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Abstract
Calling-context profiles and dynamic metrics at the bytecode level
are important for profiling, workload characterization, program
comprehension, and reverse engineering. Prevailing tools for col-
lecting calling-context profiles or dynamic bytecode metrics often
provide only incomplete information or suffer from limited com-
patibility with standard JVMs. However, completeness and accu-
racy of the profiles is essential for tasks such as workload charac-
terization, and compatibility with standard JVMs is important to
ensure that complex workloads can be executed. In this paper, we
present the design and implementation of JP2, a new tool that pro-
files both the inter- and intra-procedural control flow of workloads
on standard JVMs. JP2 produces calling-context profiles preserv-
ing callsite information, as well as execution statistics at the level of
individual basic blocks of code. JP2 is complemented with scripts
that compute various dynamic bytecode metrics from the profiles.
As a case-study and tutorial on the use of JP2, we use it for cross-
profiling for an embedded Java processor.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Measurement techniques; D.2.8 [Software Engineering]:
Metrics—Performance measures; B.8.2 [Performance and Relia-
bility]: Performance Analysis and Design Aids

General Terms Measurement, Performance

Keywords Calling Context Tree, bytecode instrumentation, Java
Virtual Machine, cross-profiling

1. Introduction
The availability of comprehensive, calling-context sensitive dy-
namic metrics helps improve correctness and speed of software en-
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gineering tasks such as program comprehension and reverse engi-
neering [26]. Furthermore, characterization of Java workloads re-
quires exact statistics about the executed bytecodes representing
overall program execution. In addition, many code optimization
tasks benefit from detailed profiling information.

While there is undoubtedly need for profiles that capture over-
all program execution on any standard, state-of-the art Java Virtual
Machine (JVM) and represent both the inter- and intra-procedural
control flow, available profiling tools for the JVM produce only in-
complete information for the aforementioned tasks. Furthermore,
they either incur prohibitive overhead (both in terms of execution
time and space needed for the profiles in memory or on secondary
storage) or require a special, modified JVM. For instance, the dy-
namic metrics collection tool *J [19], which has been used for char-
acterizing the SPEC JVM98 benchmarks,1 incurs excessive over-
head and is hardly applicable to recent, more complex Java work-
loads such as the DaCapo benchmarks [11]. A large body of related
work on profiling therefore focuses on sampling techniques that
can be useful for detecting hotspots and performance bottlenecks in
programs, but fail to give a complete and accurate view of overall
program execution [3, 6, 34, 35]. Profiling frameworks such as the
Arnold/Ryder framework for efficient sampling [3] or the concur-
rent dynamic-analysis framework of Ha et al. [20] rely on modifica-
tions of research VMs such as the Jikes RVM [1] and are not avail-
able on production JVMs such as Oracle’s HotSpot VM. While the
calling-context profiler JP presented in prior work [5, 8, 24] is avail-
able for production JVMs, it lacks support for intra-procedural pro-
filing and makes use of several fragile instrumentation techniques
that fail on some recent production JVMs.

In this paper we present JP2, a new profiler that produces com-
plete and accurate calling-context profiles on production JVMs. In
such a calling-context profile individual calls are distinguished by
the context they occur in, i.e., by the entire call stack that led to the
call. (See Section 2 for an example.) In contrast to the profiles gen-
erated by the former profiler JP, the profiles produced by JP2 keep
track of different callsites and thus directly reflect the call stack.
Furthermore, JP2 provides exact execution statistics for each basic
block of code. The instrumentation applied by JP2 to collect these

1 See http://www.spec.org/jvm98/.
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profiles avoids structural modifications of classfiles as much as pos-
sible in order to achieve compatibility with production JVMs.

Completeness of the profile means that after an initial JVM
bootstrapping phase (which ends with the invocation of the appli-
cation’s main method), the invocation of every method2 is profiled.
This definition of profile completeness implies that invocations of
native methods from bytecode as well as call-backs from native
code into bytecode need to be tracked as well. Furthermore, certain
bytecodes like instanceof or new may trigger method invocations
to load or initialize a class. These implicit invocations also have
to be tracked. Accuracy of the profile means that it faithfully rep-
resents program execution and implies, for example, that method
invocation counters and callsite information are correctly tracked.3

The intra-procedural control flow is provided for each non-native
method; for each basic block, an execution counter is kept. JP2
supports pluggable basic block analysis algorithms [8].

The resulting profile is represented as a single Calling Context
Tree (CCT) [2] for all threads executing in the JVM. JP2 uses a
thread-safe, non-blocking data structure to store the CCT at run-
time. This data structure has been tuned to minimize the number
of allocated objects. For each calling-context, only two objects are
allocated: one object representing the calling-context as a node in
the CCT, and one array keeping track of the execution counts of
each basic block in the corresponding method.

JP2 offers several plugins to serialize the CCT upon program
termination. The plugin used in this paper stores the CCT in an
XML format. Together with the stored classfiles, converted to
XML by the ASM bytecode engineering library,4 various dynamic
metrics can be computed using XQuery [12] scripts by cross-
referencing between CCT and classfiles.

To show the versatility of our approach and as a tutorial for com-
puting dynamic metrics with the help of JP2 and XQuery, we use
JP2 for cross-profiling embedded Java applications [9, 10]. That is,
we illustrate XQuery scripts that take the profile produced in any
host environment on any standard JVM and estimate the CPU cy-
cles the same program run would consume on an embedded Java
processor that serves as cross-profiling target. In this example, we
exploit both the intra-procedural and the inter-procedural informa-
tion conveyed in the profile.

