
On the Scalability of Time-predictable
Chip-Multiprocessing

Wolfgang Puffitsch
Departement of Modeling and Information

Processing
ONERA, Toulouse, France

wolfgang.puffitsch@onera.fr

Martin Schoeberl
Department of Informatics and Mathematical

Modeling
Technical University of Denmark

masca@imm.dtu.dk

ABSTRACT
Real-time systems need a time-predictable execution platform to be
able to determine the worst-case execution time statically. In order
to be time-predictable, several advanced processor features, such as
out-of-order execution and other forms of speculation, have to be
avoided. However, just using simple processors is not an option for
embedded systems with high demands on computing power. In order
to provide high performance and predictability we argue to use multi-
processor systems with a time-predictable memory interface. In this
paper we present the scalability of a Java chip-multiprocessor system
that is designed to be time-predictable. Adding time-predictable
caches is mandatory to achieve scalability with a shared memory
multi-processor system. As Java bytecode retains information about
the nature of memory accesses, it is possible to implement a memory
hierarchy that takes the characteristics of different types of accesses
into account. For tasks with low communication the measured
speedup of this time-predictable system is in the range of 6 to 7
for eight processor cores, compared to execution on a single-core
processor.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems

Keywords
Time-predictable computer architecture

1. INTRODUCTION
Multiprocessors are considered a solution to the ever growing

performance demands of embedded real-time systems. Hard real-
time systems require that the underlying platform is analyzable with
regard to its timing behavior. For uniprocessor systems, it is well
known that some optimizations that increase the average-case perfor-
mance make worst-case execution time (WCET) analysis more com-
plex and increase the pessimism of the WCET estimate. The Java
Optimized Processor (JOP) [10] is intended as a time-predictable
processor to simplify WCET analysis. Although it is inevitable to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES 2012 October 24-26, 2012, Copenhagen, Denmark
Copyright 2012 ACM 978-1-4503-1688-0 ...$15.00.

sacrifice some average-case performance in favor of predictability,
JOP provides good average-case performance compared to other
Java processors.

When building a chip multiprocessor (CMP), it is not only nec-
essary to use time-predictable processor cores. Also, the access
to shared resources must be time-predictable. Most importantly,
this concerns access to shared memory. As the bandwidth for an
individual core is only a fraction of the bandwidth in a uniprocessor
setting, caching becomes more important. In order to achieve good
performance, while still providing a timing-analysis friendly plat-
form, it is necessary to include caches that are suitable for WCET
analysis.

Currently, there is little information as to whether a time-predictable
CMP can actually provide the desired speedups. The first version of
the JOP CMP system provided only moderate speedups with more
than four cores [7]. In this paper, we evaluate the performance of an
improved version that includes caches for heap allocated data, con-
stants, static fields, and method dispatch tables. This split cache [11,
13] relaxes the memory bandwidth requirements of the CMP while
still being analyzable. The results show that a time-predictable CMP
can actually provide reasonable speedups.

The following section describes related work in the area of time-
predictable chip-multiprocessing. Section 3 describes the rationales
behind some design decisions that would be unusual in systems
designed for average-case performance. Evaluation results are pre-
sented in Section 4, which are then discussed in Section 5. Section 6
finally concludes the paper.

2. RELATED WORK
Not that many papers are available on the design of time-predictable

CMP systems. A recent paper discusses some high-level design
guidelines [1]. To simplify WCET analysis (or even make it feasi-
ble) the architecture shall be timing compositional. That means that
the architecture has no timing anomalies or unbounded timing ef-
fects [3]. The Java processor used in the proposed time-predictable
CMP fulfills those properties. For CMP systems the authors ar-
gue for bounded access delays on shared resources. This is in
our opinion best fulfilled by a TDMA based memory arbitration,
which combines bounded access delays with making these delays
independent from accesses from other processors.

Wilhelm et al. [17] discuss the impact of cache replacement
policies on static analysis in detail. For the measures considered in
that paper, LRU replacement delivers the best possible results that
any replacement policy can achieve. Consequently, the cache design
described in Section 3.2 uses LRU replacement where applicable.

