of memory

myMemory.set(myMem);
}

public void enter(Runnable R) {
// unchanged

}

public void executeInArea(Runnable R) {
// unchanged

}

3We are grateful for Fridtjof Siebert for pointing out this flaw in our
original proposal.

// other needed scoped memory methods

private ThreadLocal<PrivateScope> myMemory;
}

Now the programmer can be given the appropriate inter-
face, but the approach is still secure.

3.2 Pinable Memory Areas

Version 1.1 of the RTSJ will provide the notion of a pinable
scoped memory area. This is a memory area that can be kept
open even when there are no threads currently entered. In
the context of this paper, this is a very useful extension, as it
allows the thread to leave the local scoped memory area and
enter into another allocation context. It can then return and
continue to access any objects created.

3.3 Garbage Collection

Object stored in a processor’s private local memory does
have implications for any garbage collection being per-
formed. Whilst the memory assignment rules of the RTSJ
will ensure that objects in heap and immortal memory cannot
reference any processor-local memory, references from local
scopes to the heap are allowed. Hence, the processor-local
memory must be scanned by the garbage collector. Conse-
quently, parallel collection must be performed where each
processor has its own thread which can scan its local mem-
ory area. Another possibility is to extend the idea of non-
blocking root scanning [11]. To decrease the blocking time
during root scanning the thread local root scanning is dele-
gated to the mutator threads. If requested from the collector
thread, each thread scans its own local root set at the end
of its period. This root scanning phase can be extended to
include the local memory area scanning.

4 Evaluation

For an evaluation of the concept we implemented the local
memory in a chip-multiprocessor version of the Java proces-
sor JOP [14, 8]. An on-chip memory of 1 KB is attached
locally to each processor. It has to be noted that JOP does
not support the full RTSJ, but is intended as a real-time Java
platform for the safety-critical Java subset. Therefore, we
evaluate the scope cache within this context.

Figure 2 shows an example of the JOP CMP system. Each
processor core contains its private method cache (M$), stack
cache (M$), and the scratchpad memory (SPM). The cores
are connected via an arbiter to the external, shared main
memory.

JOP chip-multiprocessor
(FPGA)

JOP core

4-stage pipeline

M$ SPMS$

JOP core

4-stage pipeline

M$ SPMS$

JOP core

4-stage pipeline

M$ SPMS$

Memory arbiter

Main memory
(SRAM)

Figure 2. A three core JOP CMP system with three core-local memory areas

4.1 JOP Caches

Two time-predictable caches are proposed for JOP: a stack
cache as a substitution for the data cache and a method cache
to cache the instructions.

As the stack is a heavily accessed memory region, the
stack – or part of it – is placed in on-chip memory. This part
of the stack is referred to as the stack cache and described in
[13]. The stack cache is organized in two levels: the two top
elements are implemented as registers, the lower level as a
large on-chip memory. Fill and spill between these two levels
is done in hardware. Fill and spill between the on-chip mem-
ory and the main memory is subjected to microcode control
and therefore time-predictable. The exchange of the on-chip
stack cache with the main memory can be either done on
method invocation and return or on a thread switch.

In [12], a novel way to organize an instruction cache, as
method cache, is given. The idea is to cache complete meth-
ods. A cache fill from main memory is only performed on
a miss on method invocation or return. Therefore, all other
bytecodes have a guaranteed cache hit. That means no in-
struction can stall the pipeline.

The cache is organized in blocks, similar to cache lines.
However, the cached method has to span continuous4 blocks.
The method cache can hold more than one method. Cache
block replacement depends on the call tree, instead of in-
struction addresses. This method cache is easier to analyze
with respect to worst-case behavior and still provides sub-

4The cache addresses wrap around at the end of the on-chip memory.
Therefore, a method is also considered continuous when it spans from the
last to the first block.

stantial performance gain when compared against a solution
without an instruction cache. The average case performance
of this method cache is similar to a direct mapped cache [12].
The maximum method size is restricted by the size of the
method cache. The pre-link tool verifies that the size restric-
tion is fulfilled by the application.

Both caches do not need a cache coherency protocol in the
case of multiprocessing: the stack cache contains only thread
local data and the method cache contains just instructions
that are not updated by a program.

4.2 Scope Cache

JOP does not contain a data cache and therefore also avoids
the bottleneck of the cache coherence protocol in a CMP
system. However, when all access to heap allocated data
goes directly to the main memory, the memory bandwidth
becomes the limiting factor for a CMP system. Therefore,
we add a program managed local memory, the proposed local
scope cache, to each processor core. The memory is mapped
to a well known address and the boot process detects the size
automatically. The memory is used as backing store for the
scoped memory.