The original, scientific contributions of this paper are four-fold:

1. We discuss the instrumentation performed by JP2.

2. We explain the thread-safe, non-blocking data structure em-
ployed by JP2.

3. We illustrate the use of XQuery scripts to compute dynamic
metrics from JP2’s output. Cross-profiling for an embedded
Java processor serves us as a case study.

4. We present a detailed evaluation of profiling overhead with
the DaCapo benchmarks, exploring the different sources of
overhead.

JP2 is Open-Source, licensed under the GNU General Public
License. It requires JDK 1.6 or higher (if native-method prefixing
is enabled) and has been tested with different versions of Oracle’s
JDK 1.6 under Linux, Mac OS X, and Windows. The profiler
and associated tools are available for download from the project’s
website:

http://jp-profiler.origo.ethz.ch/

2 In this paper ‘method’ stands for ‘method or constructor.’
3 For call-backs from native code into bytecode, callsite information is not
available, but must be denoted by a special value (e.g., −1).
4 See http://asm.ow2.org/.

An initial paper on JP2 has been previously presented at the
ByteCode’11 workshop [27]. However, our previous work consid-
ered neither intra-procedural profiling at the basic block level, nor
thread-safety of the CCT data structure, nor the computation of dy-
namic metrics with XQuery scripts, nor a detailed analysis of the
sources of overhead.

This paper is structured as follows: First, Section 2 describes the
instrumentation scheme applied by JP2, before Section 3 provides
details on the thread-safe, non-blocking data structure used. Next,
Section 4 briefly discusses how profiles are serialized. Section 5
presents an extensive case study on using JP2 and XQuery for
cross-profiling an embedded Java processor. Section 6 evaluates
the performance of JP2 and its various features. Finally, Section 7
discusses related work, before Section 8 concludes.

2. Instrumentation
In this section, we discuss the instrumentation scheme applied by
JP2. For illustration, let us consider the example class Demo shown
in Figure 1. While simple in nature, the example serves to illustrate
several interesting cases, including a polymorphic callsite. In the
example, the BP comments specify the bytecode positions5 of
callsites in the compiled bytecode.

A schematic representation of the CCT corresponding to one
execution of the main method is shown in Figure 2. For each
node in the CCT, we store the method identifier, the bytecode
position of the callsite, the number of method invocations, and
the basic-block execution counts. As we can see in Figure 2, the
root node has the (artificial) bytecode position −1, since it is in-
voked upon JVM startup. At bytecode position 16 in the method
Demo.sumAreas(Shape[]), there is a polymorphic callsite tar-
geting the methods Composite.area() and Square.area(), respec-
tively, which are represented by two distinct CCT nodes. At that
callsite, method Square.area() is dynamically invoked twice, and
the execution statistics for these two method executions are stored
in the same CCT node, since they occur in the same (callsite-aware)
calling-context.

In the example in Figure 1, method Demo.sumAreas(Shape[])
has four basic blocks that are executed one, four, one, and three
times, respectively. Note that the default basic block analysis algo-
rithm used by JP2 generates rather large basic blocks [8], as method
invocations do not necessarily end basic block. The corresponding
control flow graph is related to the factored control flow graph [15].

Figure 3 shows the instrumentation that JP2 inserts into the
method Demo.sumAreas(Shape[]). While JP2 operates at the
bytecode level, for better readability we illustrate the instrumen-
tation in terms of the corresponding Java code.

For each thread, the current CCT node and the bytecode po-
sition of the last (potential) callsite are kept in thread-local vari-
ables that are updated upon method entry and completion. These
thread-local variables are accessed through the four static methods
JP2Runtime.getCurrentNode(), JP2Runtime.setCurrentNode(),
JP2Runtime.getBP(), and JP2Runtime.setBP(). For perfor-
mance reasons, the thread-local variables are implemented as in-
stance fields that have been directly added to the java.lang.Thread
class. This is one of the few exceptional cases where JP2 modifies
the structure of a classfile.

CCT nodes are represented by instances of type CCTNode.
This type offers the methods profileCall and profileBasicBlock.
The method profileCall takes a method identifier, the bytecode po-
sition of the callsite, and the number of basic blocks in the method
as arguments and sets the current node to the callee. String con-
stants stored in the classfile constant pools serve as method iden-
tifiers. The method profileCall returns the CCTNode instance rep-

5 The first instruction in a method has position BP = 1.
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root

Demo.main(String[])1
[1]

Square.<init>(float)1
[1]

Object.<init>()1
[1]
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@
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Figure 2. Calling context tree produced when executing Demo.main (cf. Figure 1). Each node contains the number of method invoca-
tions (m) and the execution counts of the method’s basic blocks ([n1,n2,...]) in a given calling context. The edges are labelled by the bytecode
position at which respective call was made (@p).

resenting the corresponding callee node or creates the node if it
does not yet exist. An invocation of profileCall is inserted upon
each method entry to find (or create) the CCT node representing
the current callee. Method profileBasicBlock takes the index of
a basic block (which is currently being entered) and increments
the corresponding counter in the CCT node.6 An invocation to
profileBasicBlock is inserted at the beginning of each basic block.
The implementation details, as far as the CCT’s runtime represen-
tation is concerned, of CCTNode will be discussed in Section 3.

Before each (potential) callsite, JP2’s instrumentation scheme
inserts a call to JP2Runtime.setBP() with the position of the byte-
code that may trigger a method invocation. Therefore, invocations
to JP2Runtime.setBP() are inserted before each invoke bytecode
as well as before bytecodes that may trigger class loading or class
initialization (e.g., instanceof, new). Hence, dynamic class loading
and the execution of class initializers are also represented correctly
in the CCT.

