Lessons Learned from the EU Project T-CREST

Martin Schoeberl

Department of Applied Mathematics and Computer Science
Technical University of Denmark
Email: masca@dtu.dk

Abstract—A three year EU project, such a T-CREST, with
partners from all over Europe and with backgrounds from
different domains is a challenging endeavor. Successful execution
of such a project depends on more factors than simply performing
excellent research.

Within the three-year project T-CREST eight partners
from academia and industry developed and evaluated a time-
predictable multi-core processor with an accompanying compiler
and a worst-case execution time analysis tool. The tight cooper-
ation of the partners and the shared vision of the need of new
computer architectures for future real-time systems enabled the
successful completion of the T-CREST project.

The T-CREST platform is now available, with most compo-
nents in open source, to be used for future real-time systems and
as a platform for further research.

I. INTRODUCTION

For future real-time systems we need high-performance
but also time-predictable computing platforms [1]]. Time pre-
dictability means that the platform allows static analysis of
the worst-case execution time (WCET) of individual tasks.
The partners of the T-CREST (Time-predictable Multi-Core
Architecture for Embedded Systems) project developed and
researched novel solutions for time-predictable multi-core ar-
chitectures that are optimized for the WCET instead of the
average-case execution time. Optimizing for the WCET was
the main driving force for all time-predictable resources (pro-
cessors, interconnect, memory arbiter, and memory controller)
and tools (compiler, WCET analysis).

We used two industrial use cases to evaluate the T-CREST
platform. With an avionics application we showed that tasks
executing on different cores do not interfere. From an railway
application we showed that the WCET of a signal processing
application can be reduced when distributing the tasks over
several cores and using the network-on-chip for task commu-
nication.

The T-CREST project is the result of a collaborative re-
search and development project executed by eight partners
from academia and industry over three years. The European
Unions 7th Framework Programme funded T-CREST under
grant agreement no. 288008: Time-predictable Multi-Core
Architecture for Embedded Systems.

This paper reflects on the three years of research, develop-
ment, cooperation, and coordination between partners spread
over whole Europe. It provides lessons learned from this
medium sized project that included hardware and software
design. The paper gives suggestions for future projects of

similar structure. The main lesson learned is that, especially
with very different partners from all over Europe, integration is
key. Early integration of the different project components is the
single most important aspect for the success of such a project.
And working in open-source with public available (and visible)
repositories greatly simplifies integration and cooperation.

The result of T-CREST is a (mostly) open-source hardware
platform with a compiler and a static WCET analysis tool [2].
Most of the hardware design has been done from scratch. The
compiler and WCET analysis tool research and development
was based on mature products.

T-CREST was the joint effort of 8 partners from industry
and academia. The Open Group (TOG) was the project coor-
dinator and being the driving force on getting the deliverables
finished in time. The Technical University of Denmark (DTU)
was the technical coordinator of T-CREST. DTU worked on
the development of the time-predictable processor Patmos
and the time-predictable network-on-chip (NoC) named Argo.
The Technical University of Eindhoven (TUE) brought their
expertise on memory controllers and NoC to the project. TUE
extended their memory controller Predator for the T-CREST
platform. The University of York (UoY), with their expertise
in real-time systems, worked on a time-predictable memory
hierarchy consisting of scratchpad memories and a memory
tree towards the shared memory controller. The Technical
University of Vienna (TUV) extended the LLVM compiler to
support the Patmos processor and developed compiler opti-
mizations for the WCET, including generation of single-path
programs. AbsInt Angewandte Informatik (AbsInt) extended
their static WCET analysis tool aiT to support the Patmos
instruction set and the special time-predictable method and
stack caches of Patmos. GMV and Intecs, our two industrial
use case providers, developed the requirements for the project
and adapted two use cases from the avionics and railway
domain for the multi-core platform T-CREST.

This paper is organized in 8 sections: The following section
presents the T-CREST platform. Section III discusses the
integration work within T-CREST, the most challenging part
of the project. Section IV discusses how developing in open-
source simplifies integration and how working in open-source
may be challenging for PhD students. Section V presents small
projects that have already been using the T-CREST platform.
Section VI describes the first uptake of T-CREST in teaching.
Section VII presents thoughts on how to keep T-CREST active
and alive. Section [VIII concludes.