4.3 WCET Analysis

JOP is designed as a time-predictable processor to simplify
the WCET analysis. Most bytecode instructions are executed
in a constant number of cycles. The execution time of byte-
codes that access memory (e.g., field and array access) de-
pends on the memory timing. In the case of a CMP system

the execution time also depends on the memory arbitration
policy and the number of cores in the system. A time divi-
sion multiple access (TDMA) based arbiter allows to bound
the WCET to a reasonable value [7]. The fair arbiter, which
is also evaluated in the following section, performs better in
the average case, but the WCET for a memory access is high.
As the loading of the method cache cannot be interrupted in
that arbiter, the WCET of a single memory access includes
the cache load of all other cores.

The access time to the on-chip memory is a single cycle.
Therefore, all memory access to objects that are allocated
in the local scope cache have a short and constant execution
time. Integration into the WCET analysis tool can be per-
formed by additional annotations of the source code. A better
approach would be to detect the different memory types and
which objects are allocated in them by data-flow analysis.

4.4 Measurements

We have built different configurations of the CMP system
with 1, 2, 4, and 8 processor cores. As an evaluation platform
we use the Altera DE2 board with a Cyclone-II FPGA. All
designs are clocked at 90 MHz and the main memory is a
16-bit SRAM with an access time of 4 cycles for a 32-bit
read operation and 6 cycles for a 32-bit write operation. All
configurations consume the same amount of on-chip memory
per core: 1 KB stack cache, 1 KB method cache, and 1 KB
local scope cache. The size of the method cache is chosen
smaller than usual, but only with this configuration we are
able to synthesize a 8 core version of the CMP system.

As an arbiter we used two different types: the fair arbiter
[8] and the time-triggered (TDMA) arbiter [7]. Both arbiters
distribute the bandwidth equally to all cores. However, the
fair arbiter performs dynamic arbitration each cycle and re-
sults in a better average case performance of the system than
the TDMA arbiter. The TDMA arbiter divides the access
time into equal time slots. The size of the time slot can be
configured. We choose the shortest possible size of 6 cycles.
With the TDMA arbiter the WCET of Java bytecodes can
be determined easily, whereas the dynamics of the fair based
arbiter complicates the low-level WCET analysis.

For the evaluation we use a benchmark that performs mul-
tiplication of two 100x100 matrices. The work is distributed
at the basis of rows that are calculated. Each core tries to get
a new row for the calculation when finished the former one.
The local scope cache is used to cache one row during cal-
culation. In the inner loop of the multiplication one memory
access is performed to the main memory and one memory
access to the local scope cache. We compare this calcula-
tion with a version without caching where two main memory
accesses are performed in the inner loop.

Table 1 shows the execution time of different configu-
rations of the CMP system with and without local scope
caching. The execution time is shorter than reported in [8]

Execution time
Arbiter Fair TDMA

Cores w/o cache w cache w/o cache w cache

1 839 ms 761 ms 839 ms 761 ms
2 473 ms 383 ms 625 ms 489 ms
4 315 ms 202 ms 488 ms 353 ms
8 307 ms 161 ms 389 ms 260 ms

Table 1. Execution time of the matrix multipli-
cation in ms for different CMP and arbiter con-
figurations

as we have optimized the benchmark code. For this kind of
processing task we assume that the code is optimized to avoid
memory access as much as possible in a CMP system.

From the table we see several trends: (1) the fair arbiter
delivers a better average case performance than the TDMA
arbiter; (2) this type of processing scales without caching
only for two cores; (3) the local caching of one data row
provides some performance increase for a single core; and
(4) local caching helps to scale up to 4 or 8 cores.

Figure 3 shows the performance relative to a single core
system without scope caching with the fair arbiter.5 We can
see that the system saturates the memory bandwidth with
4 cores without caching. With scope caching we can still
achieve a performance improvement of a factor of 5 with
cores. We are quite surprised by this improvement as we
do not expect a linear performance increase with the number
of cores. As the numbers of transistors increases exponen-
tially we consider a logarithmic performance increase with
the number of processors a success. However, the chosen
benchmark is trivial to parallelize. The result shows that DSP
like algorithms can benefit from the local scope cache. The
improvement of more than 2 and 4 for 2 and 4 cores respec-
tively results from the comparison against the non-caching
version.

The same data is shown in Figure 4 with the TDMA ar-
biter. The time-predictable nature of this configuration re-
sults in a lower average-case performance. This is expected.
The CMP scales with the number of processors, but slower as
with the fair arbiter. In this case the performance increase is
around 35% for the non-cached solution and around 70% for
the cached solution when the number of processors is dou-
bled. A logarithmic improvement that we consider practical.