JP2 applies its instrumentation scheme for every non-native
method, including methods in the Java class library. It thus guaran-
tees completeness of the produced profiles. Instrumenting the Java
class library is not trivial, since both the base program being in-
strumented and the code inserted by JP2 make use of it [7, 33].
JP2 uses polymorphic bytecode instrumentation (PBI) [23] to allow
the instrumented and the original versions of the Java class library
to coexist. PBI relies on code duplication within method bodies.
Depending on the control flow, the corresponding version of the
code (either instrumented or original) is executed. A thread-local
flag indicates whether execution is at the level of the base program
or at the level of the inserted profiling code. Using PBI requires no
structural modifications of classfiles.

JP2 is a load-time instrumentation tool relying on a classfile
transformer (package java.lang.instrument). Some classes are
loaded during JVM bootstrapping before the classfile transformer
is registered. JP2 instruments these classes after bootstrapping and
redefines them. That is, JP2 relies on the class redefinition (also
known as hotswapping) feature provided by modern JVMs, such as
by Oracle’s HotSpot production VMs.

6 What is considered a basic block is configurable; in particular, instructions
that throw exceptions may or may not end a basic block, depending on the
desired level of accuracy [8].

Since native methods have no bytecode representation, JP2 uses
native method prefixing (a feature of the JVMTI7 introduced in
JDK 1.6) to wrap each native method with a non-native method
that can be instrumented. Details on this approach can be found
elsewhere [27].

3. Runtime CCT Representation
Designing a memory-efficient runtime CCT representation is cru-
cial, because the CCT can become very large, literally comprising
millions of nodes. For each CCT node, method and callsite iden-
tifiers, a method invocation counter, and an array of basic block
execution counters need to be stored; to minimize the risk of arith-
metic overflow, all counters shall be long values.

Because JP2 has to support profiling of multi-threaded appli-
cations, thread-safety of the runtime CCT representation is cru-
cial. There are several ways to achieve thread-safety: maintaining
a separate, thread-local CCT for each thread; using synchroniza-
tion upon CCT access; or using compare-and-swap (CAS) in a
thread-safe, non-blocking data structure. The first option may sig-
nificantly increase the memory footprint for multi-threaded appli-
cations. In particular, for applications using thread pools, the CCTs
of the worker threads are likely to exhibit similar structure. Fur-
thermore, there may be need for integrating the thread-local CCTs
into a shared data structure, for example, upon thread termination.
The second option avoids the replication of CCTs and is easy to
implement, but may incur high synchronization overhead. JP2 im-
plements the third option, which is more challenging but promises
to offer thread-safety in a shared CCT with less overhead than using
synchronization.

Figure 4 illustrates JP2’s implementation of the class CCTNode.
For each node n in the CCT, the nodes representing the callees
are kept in a binary search tree rooted at the field n.callees. The
fields n.callees.left and n.callees.right refer to the left respectively
right branches of this search tree. For each CCTNode instance,
the fields left and right therefore represent sibling calling con-
texts in the CCT. A unique method identifier (including the fully
qualified classname, the method name, and the method signature)
and the bytecode position of the callsite in the caller method serve

7 See http://download.oracle.com/javase/6/docs/technotes/
guides/jvmti/.
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public final class CCTNode {

private final String mid; // Method identifier
private final int bp; // Bytecode position of the callsite
private final AtomicLongArray bbs; // Execution counters for basic blocks
private volatile CCTNode left, right; // Siblings in the CCT
private volatile CCTNode callees; // Children in the CCT
private volatile long calls; // Number of method calls

private static final AtomicReferenceFieldUpdater<CCTNode, CCTNode> leftUpdater =
AtomicReferenceFieldUpdater.newUpdater(CCTNode.class, CCTNode.class, ”left”);

private static final AtomicReferenceFieldUpdater<CCTNode, CCTNode> rightUpdater =
AtomicReferenceFieldUpdater.newUpdater(CCTNode.class, CCTNode.class, ”right”);

private static final AtomicReferenceFieldUpdater<CCTNode, CCTNode> calleesUpdater =
AtomicReferenceFieldUpdater.newUpdater(CCTNode.class, CCTNode.class, ”callees”);

private static final AtomicLongFieldUpdater<CCTNode>callsUpdater =
AtomicLongFieldUpdater.newUpdater(CCTNode.class, ”calls”);

private static final CCTNode ROOT = new CCTNode(null, −1, 0);

private CCTNode(String mid, int bp, int numerOfBBs) {
this.mid = mid;
this.bp = bp;
this.bbs = new AtomicLongArray(numberOfBBs);
callsUpdater.set(this, 1);

}

public void profileBasicBlock(int bbIndex) {
bbs.incrementAndGet(bbIndex);

}

public CCTNode profileCall(String mid, int bp, int numberOfBBs) {
CCTNode n, alloc;

// Find or create CCT node. Double−check to reduce risk of creating a node that becomes garbage immediately.
if ((n = calleesUpdater.get(this)) == null) {

if (calleesUpdater.compareAndSet(this, null, (alloc = new CCTNode(mid, bp, numberOfBBs)))) return alloc;
else n = calleesUpdater.get(this);

}

int hash MID = System.identityHashCode(mid);

while (true) {
String n MID;
if ((n MID = n.mid) == mid && n.bp == bp) {

callsUpdater.incrementAndGet(n); return n;
} else if (hash MID <= System.identityHashCode(n MID)) {

