
TIME PREDICTABLE CPU AND DMA SHARED MEMORY ACCESS

∗ Christof Pitter

Institute of Computer Engineering
Vienna University of Technology, Austria

cpitter@mail.tuwien.ac.at

Martin Schoeberl

Institute of Computer Engineering
Vienna University of Technology, Austria

mschoebe@mail.tuwien.ac.at

ABSTRACT

In this paper, we propose a first step towards a time pre-
dictable computer architecture for single-chip multipro-
cessing (CMP). CMP is the actual trend in server and desk-
top systems. CMP is even considered for embedded real-
time systems, where worst-case execution time (WCET)
estimates are of primary importance. We attack the prob-
lem of WCET analysis for several processing units access-
ing a shared resource (the main memory) by support from
the hardware. In this paper, we combine a time predictable
Java processor and a direct memory access (DMA) unit
with a regular access pattern (VGA controller). We an-
alyze and evaluate different arbitration schemes with re-
spect to schedulability analysis and WCET analysis. We
also implement the various combinations in an FPGA. An
FPGA is the ideal platform to verify the different concepts
and evaluate the results by running applications with in-
dustrial background in real hardware.

1. INTRODUCTION

This paper presents a hard real-time system consisting of
a hard real-time application running on a time predictable
Java Optimized Processor (JOP) [1] and an additionally
direct memory access (DMA) unit with a regular access
pattern. This unit is represented by a video graphics array
(VGA) controller. Both the CPU and the DMA unit share
the main memory of the system. Meeting the deadlines
of the tasks of the real-time application is of utmost im-
portance. Therefore, the task set of the system requires a
timing validation by schedulability analysis.

A real-time computer system has to produce logical
correct results within a specified period of time. If a cor-
rect result of a computation is late, the result is considered
useless. Such real-time systems (RTS) or safety-critical
systems have to handle concurrent tasks, such as commu-
nication, calculating values for a control loop, user inter-
face and supervision in embedded systems. A natural way
to handle these concurrent jobs is to split them up into in-
dividual tasks. Every hard real-time system contains at
least one so-called hard real-time task. A task is classified
a hard real-time task when a missed deadline may cause

∗The TPCM-project received support from the Austrian FIT-IT SoC
initiative, funded by the Austrian Ministry for Traffic, Innovation and
Technology (BMVIT) and managed by the Austrian Research Promotion
Agency (FFG) under grant 813039.

a critical failure of the system. Non safety-critical tasks
in such a system are soft real-time tasks. If a deadline is
missed, the system will still produce correct results [2] but
with degraded service.

Safety-critical systems must be predictable in the time
domain. It is of utmost importance to be able to analyze
the maximal time or WCET of the task. If and only if these
upper bounds can be calculated, the schedulability analy-
sis can be performed. They are necessary to test whether
a task set can be scheduled on the target system or not [3].

There exist two possibilities for modeling and imple-
menting the RTS consisting of the application running on
the CPU and the DMA controller sharing the main mem-
ory:

• DMA as soft real-time task

• DMA as hard real-time task

In the first approach, the task of the DMA controller is
represented as a soft real-time task. As a consequence,
some interference (e.g. flickering on the VGA display)
may occur when the deadline of the DMA is violated.
Hence, the DMA task performs in a best-effort manner
and can be excluded from schedulability tests. Increasing
the buffer size in the DMA controller can help to support
a smooth communication between the shared memory and
the DMA controller. Nevertheless, this kind of a system is
of minor importance because hard RTSs are the target of
this paper.

In the second attempt the DMA task as well as the hard
real-time application running on the CPU has to meet its
deadline. As a consequence, the system contains the ap-
plication hard real-time tasks and the memory-streaming
hard real-time task that are performed simultaneously. Al-
though a VGA display is usually not accounted as a hard
real-time task, it serves as a good example demanding a
constant amount of data within a known period of time.
In the future, the VGA will be replaced by another CPU.

The rest of the paper considers the second approach
(hard RTS) and is structured as follows. Section 2 presents
the related work. In Section 3, we explain the two ba-
sic options of analyzing the behavior of the RTS and de-
scribe how schedulability tests are carried out. Section 4
describes the JopVga system and the worst-case analysis
results of several experiments. At the end, it discusses the
acquired outcome of the paper. Finally, Section 5 con-
cludes the paper and gives guidelines for future work.