4.5 Discussion

In Section 3.1 it is suggested that the implementation of
LTPhysicalMemory communicates with the PhysicalMemory-

5Execution time of the single core system divided by the execution time
of the CMP system

0

1

2

3

4

5

6

1 2 4 8

Re
la
ti
ve
 s
pe

ed
up

Number od CPUs

Scope caching

No caching

Figure 3. Performance of different CMP sys-
tems with the fair arbiter

Manager to request a scratchpad memory area that serves as
backing store for the thread local scope. The actual imple-
mentation is JVM and operating system specific. A scratch-
pad memory is usually mapped to a well known address. An
implementation of the JVM can also directly use that knowl-
edge to allocate the scope backing store at that specific ad-
dress. For example, a scratchpad memory of 1 KB at address
0x1000000 can be requested with following constructor:

LTPhysicalMemory(PhysicalMemoryManaged.ON_CHIP_PRIVATE,
0x1000000, 1024)

In the implementation on JOP normal, scoped memory is
implemented with the help of plain Java arrays. The array
is the backing store for the scope and is allocated in immor-
tal memory. In the implementation of bytecode new a thread
local data structure is examined to distinguish between the
different memory areas. To request the on-chip memory as
backing store we use the convenient abstraction of hardware
objects [15]. A hardware object is either a Java object or a
Java array that is mapped to a distinct memory area where an
I/O device is located. The hardware objects and arrays pro-
vide a Java based lightweight abstraction of I/O devices. For
the thread-local scope cache an array, mapped to the on-chip
memory address, is requested from a system internal factory.
No further distinction between an array that represents the
backing store for a normal scope or a PrivateScope is neces-
sary in the implementation. The constant ON CHIP PRIVATE
is used to distinguish between the two different types within
the constructor. In the actual implementation this constant
is passed to a package private constructor of ScopedMemory
where the allocation of the backing store is performed.

In this paper on-chip memory is tied to a single thread
that is not allowed to migrate between different cores. If
the thread is allowed to migrate, the on-chip memory con-
tent also needs to migrate to a different core. Technically
migration of the on-chip memory content is possible, but
the scheduling cost is increased accordingly. In our opin-

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8

Re
la
ti
ve
 s
pe

ed
up

Number of CPUs

Scope caching

No caching

Figure 4. Performance of different CMP sys-
tems with the TDMA arbiter

ion thread migration is too costly and too hard to analyze.
However, sharing of a scratchpad memory between threads
that are pinned to the same core is a valuable option. For this
extension the runtime check on enter() needs to be changed
to check if the thread is running on that core where the Pri-
vateScope was allocated.

Thread local data is per definition not shared. There-
fore, the expensive cache coherence protocol can be avoided
for local scope caching. Cache coherence protocols do not
scale well and also introduce hard to analyze latencies for
the memory access.

5 Related Work

A common solution to avoid data caches is an on-chip mem-
ory, named scratchpad memory, that is under program con-
trol. This program managed memory implies a more com-
plicated programming model. However, scratchpad memory
can be automatically partitioned [2, 1, 18]. A similar ap-
proach for time-predictable caching is to lock cache blocks.
The control of the cache locking [9] and the allocation of
data in the scratchpad memory [19, 17, 4] can be optimized
for the WCET. A comparison between locked cache blocks
and a scratchpad memory with respect to the WCET can be
found in [10]. While former approaches rely on the compiler
to allocated the data or instructions in the scratchpad memory
an algorithm for runtime allocation is proposed in [6].

Exposing the scratchpad memory at the language level, as
proposed in this paper, can further help to optimize the time-
critical path of the application.

With a core local scratchpad memory the data allocated in
it cannot be shared between threads on different cores. Pro-
gram analysis to detect thread-local heap data is presented in
[16]. This analysis can help to automatically allocate data in
the scratchpad memory on a CMP system.

6 Conclusion

The search for increasingly fast processors is leading towards
CMP solutions. These will inevitably have both processor-
local and shared memory modules. In this paper we have
shown that the memory management framework provided by
the RTSJ is flexibly enough to allow processor-local mem-
ory to be effectively accessed by real-time threads through
the notion of thread-local scoped memory areas. The evalu-
ation shows that significant speedup can be obtain on highly
parallel data-oriented algorithms where data can be cached
locally.

Throughout this work, we have assumed that threads that
access thread-local scopes do not migrate between proces-
sors, other threads may. Hence, we are trading off the time-
liness of memory accesses, the simplicity of the hardware
architecture and the predictability of the resulting schedula-
bility analysis against average case benefits and any theoret-
ical schedulability improvements that might be obtained by
allowing a thread migration.