§\\EQONO‘C/ =

4, Patmos
R | D | e

e |

T]
I
\ : /

Memory
Controller

Patmos Patmos

L—»{spm

T-CREST Multiprocessor

Memory

Fig. 1. The T-CREST multiprocessor consisting of Patmos processor nodes
that are connected via the Argo network-on-chip for message passing com-
munication and a memory network-on-chip to a memory controller for shared
memory access.

II. THE T-CREST PLATFORM AND WORK PACKAGES

Figure [I] shows the hardware of the T-CREST platform,
a chip multiprocessor. The individual processors are called
Patmos [3]]. Patmos is intended to be a time-predictable
processor. Patmos is a statically scheduled dual issue pipeline.
Patmos contains two specialized caches: the stack cache [4]]
and the method cache [5]. Patmos implements full predication
to support single-path programming [6].

The Patmos processors are connected to two different NoCs:
(1) the Argo NoC for core-to-core message passing and
(2) a memory NoC for core-to-memory communication. The
Argo NoC [7] supports push based communication between
processor local scratchpad memories. The NoC uses a static
time-division multiplexing schedule to be time-predictable
and therefore avoids dynamic arbitration, buffering, and flow
control. For the memory NoC we developed two solutions:
(1) a memory tree with prefetching [[8] and (2) a distributed
time-division multiplexing memory NoC [9]. The memory
NoC connects all processors to a single real-time memory
controller [10]]. To attack the growing pressure on the main
memory on-chip scratchpad memories have been explored
within the project [11]].

On the software side the LLVM compiler [[12] has been
adapted for Patmos [13]]. This adaption includes the backend
for the Patmos instruction set as well as support for the method
cache. For functions that are too large to fit into the method
cache the compiler splits functions into smaller ones [14].
The compiler also converts standard C programs into single-
path programs [15] to support task execution without timing
variability.

The WCET analysis tool aiT [16] from AbsInt has been
adapted and extended to support the Patmos instruction set,

—_—

Fig. 2. The T-CREST work packages and their interaction.

Dissemination

Management

support dual issue processors, and extended with a stack cache
and a method cache analysis. The compiler and the WCET
analysis tool are tightly integrated via the platin toolkit to
support each other. platin translates program information,
e.g., branch targets for switch statements, to annotations for
aiT. aiT delivers back information on the WCET path to the
compiler to guide the optimization along the WCET path.

The T-CREST platform was evaluated with applications
from two domains: avionics and railway. The three real-world
avionic applications were: (1) an Airlines Operational Centre,
(2) a Crew Alerting System, and (3) an I/O Partition. The rail-
way application was the GSM-R Integrity Detection System
that has been adapted to the multi-core platform T-CREST.
GSM-R is a railway specific version of the commercial GSM
standard.

Figure [2] shows the 9 work packages (WP) of T-CREST and
their main interaction. WP 1, Requirements Analysis, defined
the industrial requirements for a time-predictable platform and
was mainly driven by the user partners GMV and Intecs. WP 2,
Processor, covers development work on the time-predictable
processor Patmos with the main responsibility at DTU. WP 3,
Network on Chip, covers the design and development of a
time-predictable core-to-core on-chip communication network.
WP 3 was a joint effort between DTU and TUE. WP 4,
Memory Hierarchy, covers the memory NoC, organization of
local scratchpad memories, and the memory controller. WP 4
was a joint effort of UoY and TUE. WP 5, Compiler, covers
the adaption of the LLVM compiler to Patmos and research
WCET driven compilation. WP 5 was a joint effort between
TUV and DTU. WP 6, Code-Level WCET Analysis, covers the
adaption of aiT for the Patmos processor and interaction with
the compiler. AbsInt was responsible for WP 6. WP 7, Integra-
tion and Evaluation, covers the adaption of two use cases to T-
CREST and evaluation of the platform. WP 7 was a join effort
between GMV and Intecs with considerable contributions of
all partners. WP 8, Dissemination, covers the project web
site scientific publications, and organization of workshops.
WP 9, Management, covers consortium management, progress
tracking, and reporting. WP 9 was lead by TOG with support
from the technical lead by DTU. From Figure [2]it can be seen
that WCET analysis played a central role in the project as it
interacts with the hardware and the compiler.