CCTNode nLeft;
if ((nLeft = leftUpdater.get(n)) == null) { // Find or create CCT node

if (leftUpdater.compareAndSet(n, null, (alloc = new CCTNode(mid, bp, numberOfBBs)))) return alloc;
else n = leftUpdater.get(n);

} else {
n = nLeft;

}
} else {

CCTNode nRight;
if ((nRight = rightUpdater.get(n)) == null) { // Find or create CCT node

if (rightUpdater.compareAndSet(n, null, (alloc = new CCTNode(mid, bp, numberOfBBs)))) return alloc;
else n = rightUpdater.get(n);

} else {
n = nRight;

}
}

}
}

}

Figure 4. CCTNode, a thread-safe, non-blocking data structure using compare-and-swap (CAS).



public interface Shape { float area(); }

public class Square implements Shape {
final float a;

public Square(float a) {
super(); // BP = 2
this.a = a;

}

public float area() { return a∗a; }
}

public class Composite implements Shape {
final Shape x, y;

public Composite(Shape x, Shape y) {
super(); // BP = 2
this.x = x; this.y = y;

}

public float area() {
float a1 = x.area(); // BP = 3
float a2 = y.area(); // BP = 6
return a1 + a2;

}
}

public class Demo {
public static void main(String[] args) {

Shape s1 = new Square(2); // BP = 4
Shape s2 = new Composite(s1, s1); // BP = 10
sumAreas(new Shape[] { s1, s2, s1 }); // BP = 24

}

static float sumAreas(Shape[] ss) {
float sum = 0;
int i = 0;
while (true) {

if (i >= ss.length)
return sum;

else
sum += ss[i++].area(); // BP = 16

}
}

}

Figure 1. Example base program to be instrumented by JP2 (The
abbreviation BP stands for “bytecode position”).

as a compound key in the binary search tree. The search algo-
rithm compares keys for identity rather than for equality; this is
possible because JP2 stores method identifiers as string constants
in the classfiles’ constant pools, which are interned by the JVM.
Left/right navigation in the binary search tree relies on the keys’
identity hash codes rather than on the keys themselves. While the
binary search trees are not necessarily balanced, the use of identity
hash codes introduces some randomness that reduces the likelihood
of degeneration.

The method profileCall searches for the passed compound
key (method identifier mid and bytecode position bp) in the bi-
nary search tree representing the callees of this node. If a node
with the same key is not found, a new CCTNode instance is cre-
ated and inserted at a leaf node of the binary search tree (i.e., at a
node where the left respectively right reference is null). The node
insertion relies on CAS; if another thread inserts another node at
the same leaf position before the current thread, the CAS operation
fails and the search continues.

static float sumAreas(Shape[] ss) {
int callerBP = JP2Runtime.getBP();
CCTNode caller = JP2Runtime.getCurrentNode();
CCTNode callee =

caller.profileCall(”sumAreas(Shape[])”, callerBP, 4);
try {

callee.profileBasicBlock(0);
float sum = 0;
int i = 0;
while (true) {

callee.profileBasicBlock(1);
if (i >= ss.length) {

callee.profileBasicBlock(2);
return sum;

} else {
callee.profileBasicBlock(3);
JP2Runtime.setBP(16)
sum += ss[i++].area(); // BP = 16

}
}

} finally {
JP2Runtime.setCurrentNode(caller);
JP2Runtime.setBP(callerBP);

}
}

Figure 3. Instrumentation scheme applied by JP2 to the method
sumAreas(Shape[]) from Figure 1.

The method invocation counter is an atomic long, and the ba-
sic block execution counters are stored in an atomic long array.
The size of the array is passed to method profileCall (parameter
numberOfBBs), and in turn is passed to the CCTNode construc-
tor. The incrementAndGet operations internally rely on CAS to en-
sure thread-safety. Method profileBasicBlock takes the number of
the basic block entered (bbIndex) and increments the correspond-
ing counter in the atomic long array.

Our data structure allocates only two objects for each (callsite-
aware) calling context: an instance of type CCTNode and an
atomic long array. Atomic field updaters are used to avoid the al-
location of additional AtomicReference and AtomicLong objects.
In comparison to alternative representations that use hash tables to
keep track of callee nodes, our data structure based on binary search
trees results in reduced memory consumption (hash tables should
not be completely full to avoid too many collisions, thus wasting
some space). Furthermore, thread-safety without using any syn-
chronization would be more difficult to achieve in a data structure
based on hash tables.

4. Profile Dumping and Metrics Computation
JP2 offers a flexible plugin mechanism for profile serialization. One
or more Dumper classes can be registered at VM startup. At VM
shutdown, each dumper is passed the CCT produced by JP2; it can
then serialize it in a form suitable for offline analysis.

Currently, JP2 ships with four serialization plugins: two plug-
ins serialize profiles in a text-based format and two serialize pro-
files as XML-based calling context trees and dynamic call graphs,
respectively. Figure 5 shows the XML-based calling context tree
produced by JP2 for the Demo class shown by Figure 2. As can be
seen, JP2 gathers execution counts for both methods and individual
basic blocks. Morever, this information is distinguished by calling
context. Each callsite encountered during the program’s execution
gives rise to a new calling context.

Using an XML output format hereby enables us to rely on
off-the-shelf tools for the metric computation. In particular, in
this paper we show how one can use XQuery [12] to formulate



<callingContextTree>
<method declaringClass=”LDemo;”

name=”main” params=”[Ljava/lang/String;” return=”V”>
<executionCount>1</executionCount>
<executedInstructions>30</executedInstructions>
...
<callsite instruction=”4”>

<method declaringClass=”LSquare;”
name=”&lt;init&gt;” params=”F” return=”V”>

<executionCount>1</executionCount>
<executedInstructions>6</executedInstructions>
<callsite instruction=”2”>

...
</callsite>
...