2. RELATED WORK

In [4] Atanassov and Puschner describe the impact of dy-
namic RAM refresh on the execution time of real-time
tasks. The use of DRAM memory in RTSs involves a
major drawback because these memory cells have to be
periodically refreshed. During the refresh, no memory re-
quest can be processed. As a consequence, the request is
delayed and the execution time of the task increases.

Many researchers in the real-time community have tur-
ned their attention to timing-analysis tools described by
Wilhelm et al. [3]. The problem is that the available re-
sults for uniprocessors are not applicable to modern pro-
cessor architectures because the WCET analysis is hard-
ware dependent [3, 5]. Multiprocessor systems consisting
of shared memories and busses are hard to predict. In ad-
dition, the WCET of each individual task depends on the
global system schedule.

Even though so much research has been done on mul-
tiprocessors, the timing analysis of the systems has been
neglected. An example represents the scalable, homoge-
neous multiprocessor system by Gaisler Research AB. It
consists of a centralized shared memory and up to four
LEON processor cores that are based on the SPARC V8
architecture [6]. This embedded system is made avail-
able as a synthesizable VHDL model and therefore is well
suited for SoC designs. Leon is introduced for European
space projects as well as for military and demanding con-
sumer applications. Nevertheless, no literature concern-
ing WCET analysis regarding the multiprocessor has been
found.

Another example depicts the ARM11 MPCore [7]. It
introduces a pre-integrated symmetric multiprocessor con-
sisting of up to four ARM11 microarchitecture processors.
The 8-stage pipeline architecture, independent data and
instruction caches and a memory management unit for the
shared memory make a timing analysis difficult.

We believe that the impact of WCET of real-time tasks
sharing a main memory has not received enough cover-
age in literature yet. This paper is a first step towards a
time-predictable multiprocessor. Providing WCET guar-
antees and reliable schedules for a multiprocessor system
becomes a great challenge.

3. CPU/DMA SHARED MEMORY ACCESS

In Section 1, we presented two possibilities of integrating
the DMA task into the system. Either the DMA controller
represents a soft real-time task or it is considered a hard
real-time task. This paper addresses the second solution.

3.1. Implementation of the DMA hardware controller

The DMA controller accesses the shared memory to read
or write data autonomously of the CPU. The volume of the
data transfer depends on the I/O-device. Therefore, the ap-
plication of the device defines the quantity of memory re-
quests within a fixed period of time. Two different options

Fig. 1. The blocked and the spread memory access
scheme of the DMA task.

are evaluated to implement the memory access scheme of
the DMA controller (see Figure 1):

1. The DMA controller accesses the shared memory
in a blocked scheme. This approach is used to copy
fast large blocks of the main memory to another
device. Assume this task has the smallest period
of all tasks within the system. Hence using fixed-
priority scheduling [8] it has the highest priority.
After the DMA task is completed, the other tasks of
the CPU get permission to access the shared mem-
ory depending on their priority. This approach is a
good representation of a multimedia task, such as
streaming data, performed via DMA.

2. The DMA controller accesses the memory in a time-
ly spread scheme denotes the other extreme. It gen-
erates a smaller period because all memory requests
are timely spread on the original period. The high-
est priority of this task is required. If this task does
not hold the highest priority, the system will not
function correctly because the DMA task will starve
when the CPU’s software tasks make extensive mem-
ory requests. Consequently, it would perform like
the system with a soft real-time DMA task described
in Section 1.

3.2. Task vs. WCET based Analysis

There exist two possibilities to analyze the timing behav-
ior of the RTS:

• DMA access represents an additional real-time task

• DMA access is included in the WCET analysis of
each individual application task

The first method considers the DMA task in the schedu-
lability analysis. Hence, all the tasks of the application
running on the CPU and the DMA task have to be consid-
ered. This simple task set consists of independent periodic
tasks with fixed priority. The DMA controller must have
the highest priority. The resulting task set can be used for
schedulability tests to analyze the timing behavior of the
application running on the CPU.



The second approach models the RTS in a different
way. The DMA controller and the CPU are accessing
shared memory. We are interested in the WCET of the
application in spite of the memory communication of the
DMA. Therefore, the blocking delay, caused by each pos-
sible read or write access of the DMA controller, has to
be added to the WCET estimations of the real-time tasks
running on the CPU. The results serve bounded WCET
estimates of each individual task. As a consequence, the
WCET values for the tasks increase, but the DMA task
can be omitted from the schedulability analysis.

3.3. Schedulability Analysis

The major goal of this paper is the analysis of the timing
behavior of the RTS depending on the different options of
the memory access of the DMA controller.