Uhttp://www.t-crest.org/

http://www.t-crest.org/

III. INTEGRATION

A main challenge in an EU project that includes partners
located all over Europe is the integration of the individual
components to provide a complete platform. The effort of this
integration shall not be underestimated.

A. Compiler and Processor Coordination

An important first step for the compiler processor inte-
gration was the development of a software simulator of the
Patmos processor [17]. This software simulator simplified
compiler development and testing. The simulator is a plain
C++ program. Therefore, a compiler developer need no access
to real hardware.

The simulator then served as gold standard for the processor
development. Test cases have been executed on the software
simulator and the hardware emulator and the register file of
the processor compared for each clock cycle. As any data will
at some point pass the register file, any difference between the
simulator and the hardware will be detected by this tests.

For the compiler and the Patmos processor a build bot has
been setup at TU Vienna for regression tests. The build bot is
triggered by commits to the GitHub repository and on a nightly
basis to rebuild and test the compiler and the processor.

However, as convenient as a software simulator is, there is
the danger of overusing it. Simulators provide an abstraction of
the real world, in our case the real hardware of the processor.
As the simulator has been written before any hardware was
available, there are differences in the processor model, the
pipeline, and the memory subsystem. Therefore, we argue
to use the hardware in an FPGA as much as possible for
evaluation.

B. Early Integration

The original plan in the T-CREST project was to have
the main integration done in the last project year. However,
our EC project officer pushed for starting integration earlier.
Therefore, we were able to show a first version of the T-
CREST platform in the year two EC review meeting.

We are glad that we have been pushed to start integration
early. Integration work consumed more resources than we
expected. When it comes to debugging of a combination of
components from different project partners a lot of time is
spent on communication and coordination between partners.

The lesson learned is that it is too easy to underestimate inte-
gration work. In future projects we will budget more resources
and a dedicated work package for integration. Furthermore,
it is of primary importance to start integration as early as
possible, best from the project start.

C. Who Owns the Top-Level?

One important question in a hardware design is who is the
owner of the top-level component. Crosscutting issues such
as clock domains and reset sequences should be reflected in
the top-level entity of the hardware design. The owner of that
entity shall be responsible for those issues.

Within T-CREST project we missed to assign a clear respon-
sibility for the top-level entity. The resulting consequences
have been: no clear understanding of the different clock
domains, unclear requirements of component initialization
sequences, and issues with clock domain crossings. This lead
to long and troublesome integration and debugging work at
the final hardware integration phase.

The lesson learned is that in a future hardware project a
clear owner of the top-level component including the clock
generation, the clock domain crossing, and the reset sequenc-
ing needs to be agreed on.

D. Documentation

The path of documentation in research is in publishing the
research results in papers. More details of the individual T-
CREST components are available in the EC project deliver-
ables, most of them public available Furthermore, an open-
source project such a T-CREST also publishes the source code.

However, the gap between source code and scientific papers
is huge. And individual deliverables represent only snapshots
of work packages in different phases of the project. Therefore,
we collected the relevant results and added introduction section
into the Patmos handbook [18]], This handbook is a work-in-
progress and will be update when components are changed.

Besides project internal mailing list for general project
discussions we also setup a public mailing lisﬂ to also enable
interaction with developers from outside the T-CREST project.

IV. THE OPEN-SOURCE APPROACH

Providing the source of a project from the start on in open
source and publicly visible is an interesting and probably bold
step. Many projects, EU projects or just single PhD projects,
only publish the results and do not provide access to the
source.

However, I think this is wrong for projects financed by
the society. First, if the society has financed the research
than the society shall also receive the results. Second, maybe
more important, providing the sources of the developments
enables independent verification of the experimental results.
Verification of the results by other researches is common
practice in other research fields, e.g., in physics, but very
uncommon in computer science. This is a shame, especially
because reproduction of results is usually relatively cheap and
easy in computer science when the sources are available. Many
experiments can be run on a researcher’s laptop.

Many researchers are very open to share their work and
the sources, but only when the source is polished enough.
And this is the main catch: code produced by researchers to
explore ideas is usually not polished, not well documented,
and probably not written in good software engineering style.
However, as this code is research code and not production
code this is a valid approach. We shall accept this quality of
code from us and from other researchers and make it available
to others.