Paolieri et al. proposed a multi-core architecture that supports
measurement-based WCET analysis [5]. In that paper, interferences
for accesses to a shared level 2 caches are analyzed. The approach

rd0A rd1 rd2 rd3 rd0B

Memory

Core 3

Core 1

Core 2
rd2

rd3

rd1

Core 0

rd0A nop rd0B

(a) Low bus traffic increases WCET

rd1

rd2

rd3

rd0A rd1 rd2 rd3 rd0B

Memory

Core 3

Core 2

Core 1

Core 0

rd0A nop rd0B

(b) Bus contention decreases WCET

Figure 1: Timing anomaly with RR arbitration

has been further extended to accesses to shared RAM [4]. In a set-
ting with four cores, the WCET for the execution of a single thread
is increased by a factor of up to 2.2, and the measured execution
time by a factor of up to 1.7, compared to execution on a unipro-
cessor. When assuming that the task in consideration can be fully
parallelized to four cores, this would be equivalent to speedups of

4
2.2 = 1.82 and 4

1.7 = 2.35, respectively.
A CMP version of the Java processor jamuth has been evalu-

ated by Uhrig [16]. The interconnect to the shared memory is the
Altera switch fabric with the Avalon bus. As jamuth is a chip-multi-
threaded architecture, two dimensions (chip multi-threading and
multi-core) are explored. The maximum speedup, with modified
versions of the JemBench benchmarks [14], in a configuration with
3 threads and 3 cores is reported as 3.5.

The SHAP Java processor project has been extended to a CMP
version [19]. While it shares some of its characteristics with JOP,
WCET analyzability is not mentioned among its design goals. The
evaluation results in Section 4 demonstrate that an analysis friendly
design does not necessarily perform worse than designs with other
objectives.

3. SYSTEM DESIGN
The JOP chip-multiprocessor (CMP) design is driven by the inten-

tion to keep the system worst-case execution time analyzable. Opti-
mizing for WCET instead of optimizing for average-case throughput
leads to different solutions in the design space. This section gives the
rationale for, from an average-case optimization standpoint probably
uncommon, design decisions. To keep access to the shared resource
main memory predictable, a TDMA based memory access arbitra-
tion is mandatory. As the pressure to the memory interface increases
with multiple cores, more data needs to be held in core local mem-
ories. The split-cache design allows caching in a time-predictable
way.

3.1 TDMA and Round-Robin Arbitration
In order to achieve timing predictability, the latency of memory

accesses must be bounded. In a CMP setting, the arbitration of
memory accesses must ensure that the memory latencies for all
cores are bounded. To achieve this, we implemented two arbiters:
a time-division multiple access (TDMA) arbiter and a round-robin
(RR) arbiter.

The TDMA arbiter reserves a slot for each CPU in which it may
access the memory exclusively. Each slot is long enough to contain
a full memory access. Therefore, accesses by one core do not affect
memory accesses of other cores. The RR arbiter works similarly
to the TDMA arbiter, but uses flexible slot lengths. If no memory
access occurs, the slot length is a single cycle. In case of memory
accesses, the slot is extended to fit the current memory access. In

theory, it would be possible to eliminate the cycle for cores without
pending memory requests, i.e., to grant access to the next processor
with a pending memory request immediately. However, this results
in complex and slow hardware and would therefore in practice
impair the performance of the overall system. Therefore, we accept
to pay one wasted clock cycle per idle core to only perform local
arbitration and have a scalable memory arbiter.

For both arbiters the latency for accesses is bounded. In a CMP
with N cores, a core has to wait at most N − 1 memory accesses
before it is granted access itself. However, the arbiters differ in their
average-case performance and the analyzability of the worst-case
performance.

The TDMA arbiter always provides the same performance to a
core, regardless of the workload on other cores. The performance
does not depend on the amount of contention. This also simplifies
WCET analysis, because the worst-case behavior can be analyzed
locally, without considering other cores. Also, measurements to es-
timate the tightness of analytical WCET bounds can be kept simple.
This arbiter is therefore a good choice when WCET analyzability is
of utmost importance.

WCET analysis is considerably more complex for the RR arbiter.
The performance depends on the level of contention. Intuitively,
performance increases with low contention. However, this is not
always the case. Figure 1 shows such a timing anomaly where high
bus traffic leads to a lower execution time than low bus traffic with
RR arbitration.

In both Figures 1a and 1b, Core 0 executes a sequence of five op-
erations: first, it issues a read, rd0A, then it executes three operations
that do not access memory (denoted by nop), and finally it issues
a second read, rd0B. Cores 1 to 3 all issue a read operation, rd1 to
rd3. The signals labeled Core 0 to Core 3 show when the arbiter is
ready to serve accesses of the respective core; accesses from a core
are passed on only if the respective signal is high.

In Figure 1a, rd0A can be served immediately. Afterwards, the
three nops are executed. The second read of Core 0, rd0B, misses
the slot for Core 0. Instead, rd1, which has been issued in the cycle
before, is served. The reads from the other cores, rd2 and rd3, are
served subsequently. After these reads have finished, rd0B is passed
on. In Figure 1b, rd0A can also be served immediately. However,
rd1 to rd3 are issued earlier, and are performed back to back with
rd0A. Consequently, rd0B catches the next free slot for Core 0, and
is served earlier than in Figure 1a.