Assume that the CPU of the system runs several real-
time tasks that are accessing the shared memory. Ad-
ditionally the DMA controller requests data of the main
memory with a regular access pattern. Therefore, the sys-
tem consists of the DMA task and the tasks of the real-
time application running on the CPU. Using fixed-priority
scheduling [8], the priorities of the tasks are ordered rate
monotonic. The smaller the period the higher is the pri-
ority of the task. In order to ensure that all tasks can be
completed within their deadlines schedulability tests are
carried out.

Utilization-based schedulability test

In [8] it has been shown that a simple schedulability test
can be carried out by taking the utilization of the several
tasks into account. The utilization is the result of dividing
the computation time by the period of the task. If Equa-
tion 1 holds then all tasks will meet their deadlines. Oth-
erwise, the task set may or may not fail at run-time. Ci
denotes the computation time of the task τi, Ti is the pe-
riod of task τi and N stands for the number of the tasks to
schedule.

N

∑
i=1

(Ci/Ti) ≤ N(21/N −1) (1)

If the task set fails, the utilization-based schedulability test
cannot guarantee that all tasks will meet their deadlines.
Nevertheless, the task set may not fail at run-time.

Response time analysis

A more exact schedulability test by Joseph and Pandya is
presented in [9]. The result of this response time analy-
sis for a set of independent tasks provides a necessary and
sufficient condition. If the result is positive the task set
will be schedulable at run-time. The task set will not be
schedulable if the test fails. The worst-case response time
Ri of each individual task is calculated and then compared
with the task’s deadline or period respectively. The equa-
tion for the response time is:

Ri = Ci + ∑
j∈hp(i)

dRi/Tje ·C j (2)

Fig. 2. JopVga system.

The expression hp(i) denotes all tasks with a higher prior-
ity than the task τi. The smallest Ri that solves Equation 2
is the worst-case response time of τi. A recurrence rela-
tionship can be formed that allows the calculation of the
response time [10]:

wn+1
i = Ci + ∑

j∈hp(i)
dwn

i /Tje ·C j (3)

The solution is found when wn+1
i = wn

i . Then wn
i repre-

sents Ri. If one task i has a larger response time than its
deadline (or period Ti) the task set cannot be scheduled.

4. EVALUATION

This section provides an overview of the JopVga system
and the corresponding sample application. Furthermore
the timing behavior of the RTS is analyzed. The results of
the experiments and calculations are compared and classi-
fied.

4.1. JopVga System

The JopVga system is the hardware used for our experi-
ments. It consists of a time-predictable processor called
JOP [1], a VGA controller, an arbiter, a memory inter-
face and an SRAM memory. JOP, the VGA controller,
the memory arbiter and the memory interface are imple-
mented on an Altera Cyclone FPGA. As illustrated in Fig-
ure 2 the external memory is connected to the memory in-
terface. This 1 MByte 32 Bit external SRAM device rep-
resents the shared memory of the JopVga system. A SoC
bus, called SimpCon [11], connects JOP and the VGA
controller with the arbiter. The arbiter is connected via
SimpCon to the memory interface.

The arbiter is responsible for setting up the commu-
nication between the shared memory and the VGA con-
troller and JOP respectively. It schedules the memory
communication of both masters. The shared main mem-
ory of the system is divided into two segments: 640 KByte
are dedicated to JOP and the remaining 384 KByte are as-
sociated with the VGA. Both JOP and the VGA controller
run at a clock frequency of 80 MHz, resulting in a period
of 12.5 ns per cycle. The SRAM-based shared memory
has an access time of 15 ns per 32 bit word. Hence every
memory access needs at least 2 cycles. At the moment
the arbiter as well as the VGA controller is not capable of
using the pipelining approach of the memory access that



Table 1. Task set.
τ T (µs) C (µs) Priority

τvga 17 4.8 3
τli f t 500 162.7 2
τk f l 3000 782.2 1

is introduced by the SimpCon interface [11]. Each mem-
ory request of JOP takes 4 cycles and every VGA request
takes 3 cycles. The bandwidth of the memory (BWmem)
calculates to:

BWmem = 4Byte/2.5 ·10−8s = 160MByte/s (4)

The VGA controller uses a VGA resolution of 1024 ·768
pixels with each pixel consisting of 4 bits. As a conse-
quence the memory used for the VGA display results in
384 KByte (1024 · 768 · 0.5 Byte). The horizontal fre-
quency is 60 kHz, which results in a horizontal period of
about 17 µs per line and 17 ns per pixel. The vertical fre-
quency is 75 Hz. Therefore the bandwidth used by the
VGA calculates to:

BWvga = (128 ·4Byte)/1.7 ·10−8s = 30.12MByte/s (5)

Dividing BWvga by BWmem results in 18.83% of the
memory bandwidth for the VGA controller. JOP has a
bandwidth of 80 MByte/s which results in 50% of the
memory bandwidth available.