Zhttp://www.t-crest.org/page/results
3https://groups.yahoo.com/group/patmos- processor/.

http://www.t-crest.org/page/results
https://groups.yahoo.com/group/patmos-processor/

Another interesting issue on being in open-source during
the research work is the exposition of PhD work early in
the public. It means that all paths explored by the student,
including the dead ends, are in principle visible to the whole
world. This might stress the student to an extent that he
will not explore risky but maybe interesting directions. In
my experience the practical work often involves a mixture
of part of the code being in the public main repository of
the project, but some of the code being only available on the
student’s computer. The later is often simply lost when the
student finished her PhD thesis.

Furthermore, working with a public repository for a research
project means that code is public before a paper that uses this
code has been published. There is a strong fear of researchers
that this situation can lead to stealing of ideas. Those ideas are
somehow encoded in the public code. However, I think this is
a non-issue for two reasons: (1) the code of a medium sized
project is complex enough that it takes time to understand it
and to find the new, unpublished ideas in it; (2) when the idea
is published in the code than a repository with version control
shows the date of the publishing of the original idea and makes
it defendable.

In summary my opinion is that research work shall be done
in open-source as much as possible. Source code is part of
computer science research projects and shall be considered as
part of the publication process. Open-source projects simplify
cooperation and collaboration and also simplify building upon
earlier research.

V. FURTHER PROJECTS

T-CREST being open-source helped to attract research and
development outside of the EC funded project. Furthermore,
the entry level to get started with T-CREST is quite low. For
simulation of T-CREST a Linux or Mac based laptop with only
free software serves as a full development environment. For
exploring T-CREST in an FPGA, just a low-cost FPGA board,
such as the terasic DE2-155, and the free Quartus version from
Altera are needed.

Research in operating systems was not included in the T-
CREST project. Nevertheless, two projects explored porting of
real-time operating systems (RTOS) to Patmos: RTEMS and
TiCOS.

GMV ported RTEMS to provide a run-time environment for
the avionics application. RTEMS is an open-source RTOS that
is very popular for space missions.

T-CREST is also a good platform for student projects and
master thesis. Marco Ziccardi ported the TiCOS operating
system [19], which is a fork of the POK RTOS [20], to the
Patmos processor [21]. TiCOS is a time-predictable operating
system that supports the ARINC 653 standard. In the current
port TiCOS supports only a single processor. We plan to
extend TiCOS to support several cores and to map ARINC
communication primitives to the NoC of T-CREST.

Luca Pezzarossa explored the connection of hardware ac-
celerators to T-CREST during his master thesis [22]]. The main
challenge is to keep the access to the hardware accelerators

time-predictable. Using the time-division multiplexing Argo
NoC provides a time-predictable communication channel be-
tween the processors and the accelerator [23]].

VI. T-CREST IN TEACHING

TU Vienna offers a course in WCET analysisE] Originally
the course was using the aiT WCET analysis tool with the
LEON processor. However, when the compiler and aiT had
been adapted to support Patmos and a software simulator of
Patmos was available the course switched to Patmos. This
change allowed extending the WCET analysis course with
topics on compiler support for single-path code [15].

The COST action TACLe (Timing Analysis on Code-Level)
organized a summer school on principles, needs and challenges
of timing analysis at code leveIE] Besides WCET analysis and
compiler support for timing analysis one topic of the summer
school was time-predictable computer architecture. Within this
topic the T-CREST platform was presented and the students
used the Patmos simulator and hardware emulator in the lab
to explore time-predictable architecture.

The exercises from this hardware lab have been extended
at DTU to include the Argo NoC. We use T-CREST in an
FPGA platform for labs in the advanced computer architecture
coursel]

For self-study, e.g., to get started on a master project with
T-CREST, the exercises and the Patmos handbook [18]] are
available online[’]

VII. ORGANIZING FUTURE WORK

We consider T-CREST as a platform to be used for real-time
systems, but also a platform for future research work. With all
components and tools in place it is easy to extend in diverse
directions. What remains, as a challenge, is to keep the code
base alive and having resources to fix errors or integrate new
research work.