</callsite>
<basicBlock startInstruction=”1” endInstruction=”30”>

<executionCount>1</executionCount>
</basicBlock>

</method>
</callingContextTree>

Figure 5. Excerpt from the XML-based calling-context-tree pro-
file (cf. Figure 2) for the Demo class from Figure 1.

metrics as queries with respect to the benchmark’s profile. As
JP2’s profiles do not always contain all the information necessary
to compute some metrics, in our case study (cf. Section 5) we
make use of another of JP2’s features, namely its ability to dump
all loaded classes. After converting the classes thus dumped into
an XML representation, using a converter shipped with the well-
known ASM toolkit,8 we are now able to access all necessary
information by cross-referencing calling context tree and classes
using XQuery.

The resource consumption of such an analysis, both in terms of
time and space, depends very much on the XQuery processor used.
When dealing with large input documents like our XML-based
calling-context-tree profiles, whose size may exceed main memory,
it thus becomes crucial to use a processor capable of streaming the
input document. This of course requires the analysis to be written
in such a way as not to require random access; for most analyses
we encountered in practice, this is the case.

5. Case Study: Cross-Profiling
To illustrate how to employ JP2 and XQuery to compute custom
metrics, we have conducted a case study: cross-profiling [9] for the
JOP embedded Java processor [28]. JOP is a Java processor imple-
mented in an FPGA and intended for real-time systems. For such
systems, it is important that the worst-case execution time (WCET)
of tasks is known. JOP’s design thus has a simple timing model to
facilitate WCET analysis [30]. In this case study, we will turn the
JOP timing model into a query that estimates the number of cycles
JOP takes on a selection of benchmarks.

For the case study we use JP2 to profile the six core bench-
marks9 of the JemBench suite [29] for embedded Java. All pro-
files have been gathered on a desktop Intel Core 2 Duo with 2GiB
of RAM running on the Java HotSpot Server VM with JRE build
1.6.0 24-b07. The JOP processor only acts as a baseline for the
profiles’ accurary.

Each of these benchmarks was run with a fixed workload us-
ing the appropriate harness: fixed.LoopAes, . . . , fixed.LoopUdpIp.
While JemBench also offers adaptive workloads, using fixed work-

8 See http://asm.ow2.org/asm33/javadoc/user/org/objectweb/
asm/xml/Processor.
9 JemBench also includes several micro-benchmarks covering, e.g., integer
arithmetic; these have not been studied in this case study.

loads is crucial when working with JP2; the overhead inevitably
incurred by profiling must not affect the workload.

For benchmarking in general and for cross-profiling in particu-
lar, it is necessary to exclude the code executed during JVM startup
and shutdown from the measurements. For this purpose, JP2 offers
the option to only profile code in the dynamic extent of the pro-
gram’s main method.10 While code outside the dynamic extent of
the main method still contributes nodes to the CCT, the nodes’ ex-
ecution count is fixed to 0. This property makes it easy to exclude
these nodes after the actual profiling with XQuery:

declare variable $benchmark−nodes :=
$cct//cct:method[cct:executionCount > 0];

Depending on the benchmark, this excludes between 3,202 and
3,210 nodes from the CCT.

5.1 XQuery for Metric Computation
Using XQuery to estimate the number of cycles needed by JOP to
execute each of the benchmarks is conceptually straight-forward:

sum(
for $n in $benchmark−nodes
for $i in 1 to $n/cct:basicBlock[last()]/@endInstruction
return jp2:execution−count($n, $i) ∗

jop:cycle−count($n, $i))

Hereby, the execution count of the i-th instruction can be com-
puted from the CCT alone, provided JP2 was asked to count basic-
block executions as well:

declare function jp2:execution−count($m, $i) {
$m/cct:basicBlock[@startInstruction <= $i

and $i <= @endInstruction]/cct:executionCount
};

Computing the number of cycles it takes to execute said instruc-
tion on the JOP processor, however, makes it necessary to consult
the bytecode instructions of the method in question:

declare function jop:cycle−count($m, $i) {
let $body :=

asm:instructions($m/jp2:as−asm−method(.))
let $instruction := $body[$i]
return typeswitch($instruction)

case element(NOP) return 1
case element(ACONST NULL) return 1
...

};

While faithful for the vast majority of instructions like nop
and aconst null, the XML representation produced by ASM does
introduce a minor imprecision; shorthand instructions like aload 3
are automatically converted to their more general forms like aload.
For most uses of ASM this simplification is harmless and often
quite convenient. The JOP processor, however, executes the more
general instructions slightly slower; thus, the distinction between
aload and its shorthands is important. We have addressed this
problem by making assumptions about the Java compiler used to
compile the code: The optimistic assumption is that whenever the
compiler can use the shorthand form of an instruction, it does. The
pessimistic assumption is that the compiler always uses the general
form of instructions:

...
case element(ALOAD) return

10 This option should be used whenever the benchmark harness in question
does not offer a dedicated callback mechanism suitable for JP2 [27].

http://asm.ow2.org/asm33/javadoc/user/org/objectweb/asm/xml/Processor
http://asm.ow2.org/asm33/javadoc/user/org/objectweb/asm/xml/Processor


if ($instruction/@var <= 3 and
$optimistic−assumption) then 1

else 2
...