Application

In order to estimate the worst-case execution time of a
RTS all real-time tasks have to be taken into account. In
the following the task set illustrated in Table 1 represents
the system under test. It consists of the VGA task and two
tasks running on JOP. The VGA task can be modeled as a
periodic task with the highest priority and a fixed runtime.
The computation time Cvga is calculated by multiplying
128 memory accesses times 3 cycles. Using a clock fre-
quency of 80 MHz results in 4.8 µs. Tvga is predetermined
by the horizontal period of 17 µs.

Two real-world examples with industrial background
represent the two tasks running on JOP. Lift is a lift con-
troller used in an automation factory. Kfl is one node
of a distributed RTS to tilt the line over a train for easier
loading and unloading of goods wagon. Both applications
consist of a main loop that is executed periodically. In our
experiments we use both applications to represent two in-
dependent real-time tasks. The WCET of these two tasks
are inferred from the WCET analysis tool [5]. In the sec-
ond column of Table 2 the WCET estimates of the two
tasks are given in clock cycles. Multiplying those esti-
mates with the clock period result in τli f t = 162.7 µs and
τk f l = 782.2 µs.

The periods and the computation times of the tasks
τvga, τli f t and τk f l define our system under test. The pri-
ority of 3 depicts the highest prior task. This simple task

set illustrates a RTS that is further analyzed using schedu-
lability tests.

4.2. Analysis using the Task Approach

In this section the VGA controller represents another real-
time task of the system that is taken into account in the
analysis of the timing behavior. Both the blocked memory
access scheme and the spread memory access scheme, as
described in Section 3.1, are evaluated.

Blocked

Using the values of Table 1 the utilization of each individ-
ual task is calculated dividing the computation time Ci by
the corresponding period Ti resulting in Uvga = 28.24%,
Uli f t = 32.54% and Uk f l = 26.07%. Applying the uti-
lizations to Equation 1 results in an overall utilization of
86.85%. The overall utilization may not be more than
3(21/3 − 1) = 78.00% because three tasks are involved.
The condition does not hold and consequently this task set
fails the utilization-based schedulability test. It cannot be
guaranteed that all tasks meet their deadlines. Therefore,
a response time analysis is carried out next.

The response time Rvga is the same as the computation
time because this task has the highest priority.

Rvga = Cvga = 4.8µs (6)

The response time of the next lower prior task τli f t ,
denoted as Rli f t , is the addition of the computation time
Cli f t and the time of interference of all higher prior tasks
(in that case the interference of τvga).

wn+1
li f t = Cli f t + dwn

li f t/Tvgae ·Cvga (7)

The response time is calculated using the values from
Table 1. The response time of Rli f t is found when wn+1

li f t
equals to wn

li f t . It is 229.9 µs which is less than Tli f t . Fi-
nally, Rk f l has to be calculated. Rk f l is the addition of the
computation time Ck f l and the time of interference of the
two higher priority tasks τvga and τli f t . The result of Rk f l
is 1999.4 µs. All the response times are smaller than their
appropriate periods and hence the response time analysis
has a positive outcome. This response time calculation
ensures that the tasks will meet their deadlines because
the successful analysis is sufficient and necessary [2] even
though the utilization-based schedulability test could not
be passed.

Spread

The VGA task accesses the memory in a timely spread
scheme. The new values for the period and the compu-
tation time of τvga are calculated by dividing the original
period Tvga = 17µs of Table 1 by the cycle time of 12.5ns.
It results in 1360 cycles. We need 128 memory requests
for each line on the VGA. Hence Tvga = 10 cycles and Cvga
= 3 cycles. The remaining 80 cycles are not used. Hence
the values for the VGA task change to Tvga = 125 ns and
Cvga = 37.5 ns.



Table 2. WCET estimates given in clock cycles.
App JOP only JOP with VGA Increase
Kfl 62573 83131 33%
Lift 13016 16118 24%

Table 3. Task set for the WCET method.
τ T (µs) C (µs) Priority

τli f t 500 201.5 2
τk f l 3000 1039.1 1

Using these values for JOP’s tasks and the values for
τli f t and τk f l the utilization-based schedulability test log-
ically results in a similar overall utilization of 88.61% as
described in the previous section. A small divergence be-
tween the results can be explained by the remaining 80
cycles that are not used in this memory access scheme.
Again, the utilization test is negative.