The performance of the scenario depicted in Figure 1b is the
same as for a TDMA arbiter. The scenario in Figure 1a performs
actually worse than with TDMA arbitration. WCET analysis has
to assume that with RR arbitration each memory access exhibits its
worst-case behavior. In contrast, the predefined arbitration pattern
of a TDMA arbiter allows the analysis to reason about sequences of

instructions (e.g., basic blocks), leading to shorter WCETs for these
sequences. However, as the results in Section 4 show, this does not
affect the average-case performance. Therefore, we suggest using
the RR arbiter when average-case performance is more important
than WCET analyzability.

3.2 Split Caches
With respect to caching, memory is usually divided into instruc-

tion memory and data memory. This cache architecture was pro-
posed in the first RISC architectures [6] to resolve the structural
hazard of a pipelined machine where an instruction has to be fetched
concurrently to a memory access. This division enabled WCET
analysis of instruction caches.

In former work we have argued that data caches should be split
into different memory type areas to enable WCET analysis of data
accesses [11, 13]. We have shown that a JVM accesses quite differ-
ent data areas (e.g., the stack, the constant pool, method dispatch
table, class information, and the heap), each with different properties
for the WCET analysis. For some areas, the addresses are statically
known; some areas have type dependent addresses (e.g., access to
the method table); for heap allocated data the address is only known
at runtime. Therefore, the caches are organized to simplify the
analysis. Different memory areas are cached in different caches:

Method cache An instruction cache that caches whole methods.
Misses can occur only upon calls and returns; all other in-
structions result in cache hits.

Stack cache Stack data is placed in this cache. The contents are re-
placed on task switches and accesses to this cache are always
hits.

Constant cache A cache for constant data with known addresses.
As addresses are known, a direct-mapped cache is sufficient.
No cache coherence is necessary for constant data.

Static data cache Similar to the constant cache, but as data may
change, cache coherence is necessary.

Object cache A fully associative cache that exploits knowledge
about the object layout.

Fully associative cache A small cache for single words with un-
known addresses.

The stack cache and method cache are an integral part of the
JOP pipeline. The stack cache is part of the thread context and is
exchanged on a thread switch. The size of the method cache, and
therefore the maximum method size, can be configured. The default
configuration in JOP is 4 KB for the method cache. Java methods
tend to be small (99% smaller than 512 B [9]). Only class initializers
for large arrays are quite large. We execute those large method at
JVM boot time with a small interpreting JVM that runs on top of
JOP. In that case, the method is directly executed from the main
memory without using the method cache. The other data caches are
optional and are located in a separate data cache unit. The inclusion
or exclusion as well as the size can be configured.

For data where the address is statically known or can be inferred
by a type analysis, a direct mapped caches are used [13]. For data
with unpredictable addresses, two different caches are used. For
objects, an object cache [12] is used, which uses object references as
tags and caches the first N fields of an object. In an earlier paper [2],
we have shown that such an object cache can be integrated into
our WCET analysis tool [15]. For other data with unpredictable
addresses, a fully associative cache with LRU replacement that
caches single words is used. Due to its limited size, it is used only

for data where accesses in the near future are likely, i.e., this cache
is not used for array fields.

Memory accesses can be classified whether the accessed data
requires to be held coherent or is core local. Accesses to static
variables and object fields must follow the Java memory model,
which requires some coherence mechanism. Accesses to constant
data such as the constant pool or the method table are implicitly
cache coherent. Stack allocated data is thread local in Java and
needs no cache coherence protocol.

3.2.1 Cache Coherence
When designing a CMP system, one must consider cache co-

herence mechanisms. Depending on the memory model, different
mechanisms can be provided to programmers and compilers to es-
tablish the guarantees of the memory model.

For a Java processor, it is natural to use a memory model that is
compliant with the Java memory model. The Java memory model
can be implemented by using write-through caches and invalidating
caches when acquiring locks and reading from volatile variables [8].
While such a coarse-grain cache coherence implementation might
sacrifice some performance, it is very convenient from a WCET
analysis point of view. In the proposed cache coherence scheme, all
actions related to cache coherence are local actions that are visible
to the WCET analysis. The timing of accessing a variable is the
same regardless of whether the variable is actually shared with a
different core, and the cache state is independent from the behavior
of other cores.

Using write-through caches also simplifies WCET analysis in a
uniprocessor setting. With a write-back cache, the analysis would
have to reason about whether a cache line actually needs to be
written back to memory on a cache miss. Some current WCET tools
assume an additional write back for each cache miss [1]. For a write-
through cache, the cost of writes can be attached to the instruction
that issues the write, without introducing further pessimism.

4. EVALUATION
We chose four benchmarks from the JemBench [14] benchmark

suite, with different characteristics to demonstrate the scalability of
our design. Two additional single-threaded benchmarks were used
to evaluate the performance impact of the split cache design.