A similar problem arises for the ldc instruction, which also ex-
ists in a “wide” form , ldc w; both load a value from a constant pool,
but the latter, which accepts a wider index into the constant pool,
executes slightly slower on JOP. Unfortunately, the XML represen-
tation produced by ASM not only hides the differences between the
two forms, but it also completely hides the constant pool. It is thus
impossible to reconstruct the actual instruction. We therefore again
resort to both an optimistic and a pessimistic assumption. That be-
ing said, a study of real-world programs has shown that the short-
hands are commonly used [16]; thus, the optimistic assumption is
much closer to reality.

But even if assumptions must be made, for most instructions
determining the cycle count is straight-forward. For method invo-
cations and returns, however, this proves to be more challenging.
The reason is that JOP has to first load the entire target method be-
fore control can be transferred. Therefore, the number of cycles it
takes JOP to execute a method invocation or return has to include
the number of cycles it takes to load said target method. But given
the CCT, the target method of a method return is easily obtained:

...
case element(RETURN) return 21 +

max((0, $jop:read−wait−states − 3)) +
max((0, jop:load−cycles($method/../..) −

$jop:hidden−load−cycles))
...

Similar to method returns, method invocations require a new
method to be loaded. In the case of dynamically-dispatched method
calls, however, the average number of load cycles needs to be
computed, as there may be several target methods for a callsite:

...
case element(INVOKEVIRTUAL) return 98 +

2 ∗ $local:read−wait−states +
max((0, $jop:read−wait−states − 3)) +
max((0, $jop:read−wait−states − 2)) +
max((0, jop:avg−target−load−cycles($method, $i) −

$jop:invoke−hidden−load−cycles))
...

By querying the CCT, this is easily done, which illustrates
how JP2’s callsite awareness can be used to good effect in the
computation of dynamic metrics:

declare function local:avg−target−load−cycles($n, $i) {
let $targets :=

$n/cct:callsite[@instruction = $i]/cct:method
let $execs := sum($targets/cct:executionCount)
return sum($targets/(jop:load−cycles(.) ∗

cct:executionCount div $execs))
};

To finish the case study, we only have to fill in the remain-
ing gap, namely the function that computes the number of cycles
needed to load a method under one of the two idealized cache
regimes, namely one that always hits and one that always misses.

declare function jop:load−cycles($method) {
if ($cache−hits) then 4
else 6 +

(ceiling(jop:bytecode−length($method) div 4) + 1) ∗
($jop:read−wait−states + 1)

};

JP2 (Pessimistic) JP2 (Optimistic)

Benchmark miss hit miss hit
JOP

Hardware

Kfl 72.28 51.94 66.88 48.49 48.24
Lift 61.08 52.90 56.22 49.26 48.42

UdpIp 140.46 113.64 131.44 108.16 108.60
Matrix 75.31 74.83 70.89 70.48 69.42
Queens 262.21 209.51 236.22 197.21 199.32

AES 566.67 513.30 556.19 509.10 454.62

Table 1. Comparison of cross-profiling and hardware execution
time (in million clock cycles). Cross-profiling was done both under
pessimistic and optimistic assumptions about the Java compiler and
for one of two idealized instruction cache regimes (cf Section 5.1).

As the number of cycles it takes JOP to load a method de-
pends on the method’s size, the bytecode length must be computed.
Again, the XML representation produced by ASM hides this de-
tail, so we approximate the method length both under optimistic
and pessimistic assumptions about the compiler’s ability to select
short instructions.

5.2 Cross-Profiling Accuracy
Table 5.2 shows the execution time of the benchmarks in million
clock cycles, both when executed on the physical JOP hardware
and when obtained by cross-profiling with JP2. As can be seen,
the cross-profiling results that always assume a instruction-cache
hit are remarkably close to the number of cycles the JOP hardware
takes on the benchmarks, regardless of whether one makes opti-
mistic or pessimistic assumptions about the Java compiler’s ability
to select the shortest instructions. This is a testimony to the effec-
tiveness of JOP’s instruction cache.

What is furthermore interesting is that the effect of a Java
compiler not using shorthand instructions is quite noticeable on
a hardware implementation like JOP. This effect is even more
pronounced when the instruction cache is effectively disabled, i.e.,
if it always misses, as not using shorthands leads to longer methods
and thus to more cycles spend on method invocations and returns.

In general, the accuracy of the simple cross-profiler developed
in the section is already quite good. The only benchmark for which
the number of cycles taken is significantly overestimated—even
assuming a perfect instruction cache—is AES. This is because JOP
implements arithmetic operations on 64-bit operands in software;
only rough estimates have been made about the cycle counts of
these operations for the purpose of this case study. More accurate
estimates could be made but are beyond the scope of this tutorial.

Nevertheless, the case study helped to uncover a performance
bottleneck in the current JOP implementation: 64-bit multiplica-
tion. JOP spends two thirds of its execution time in AES perform-
ing multiplications in the runtime’s pseudo-random number gen-
erator (Random.nextInt()). In future work, we will investigate if
this is an issue only on JOP or if other Java processors also spend a
considerable time in that single method. In the latter case, this is an
indication that the AES benchmark is not well designed and needs
to be updated to represent a more varied workload.

6. Performance Evaluation
To assess the performance overhead incurred by the various fea-
tures of JP2, we have conducted a series of experiments. In all
these experiments, we have used the latest release (9.12, nicknamed
“Bach”) of the DaCapo benchmark suite [11]. Of the suite’s 14
benchmarks with default workload size, tomcat has been excluded
from our experiments as it always exhibits a StackOverflowError.
While this error is caught and does not prevent the benchmark
from completing normally, it perturbs our measurements: The CCT



# Nodes

Benchmark CCT + Callsites + Natives
Avg.