Acknowledgement

This research has received partial funding from the European
Community’s Seventh Framework Programme [FP7/2007-
2013] under grant agreement number 216682 (JEOPARD).
The authors would like to acknowledge the contribution
made by the partners to this work, in particular Fridtjof
Siebert.

References

[1] F. Angiolini, L. Benini, and A. Caprara. Polynomial-time
algorithm for on-chip scratchpad memory partitioning. In
Proceedings of the International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES-
03), pages 318–326, New York, Oct. 30 Nov. 01 2003. ACM
Press.

[2] O. Avissar, R. Barua, and D. Stewart. An optimal memory
allocation scheme for scratch-pad-based embedded systems.
Trans. on Embedded Computing Sys., 1(1):6–26, 2002.

[3] M. Barr. Memory types. Embedded Systems Programming,
14(5):103–104, May 2001.

[4] J.-F. Deverge and I. Puaut. Wcet-directed dynamic scratchpad
memory allocation of data. In ECRTS ’07: Proceedings of
the 19th Euromicro Conference on Real-Time Systems, pages
179–190, Washington, DC, USA, 2007. IEEE Computer So-
ciety.

[5] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm.
The influence of processor architecture on the design and re-
sults of WCET tools. Proceedings of the IEEE, 91(7):1038–
1054, Jul. 2003.

[6] R. McIlroy, P. Dickman, and J. Sventek. Efficient dynamic
heap allocation of scratch-pad memory. In ISMM ’08: Pro-
ceedings of the 7th international symposium on Memory man-
agement, pages 31–40, New York, NY, USA, 2008. ACM.

[7] C. Pitter. Time-predictable memory arbitration for a Java
chip-multiprocessor. In Proceedings of the 6th International
Workshop on Java Technologies for Real-time and Embedded
Systems (JTRES 2008), 2008.

[8] C. Pitter and M. Schoeberl. Performance evaluation of a Java
chip-multiprocessor. In Proceedings of the 3rd IEEE Sym-
posium on Industrial Embedded Systems (SIES 2008), Jun.
2008.

[9] I. Puaut. WCET-centric software-controlled instruction
caches for hard real-time systems. In ECRTS ’06: Proceed-
ings of the 18th Euromicro Conference on Real-Time Systems,
pages 217–226, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[10] I. Puaut and C. Pais. Scratchpad memories vs locked caches
in hard real-time systems: a quantitative comparison. In Pro-
ceedings of the conference on Design, Automation and Test in
Europe (DATE 2007), pages 1484–1489, San Jose, CA, USA,
2007. EDA Consortium.

[11] W. Puffitsch and M. Schoeberl. Non-blocking root scanning
for real-time garbage collection. In Proceedings of the 6th
International Workshop on Java Technologies for Real-time
and Embedded Systems (JTRES 2008), September 2008.

[12] M. Schoeberl. A time predictable instruction cache for a Java
processor. In On the Move to Meaningful Internet Systems
2004: Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES 2004), volume 3292 of LNCS,
pages 371–382, Agia Napa, Cyprus, October 2004. Springer.

[13] M. Schoeberl. Design and implementation of an efficient
stack machine. In Proceedings of the 12th IEEE Reconfig-
urable Architecture Workshop (RAW2005), Denver, Colorado,
USA, April 2005. IEEE.

[14] M. Schoeberl. A Java processor architecture for embedded
real-time systems. Journal of Systems Architecture, 54/1–
2:265–286, 2008.

[15] M. Schoeberl, S. Korsholm, C. Thalinger, and A. P. Ravn.
Hardware objects for Java. In Proceedings of the 11th IEEE
International Symposium on Object/component/service-
oriented Real-time distributed Computing (ISORC 2008),
Orlando, Florida, USA, May 2008. IEEE Computer Society.

[16] B. Steensgaard. Thread-specific heaps for multi-threaded pro-
grams. SIGPLAN Not., 36(1):18–24, 2001.

[17] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen. WCET
centric data allocation to scratchpad memory. In Proceedings
of the 26th IEEE International Real-Time Systems Symposium
(RTSS), pages 223–232. IEEE Computer Society, 2005.

[18] M. Verma and P. Marwedel. Overlay techniques for scratch-
pad memories in low power embedded processors. IEEE
Trans. VLSI Syst, 14(8):802–815, 2006.

[19] L. Wehmeyer and P. Marwedel. Influence of memory hier-
archies on predictability for time constrained embedded soft-
ware. In Proceedings of Design, Automation and Test in Eu-
rope (DATE2005)., pages 600–605 Vol. 1, March 2005.

[20] A. Wellings. Multiprocessors and the real-time specifi-
cation for java. In Proceedings of the 11th IEEE Inter-
national Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing ISORC-2008, pages 255–
261. Computer Society, IEEE, IEEE, May 2008.