Therefore, the response time analysis is used. Rvga
is similar to Cvga = 37.5 ns. Rli f t calculates to 232.5 µs
and Rk f l = 2279.6 µs. The positive result of the response
time analysis shows that the task set can be scheduled.
As in the utilization-based test, the remaining 80 cycles
affect the results of Rli f t and Rk f l . Both response times are
larger than in the blocked memory access scheme. As a
consequence, the spread memory access scheme is worse
than the blocked scheme.

4.3. Analysis using the WCET method

The second approach to include the DMA unit in the sche-
dulability analysis is to model the DMA access in the
WCET values for memory access of the software tasks.
Each instruction that accesses memory has to include the
maximum delay due to a possible memory access by the
DMA unit.

Blocked

Using the blocked memory access scheme and the WCET
method for analysis is not a reasonable approach. One
would have to account the delay of the whole block of
memory requests of the VGA to each memory access of
JOP. That results in a very conservative WCET for each
memory access of JOP. Hence, it is not further investi-
gated.

Spread

The WCET analysis tool [5] can be parameterized with re-
spect to the memory access time (the wait states for mem-
ory read, memory write, and the cache load). The memory
access from the VGA unit takes 2 cycles plus 1 cycle in
the arbiter to switch between the two masters. Therefore,
we add 3 cycles to the wait states.

Table 2 shows the WCET values in clock cycles for
different applications for the stand-alone processor and

Table 4. Comparison of the response times of the task
approach with blocked DMA (C1 and R1) and the WCET
method with spread DMA access (C2 and R2).

τ T (µs) C1 (µs) R1 (µs) C2 (µs) R2 (µs)

τvga 17 4.8 4.8 – –
τli f t 500 162.7 229.9 201.5 201.5
τk f l 3000 782.2 1999.4 1039.1 1845.1

when adding the DMA device. We see an increase of 24%
to 33% of the WCET for the tasks.

These values are conservative as each memory access
is modeled with the maximum blocking time. For a sin-
gle memory access (such as bytecode getfield) this is
the best we can do without further analysis of the instruc-
tion pattern. However, for cache loading we could in-
clude the access pattern (in our example one access per
10 clock cycles) into the analysis of the cache load time.
Previously experiments showed that the load time for the
method cache produces most of the memory requests. Con-
sequently, with inclusion of the access pattern into the
WCET analyzer tool, we can provide tighter WCET val-
ues. This is a new approach to WCET analysis, as in
all current approaches the WCET analysis is independent
from the schedulability analysis. Schedulability analysis
is usually the next step and assumes known WCET values.

The computation time values of Table 3 are calculated
by multiplying the WCET estimates of τli f t and τk f l from
Table 2 with the clock period of 12.5 ns. The values for
those two tasks are the basis for the schedulability test.
The utilization-based test results in 74.94%. Only two
tasks are taken into account and hence this result is less
than 2(21/2 −1) = 82.84%. Even though this test is posi-
tive, we also investigate the response time analysis.

The response time analysis for the WCET estimates of
the system with the VGA results in tighter response times
than in the analysis using the task approach of Section 4.2.
Rli f t is the same as Cli f t = 201.5 µs and Rk f l calculates to
1845.1 µs.

4.4. Discussion

Table 4 shows the results of the evaluation for both anal-
yses: column 3 and 4 (C1 and R1) for the DMA task ap-
proach and column 5 and 6 (C2 and R2) for the DMA-
WCET approach. We can see that both τli f t and τk f l have
a higher WCET (C2) in the DMA-WCET approach. As
we do not have to include the VGA task in the response
time analysis, the response time R2 is less for both tasks
despite the fact that C2 is higher.

The result shows that the inclusion of the DMA ac-
cess into the WCET analysis provides tighter worst-case
response times than considering the DMA as an additional
task. The difference can be explained as follows: most in-
structions on JOP do not access the main memory; they
use the internal stack cache for data. The pipeline is filled
from the instruction cache most of the time. In the task
approach, all instructions are blocked by the VGA task.



Table 5. Comparison of the system performances in iter-
ations/s.

App JOP only blocked VGA spread VGA

Kfl 12163 11562 11628
Lift 9643 9194 9356

The WCET analysis is more exact as it delays only those
instructions, which do actually access the main memory
and the cache load events.