BB size

avrora 93,756 187,148 209,391 5.94
batik 29,843 567,288 632,860 7.37

eclipse 13,667,546 20,941,526 21,709,963 5.24
fop 263,951 602,522 667,264 4.84
h2 142,569 328,960 354,491 4.49

jython 10,481,382 21,147,785 23,167,434 5.18
luindex 77,963 235,326 250,349 5.74
lusearch 56,927 91,302 96,443 6.12

pmd 3,364,241 4,362,234 4,602,711 5.05
sunflow 81,264 348,723 385,653 9.38

tradebeans 4,045,407 6,673,170 7,445,191 5.43
tradesoap 4,299,644 7,060,342 7,885,183 5.45

xalan 224,665 387,423 418,536 10.74

Table 2. The number of CCT nodes produced by JP2 for the vari-
ous DaCapo 9.12 benchmarks [11] for different feature-sets. (When
using the basic-block profiling feature, the average size of basic
blocks is also given.)

always grows in proportion to the configured stack size. Please
note that this error is not caused by JP2; it is a known issue with
the benchmark itself (SourceForge issue ID: 2934521). All bench-
marks have been run on a Dell PowerEdge M605 with 64GiB of
RAM with two 2.6GHz AMD six-core Opteron processors (for a
total of 12 cores) running on the Java HotSpot Server VM with
JRE build 1.6.0 23-b05. 12GiB of heap have been made available
to the benchmarks. All performance measurements are taken for 5
iterations, whereas statistics on the number of CCT nodes are taken
for the first iteration only.

Depending on which features of JP2 are used during profiling,
the number of nodes in the CCT differs. Table 2 gives details on the
CCTs’ sizes for the 13 benchmarks chosen for our experiments. As
can be seen, callsite awareness significantly increases the number
of nodes in the CCT; without this feature subtrees are conflated.
Using native-method prefixing in addition increases the CCTs’
sizes further, albeit not as much. The average size of the basic
blocks is computed from the total number of bytecode instructions
executed divided by the numbers of basic blocks executed; in other
words, the basic block sizes are weighted by the basic blocks’
dynamic execution count.

Table 3 and Figure 6 jointly depict the runtime overhead caused
by JP2 with different features enabled. As can be seen, using a
callsite-aware JP2 does not incur a significantly higher overhead
than using JP2 without callsite awareness, despite the fact that the
profiles produced contain many more nodes (cf. Table 2). Although
a larger number of nodes needs to be kept in memory, this in
itself has little effect on performance, provided that the heap is
large enough. (12GiB proved to be more than sufficient in our
experiments.) For a few benchmarks (lusearch and sunflow), whose
threads all perform the same set of kernel tasks, performance even
improves slightly as an increase in the overall number of nodes
reduces the risk of contention when updating a node. Also, the
calls to setBP() themselves only incur moderate overhead, making
callsite awareness a feature that, on average, incurs little more
overhead than JP2 without callsite awareness during the actual
profiling. Offline processing of the much larger CCTs is a different
matter, though.

In contrast to callsite awareness, native-method awareness does
incur significant overhead, even though its effect on the generated
CCTs is relatively minor (cf. Table 2); enabling native-method
awareness on average adds only 8.8% more nodes to the results.

The last feature we consider, introduced with the newest version
of JP2, is the use of basic-block execution counters. It incurs over-

head comparable to native-method awareness. What is interesting
here is that benchmarks with a large average basic-block size do
not necessarily incur less overhead than benchmarks with a smaller
one, the sunflow benchmark being the prime example of this ef-
fect. The reason for the lack of strong correlation is that Table 2 re-
ports the average basic-block sizes in bytecode instructions, some
of which are much more complex to execute than others. The sun-
flow benchmark (a raytracer) in particular performs primarily less
complex, arithmetic operations. Therefore, the relative overhead of
maintaining the basic block execution count is larger for sunflow.

7. Related Work
Much related work exists in the area of profiling, even if one
considers profilers for the Java Virtual Machine only.

In 2003, Dufour et al. presented *J [19], a profiler specifi-
cally designed for the collection of VM-independent dynamic met-
rics [18]. However, *J relies on the now obsolete JVMPI [21], usage
of which incurs high measurement overhead. JP2 improves not only
upon *J in terms of overhead, but also does not rely on JVMPI any-
more; it is thus more portable. *J is accompanied by a dedicated
trace-analyzer framework. In contrast, the approach advocated in
this paper uses an off-the-shelf query language, namely XQuery, to
compute dynamic metrics.

To reduce the overhead of profiling, several approaches com-
bine sampling with stack inspection [4, 34]. Such approaches, how-
ever, cannot match the accuracy of the profiles produced with JP2.
In particular, recent work by Mytkowicz et al. [25] highlights the
problems of such an approach. Attempts to further reduce overhead
by a technique called “adaptive bursting” [35] have been made. Re-
gardless, by their design all sampling-based approaches cannot pro-
duce complete CCTs.

Another approach that trades accuracy for reduced overhead is
to compute a probabilistic calling context (PCC) only [14]. Upon
each method call, a probabilistically unique value is updated that
represents the current calling context. Due to the probabilistic na-
ture of this approach, reconstruction of the CCT from these values
is not always possible, although recent work has shown promising
results [13]. To the best of our knowledge the PPC approach has
so far only been implemented by means of a modified JVM; no
portable implementation does exist yet.