A. Keeping a Research Project Alive

The issue with mainly university and research driven
projects is that there is a very high fluctuation in the devel-
opers. A PhD student is three to four years involved in the
project. It will take time for the student to learn the code base
and being able to contribute to the project. The research work
of the student might be too experimental to be integrated in
the master branch and the last year of the PhD work will be
dominated by the actual thesis writing. Therefore, in the best
case a PhD student can serve for the project and contribute to
the master code base for about two years of her PhD study.
To keep a project alive just with PhD students will require a
continuous pipeline of funding and research projects.

A better solution for continuous development, and as a
basis for future work, would be permanent employees being

4http://ti.tuwien.ac.at/cps/teaching/courses/wcet
Shttp://www.tacle.eu/index.php/activities/summer-schools-forums/
2014-venice

Ohttp://www?2.imm.dtu.dk/courses/02211/
http://patmos.compute.dtu.dk/

http://ti.tuwien.ac.at/cps/teaching/courses/wcet
http://www.tacle.eu/index.php/activities/summer-schools-forums/2014-venice
http://www.tacle.eu/index.php/activities/summer-schools-forums/2014-venice
http://www2.imm.dtu.dk/courses/02211/
http://patmos.compute.dtu.dk/

responsible for the project. For this position we would need
an engineer and not a researcher. This person would also be
in the best place to sort out which student project results are
worth keeping in the main line of development or which results
are just temporal sidetracks of the project. However, with the
current organization of a university, at least at DTU, there is
no place and money for such a position.

Nevertheless, we intend to keep the T-CREST project alive
and use it for future research work and research projects.
Although the name and acronym have been the result of a
EC funded project, and each new project needs a new name,
we will keep the name as a kind of branding alive.

B. Next Research Directions

Next research steps are to extend T-CREST to a distributed
system. We intend to extend a T-CREST processing node with
a time-predictable Ethernet controller. The main candidate for
real-time Ethernet is TTEthernet [24], the real-time networking
technology developed by TTTech. With a time-predictable
computing platform and time-predictable networking solution
we are confident to provide a distributed real-time system
where we can guarantee end-to-end latencies.

Another direction of research within the multi-core platform
is the model of communication. Current multi-core proces-
sors use shared memory for communication. The core-to-
core communication on the chip is performed via the cache
coherence protocol. This has two disadvantages: (1) it does
not scale, as the cache coherence mechanism is a bottleneck;
(2) it is hardly time-predictable. Therefore, we need to focus
on different, scalable, and time-predictable forms of on-chip
communications [25]].

As shared external memory is the bottleneck of a multi-core
system, we need to keep communication on-chip as much as
possible. Besides using the NoC of push-based communication
we will explore different forms of on-chip memories and the
movement of data between those memories or the movement
of the memories between the processing cores.

We will explore the notion of distributed shared on-chip
memory. This distributed memory will be mapped into the
global address space. Access to that memory via load and
store instructions will be translated to NoC request and reply
packets.

A shared scratchpad memory is somehow similar in struc-
ture to shared off-chip memory, but on-chip and no cache
coherence protocol is needed, as this memory is already on-
chip. It can be used to share bulk data. It needs a time-
predictable (TDM based) arbitration.

A version of shared scratchpad memory is the shared
scratchpad memory with ownership. The idea is that several
scratchpad memories are shared, but there is a notion of an
owner. Only the current owner is allowed to write (and read)
to that memory. To communicate, ownership is transferred to
a different core. This mechanism fits well for communicating
bulk data and provides short and time-predictable latencies for
memory accesses to an owned memory.

A further direction of future research based in T-CREST is
the extension of the platform to support hardware accelerators
with timing constraints [23]].

C. Further and Future Research Projects

At DTU we supplement T-CREST with the research project
RTEMP (Hard Real-Time Embedded Multiprocessor Platform)
that is funded by The Danish Council for Independent Re-
search — Technology and Production Sciences (FTP). The
RTEMP project runs from April 2014 to July 2016. The project
funds research at DTU and has Danfoss Power Electronics
as an industrial partner/user. The RTEMP project uses the
T-CREST platform and supplements T-CREST by focusing
on developing a time-predictable multi-core platform that is
specifically optimized for implementation in FPGA technol-
ogy. The intention is to use FPGAs for real products and not
only for prototyping.