To validate our calculations and measurements we run
all mentioned task sets on real hardware and the JopVga
system respectively. No deadline violation of any task
could ever be observed when performing these experi-
ments.

4.5. Benchmarks

Although the solution is aimed at RTSs, i.e. a time pre-
dictable system, the average case performance is still in-
teresting. The system under test is the JopVga system.
The FPGA platform enables us to compare the perfor-
mance of the system with an enabled VGA controller ver-
sus one with a disabled VGA controller. The results are
achieved by running real applications in real hardware.
For our measurements, we use the embedded Java bench-
mark suite JavaBenchEmbedded as described in [12]. The
result is iterations per second, which means a higher value
illustrates a better performance. In Table 5, the benchmark
results are shown.

The Kfl application is slowed down just by 4.4% due
to the memory contention with the spread VGA memory
access scheme. The WCET estimates of the same task
resulted in an increase of up to 33% (see Table 2). An-
other benchmark called Lift experiences an even smaller
slowdown of 3.0% due to the contention with the VGA
task. The WCET estimates of the same task resulted in an
increase of 24%.

To recapitulate, although we use about one third of the
memory bandwidth for the DMA unit both applications
suffer less than that one third in their execution time. This
result is a promising indication that the memory system
is not the bottleneck of the single CPU with the VGA.
There is enough headroom for further devices. The result
is promising for our further plans on a CMP version with
several JOPs sharing a single memory.

5. CONCLUSION AND FUTURE WORK

In this paper, we have analyzed a system with a processor
and a DMA unit with respect to WCET and schedulabil-
ity. We have found two ways to model the influence of the
DMA unit to the application tasks: 1.) the DMA access
as an additional real-time task and 2.) include the DMA
memory access in the WCET analysis of the individual
application tasks. We found that the second approach re-
sults in a tighter estimation and enables more processing
resources for the application.

We will investigate the possibility to include a known
memory access pattern into the WCET analysis of the
cache loading to find tighter WCET estimates. On a cache
load, we can guarantee that only a maximum number of
memory loads can conflict with the DMA unit. The next
step is the application of our findings to a system with
several CPUs – the CMP JOP system. In that case, the
memory access pattern is less predictable. Therefore, the
shared resource can only be modeled by the WCET ap-
proach.

6. REFERENCES

[1] M. Schoeberl, JOP: A Java Optimized Processor for Em-
bedded Real-Time Systems. PhD thesis, Vienna University
of Technology, 2005.

[2] A. Burns and A. J. Wellings, Real-time systems and pro-
gramming languages: Ada 95, real-time Java, and real-
time POSIX. International computer science series, pub-
AW:adr: Addison-Wesley, third ed., 2001. Revised edition
of Real-time systems and their programming languages,
1990.

[3] P. Puschner and A. Burns, “A review of worst-case
execution-time analysis,” Journal of Real-Time Systems,
vol. 18, pp. 115–128, May 2000.

[4] P. Atanassov and P. Puschner, “Impact of dram refresh on
the execution time of real-time tasks,” in Proc. IEEE Inter-
national Workshop on Application of Reliable Computing
and Communication, pp. 29–34, Dec. 2001.

[5] M. Schoeberl and R. Pedersen, “Wcet analysis for a java
processor,” in JTRES ’06: Proceedings of the 4th inter-
national workshop on Java technologies for real-time and
embedded systems, (New York, NY, USA), pp. 202–211,
ACM Press, 2006.

[6] S. I. Inc., The SPARC Architecture Manual: Version 8.
Prentice Hall, Englewood Cliffs, New Jersey 07632, 1992.

[7] ARM, “Arm11 mpcore processor, technical reference man-
ual.” http://www.arm.com, August 2006.

[8] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” J.
ACM, vol. 20, no. 1, pp. 46–61, 1973.

[9] M. Joseph and P. K. Pandya, “Finding response times in a
real-time system,” Comput. J, vol. 29, no. 5, pp. 390–395,
1986.

[10] N. C. Audsley, A. Burns, R. I. Davis, K. Tindell, and A. J.
Wellings, “Fixed priority pre-emptive scheduling: An his-
torical perspective,” Real-Time Systems, vol. 8, no. 2-3,
pp. 173–198, 1995.

[11] M. Schoeberl, “SimpCon - a simple and efficient SoC inter-
connect.” Available at: http://www.opencores.org/, 2007.

[12] M. Schoeberl, “Evaluation of a Java processor,” in
Tagungsband Austrochip 2005, (Vienna, Austria), pp. 127–
134, October 2005.