Another approach relying on a modified JVM is employed by
the NetBeans Profiler.11 This profiler uses Oracle’s JFluid profiling
technology [17] for dynamic bytecode instrumentation and code
hotswapping. Profiling can thus be enabled and disabled dynami-
cally. Furthermore, it can be restricted to subsets of a program. In
contrast, JP2 always instruments the entire program and also pro-
duces a CCT reflecting the program’s entire execution. However,
JP2 also offers an option to easily restrict the actual measurements
to only parts of the execution (cf. Section 5).

8. Conclusions
Complete and accurate inter- and intra-procedural profiling of Java
applications is important for workload characterization and can
support various software engineering tasks such as program opti-
mization, program comprehension, and reverse engineering. In this
paper we have presented the new JP2 profiler that can produce such
profiles on production JVMs. The CCTs thereby produced by JP2
can distinguish between callsites and provide execution statistics
at the level of individual basic blocks of code. JP2 uses bytecode
instrumentation techniques and avoids structural modifications of
classfiles as much as possible to ensure compatibility with state-
of-the-art JVMs. The profiler relies on a special, thread-safe, non-

11 See http://profiler.netbeans.org/.

http://profiler.netbeans.org/


No profiling CCT (no callsites) + Callsites + Natives + Basic Blocks

Benchmark Time [s] Time [s] Overhead Time [s] Overhead Time [s] Overhead Time [s] Overhead

avrora 3.84 33.58 8.74 x 35.32 9.19 x 73.96 19.26 x 115.86 30.17 x
batik 2.39 8.66 3.62 x 7.98 4.54 x 23.39 9.78 x 46.09 19.28 x

eclipse 28.66 135.81 4.73 x 151.16 5.51 x 386.98 13.51 x 743.71 25.94 x
fop 1.15 7.31 6.34 x 7.21 8.31 x 18.14 15.77 x 35.71 31.04 x
h2 7.79 82.86 10.63 x 92.59 11.91 x 291.88 37.46 x 554.25 71.14 x

jython 6.43 64.45 10.02 x 102.92 17.38 x 438.07 68.12 x 607.32 94.44 x
luindex 1.22 11.72 9.60 x 11.95 10.14 x 34.88 28.59 x 72.98 59.81 x
lusearch 1.25 27.55 22.04 x 24.48 19.16 x 34.85 27.88 x 71.21 56.96 x

pmd 2.91 11.29 3.87 x 12.31 4.27 x 22.61 7.76 x 35.81 12.31 x
sunflow 1.67 68.78 41.18 x 54.31 31.06 x 106.49 63.76 x 170.91 102.34 x

tradebeans 7.77 52.21 6.71 x 66.47 8.41 x 128.41 16.52 x 131.69 16.94 x
tradesoap 7.31 37.67 5.15 x 35.55 5.01 x 66.96 9.16 x 120.63 16.52 x

xalan 1.42 16.16 11.38 x 20.47 14.41 x 27.21 19.16 x 33.22 23.39 x
Geo. mean 3.42 29.41 8.55 x 33.05 9.63 x 70.50 20.55 x 117.35 34.21 x

Table 3. Runtime overhead incurred by JP2 with different features for the DaCapo 9.12 benchmarks [11]. The arithmetic mean of 5 runs in
the same JVM process (separately started for each benchmark) is shown for each benchmark.

av
ro

ra

bat
ik

ec
lip

se fo
p h2

jy
th

on

lu
in

dex

lu
se

ar
ch

pm
d

su
nflow

tr
ad

eb
ea

ns

tr
ad

es
oa

p
xa

la
n

Geo
. m

ea
n

20 x

40 x

60 x

80 x

100 x

120 x

140 x

O
ve

rh
ea

d

CCT + Callsites + Natives + Basic Blocks

Figure 6. Runtime overhead incurred by JP2 with different features for the DaCapo 9.12 benchmarks [11]. The arithmetic mean ± sample
standard deviation of 5 runs is shown for each benchmark.

blocking data structure to represent the profile at runtime, integrat-
ing the activities of all threads into a single profile.

JP2 supports custom serialization plugins from whose output
various dynamic metrics can be derived. Two of these serialization
plugins output the profiles in XML format. This allows researchers
to concisely express their metrics in terms of XQuery [12]; metric
computation is then done by an off-the-shelf XQuery processor. We
demonstrate the convenience and versatility of this workflow with
a case-study on cross-profiling for an embedded Java processor.

Depending on the features used, JP2 incurs overhead of a fac-
tor between 8.55 x and 34.21 x (geometric mean) for the DaCapo
benchmarks. The three significant sources of this overhead are the
generation of a callsite-aware CCT, the use of native method prefix-
ing, and intra-procedural profiling at the basic block level; all three
features are optional and can be disabled in case the respective in-
formation is not needed to compute the desired metrics.

JP2 is Open Source and available to the public under the GNU
General Public License. It is currently being employed successfully
in a project that aims at characterizing and comparing Java and
Scala workloads [31, 32].

Regarding limitations, JP2 currently does not distinguish be-
tween different classloaders. That is, if a polymorphic callsite in-
vokes two different target methods with the same name and sig-
nature that are defined in distinct classes bearing the same name
but defined by distinct classloaders, the two targets will be repre-
sented by the same CCT node. Such a situation may yield corrupt
profiles, but was not encountered in practice so far. Furthermore,
the JVM specification [22] imposes several restrictions on class
files that may impair any tool relying on bytecode instrumentation
techniques. For instance, method bodies must not exceed 216 bytes
in length (indices in exception tables, line number tables, and lo-
cal variable tables are unsigned 16-bit values). Beyond overcoming
the above limitations, future work consists of adding the option to
compress recursive cycles in the CCT in order to make the CCT’s
in-memory representation more space-efficient.
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