For EU-wide research we have organized a consortium for
a project proposal within the ECSEL Joint Undertaking. An
ECSEL project is more industry driven than FP7 or H2020
EU projects and will provide a path for T-CREST to find its
way into industrial use. The new consortium includes several
former T-CREST partners to provide continuity within the T-
CREST research and development and several new industrial
partners to support innovation and bring T-CREST into use in
different real-time application domains.

VIII. CONCLUSION

In summary, the T-CREST project was a very successful EU
project leading to a time-predictable multi-core processor and
supporting compiler and WCET analysis tools. Most artifacts
of T-CREST are available in open source and therefore provide
a low entrance path towards future research.

The main lesson learned in this project, which included
eight partners from all over Europe and from different do-
mains, is that early integration is the key to successfully
complete such a project within three years. Using public
repositories and an open-source license simplified cooperation
and integration of components.

Acknowledgment

I would like to thank all partners from the T-CREST project
for the deep research interaction and joyful discussions during
project meetings: Sahar Abbaspour, Benny Akesson, Neil
Audsley, Florian Brandner, Raffaele Capasso, Christoph Cull-
mann, Christian Ferdinand, Jamie Garside, Gernot Gebhard,
Kees Goossens, Sven Goossens, Scott Hansen, Reinhold Heck-
mann, Stefan Hepp, Benedikt Huber, Guido Ioele, Alexander
Jordan, Evangelia Kasapaki, Jens Knoop, Yonghui Li, Daniel
Prokesch, Wolfgang Puffitsch, Peter Puschner, André Rocha,
Claudio Silva, Jens Sparsg, Alessandro Tocchi, and Jack
Whitham.

This work was partially funded under the European Union’s
7th Framework Programme under grant agreement no. 288008:
Time-predictable Multi-Core Architecture for Embedded Sys-
tems (T-CREST) and the EU COST Action IC1202: Timing
Analysis on Code Level (TACLe).

Source Access

Most of the T-CREST project results are available in open
source and are hosted at GitHub: https://github.com/t-crest

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

REFERENCES

M. Schoeberl, “Time-predictable computer architecture,” EURASIP
Journal on Embedded Systems, vol. vol. 2009, Article ID 758480, p.
17 pages, 2009.

M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso,
J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann,
S. Hepp, B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li,
D. Prokesch, W. Puffitsch, P. Puschner, A. Rocha, C. Silva, J. Sparsg,
and A. Tocchi, “T-CREST: Time-predictable multi-core architecture for
embedded systems,” Journal of Systems Architecture, vol. 61, no. 9,
pp. 449471, 2015.

M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, C. W. Probst,
S. Karlsson, and T. Thorn, “Towards a time-predictable dual-issue
microprocessor: The Patmos approach,” in First Workshop on Bringing
Theory to Practice: Predictability and Performance in Embedded
Systems (PPES 2011), Grenoble, France, March 2011, pp. 11-20.

S. Abbaspour, F. Brandner, and M. Schoeberl, “A time-predictable stack
cache,” in Proceedings of the 9th Workshop on Software Technologies
for Embedded and Ubiquitous Systems, 2013.

P. Degasperi, S. Hepp, W. Puffitsch, and M. Schoeberl, “A method
cache for Patmos,” in Proceedings of the 17th IEEE Symposium on
Object/Component/Service-oriented Real-time Distributed Computing
(ISORC 2014). Reno, Nevada, USA: IEEE, June 2014, pp. 100-108.
P. Puschner and A. Burns, “Writing temporally predictable code,” in
Proceedings of the The Seventh IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS 2002). Washington,
DC, USA: IEEE Computer Society, 2002, pp. 85-94.

E. Kasapaki, M. Schoeberl, R. B. Sgrensen, C. T. Miiller, K. Goossens,
and J. Sparsg, “Argo: A real-time network-on-chip architecture with an
efficient GALS implementation,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. PP, 2015.

J. Garside and N. C. Audsley, “Prefetching across a shared memory tree
within a network-on-chip architecture,” in System on Chip (SoC), 2013
International Symposium on, Oct 2013, pp. 1-4.

M. Schoeberl, D. V. Chong, W. Puffitsch, and J. Sparsg, “A
time-predictable memory network-on-chip,” in Proceedings of the 14th
International Workshop on Worst-Case Execution Time Analysis (WCET
2014), Madrid, Spain, July 2014, pp. 53-62.

S. Goossens, J. Kuijsten, B. Akesson, and K. Goossens, “A reconfig-
urable real-time SDRAM controller for mixed time-criticality systems,”
in Hardware/Software Codesign and System Synthesis (CODES+ISSS),
2013 International Conference on, Sept 2013, pp. 1-10.

J. Whitham, R. Davis, N. Audsley, S. Altmeyer, and C. Maiza, “Investi-
gation of scratchpad memory for preemptive multitasking,” in Real-Time
Systems Symposium (RTSS), 2012 IEEE 33rd, Dec 2012, pp. 3—13.

C. Lattner and V. S. Adve, “LLVM: A compilation framework
for lifelong program analysis & transformation,” in International
Symposium on Code Generation and Optimization (CGO’04). 1EEE
Computer Society, 2004, pp. 75-88.

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

P. Puschner, D. Prokesch, B. Huber, J. Knoop, S. Hepp, and G. Gebhard,
“The T-CREST approach of compiler and WCET-analysis integration,”
in 9th Workshop on Software Technologies for Future Embedded and
Ubigquitious Systems (SEUS 2013), 2013, pp. 33-40.

S. Hepp and F. Brandner, “Splitting functions into single-entry regions,”
in Proceedings of the 2014 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, ser. CASES ’14.
New York, NY, USA: ACM, 2014, pp. 17:1-17:10.

D. Prokesch, S. Hepp, and P. Puschner, “A generator for time-predictable
code,” in Proceedings of the 17th IEEE Symposium on Real-time
Distributed Computing (ISORC 2015). Aukland, New Zealand: IEEE,
April 2015.

R. Heckmann and C. Ferdinand, “Worst-case execution time prediction
by static program analysis,” AbsInt Angewandte Informatik GmbH,
Tech. Rep., [Online, last accessed November 2013].

DTU, “D 2.1 software simulator of patmos,” T-CREST: http://www.
t-crest.org/page/results, Tech. Rep., 2012.

M. Schoeberl, F. Brandner, S. Hepp, W. Puffitsch, and D. Prokesch,
“Patmos reference handbook,” Tech. Rep., 2014.

A. Baldovin, E. Mezzetti, and T. Vardanega, “A time-composable
operating system,” in [2th International Workshop on Worst-Case
Execution Time Analysis, WCET 2012, July 10, 2012, Pisa, Italy,
ser. OASICS, T. Vardanega, Ed., vol. 23. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2012, pp. 69-80.

J. Delange and L. Lec, “POK, an ARINC653-compliant operating
system released under the BSD license,” in I3th Real-Time Linux
Workshop, vol. 10, 2011.

M. Ziccardi, M. Schoeberl, and T. Vardanega, “A time-composable
operating system for the Patmos processor,” in The 30th ACM/SIGAPP
Symposium On Applied Computing, Embedded Systems Track.
Salamanca, Spain.: ACM Press, April 13-17 2015.

L. Pezzarossa, ‘“Hardware Accelerators in Network-on-Chip Based
Multi-Core Platforms,” Master’s thesis, Technical University of Den-
mark, Dept. of Applied Mathematics and Computer Science, 2014.

L. Pezzarossa, R. B. Sgrensen, M. Schoeberl, and J. Sparsg, “Interfacing
hardware accelerators to a time-division multiplexing network-on-chip,”
in Proc. of the 1st Nordic Circuits and Systems Conference (NORCAS
2015). Oslo, Norway: IEEE, October 2015.

H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer, “The time-
triggered ethernet (TTE) design,” in ISORC ’05: Proceedings of the
Eighth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC’05). Washington, DC, USA: IEEE
Computer Society, 2005, pp. 22-33.

M. Schoeberl, R. B. Sgrensen, and J. Sparsg, “Models of communication
for multicore processors,” in Proceedings of the 11th Workshop on
Software Technologies for Embedded and Ubiquitous Systems (SEUS
2015). Aukland, New Zealand: IEEE, April 2015, pp. 44-51.

https://github.com/t-crest
http://www.t-crest.org/page/results
http://www.t-crest.org/page/results