4.1 Platform
The evaluation compares CMP versions of JOP with different

cache configurations. All configurations contain a cache for instruc-
tions (the method cache) and stack allocated data (the stack cache).
The cached and uncached configurations in the following discussion
are configurations where other types of data are cached/uncached.

The method cache is 4 KB in size, divided into 32 blocks. The
stack cache is 2 KB large. Configurations that cache accesses to
other memory areas contain four more caches: a direct mapped
cache with 1 KB for constant data with known addresses, a direct
mapped cache with 1 KB for data with known addresses that re-
quires cache coherence, a 16-way object cache that caches the first
8 words of objects, and a 16-way fully associative cache with LRU
replacement for other data with unknown addresses.

Accesses to the constant pool and the method tables go through
the direct mapped cache without cache coherence, while the direct
mapped cache for cache coherent data is used for accesses to static
variables. The object cache is used for accesses to object fields.
Most other accesses go through the fully associative cache; only
accesses to array fields and some JVM-internal accesses bypass the
caches.

The development board used in this evaluation is the DE2-70
board from Altera, which features a Cyclone II FPGA (EP2C70),
and 2 MB of synchronous SRAM. Accesses to this RAM have a la-
tency of 3 cycles. For round-robin arbitration, the worst-case latency
for a memory access from a core is 3∗N cycles, as the processor in
the worst case has to wait for accesses from all other cores and the
completion of its own access. For TDMA arbitration, the worst-case
latency is 3∗ (N +1) cycles, because it might happen that the core
just missed the beginning of its current slot and needs to wait for
its completion. JOP is clocked at 90 MHz in all configurations
presented in this section.

4.2 Benchmarks
The following benchmarks have been chosen from the embedded

Java benchmark suite JemBench [14]:

LiftCMP is derived from a real-world application that controls an
industrial lift. Each core executes one such single-threaded
application, without any cooperation or synchronization. This
benchmark therefore evaluates the performance of indepen-
dent threads.

Matrix benchmarks the performance of matrix multiplication. While
there is some computational complexity, its performance
mostly depends on the available memory bandwidth.

Raytrace is a computationally complex benchmark that depends on
the performance of floating-point operations. Parallelization
is limited to six threads.

Queens computes solutions to the N-Queens problem. It contains a
notable amount of synchronization, which has to be handled
efficiently for good performance.

Kfl is a single-threaded benchmark, derived from a real-world ap-
plication that tilts up a railway contact wire. It is used as an
additional benchmark for the evaluation of the cache perfor-
mance.

UdpIp is is a benchmark derived from the implementation of a
simple UDP/IP stack. It is also used to evaluate the cache
performance.

4.3 Scalability
Figure 2 shows the benchmark results scaled to the uncached

uniprocessor version. Four configurations are evaluated: TDMA
arbitration without caching (TDMA), TDMA arbitration with cache
(TDMA $), RR arbitration without cache (RR), and RR arbitration
with cache (RR $). Naturally, there is no arbitration in the unipro-
cessor versions.

The LiftCMP benchmark, shown in Figure 2a, is limited in its
scalability by its memory bandwidth demands for the uncached
configurations. Only speedups of up to 2.9 can be achieved. In
contrast, the cached configurations scale up to 6.1 for TDMA $ and
6.9 for RR $. The results suggest that caching has a considerably
higher impact on the performance than the arbitration policy.

For the Matrix benchmark (Figure 2b), the configurations with-
out caches do not scale very well, with speedups of around 2.0 at
most. The configuration with caches scales considerably better, with
RR $ providing a speedup of up to 3.6 with eight cores. TDMA $
achieves speedups of up to 3.16. The memory bandwidth demands
of the Matrix benchmark limit the scalability, but caching enables
significantly higher speedups. This benchmark also shows the effect
that additional cores do not always improve performance. The inner
loop of the matrix multiplication has a very regular memory access

DM CONST FA OBJ all

Configuration

S
pe

ed
up

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

DM CONST FA OBJ all

Configuration

S
pe

ed
up

Raytrace
Queens
Kfl
UdpIp
Matrix
LiftCMP

Figure 3: Performance impact of individual caches for JOP
with eight cores and TDMA arbitration

pattern. For cases where this pattern does not fit the slot pattern
of the memory arbiter well, a performance degradation can be ob-
served. The effect is visible in particular for the RR configuration
with three cores and the TDMA $ configuration with six cores.

The results for the Raytrace benchmark in Figure 2c do not vary
greatly between the different configurations. Most of the compu-
tation time is spent for floating-point computation, leading to low
memory bandwidth demands, and speedups of around 4.2 to 4.4.
Only for configurations with more than five cores, there is a notable
difference between TDMA and the other three configurations. Please
note that the benchmark cannot scale beyond six cores, simply be-
cause it consists of only six threads. However, it apparently already
reaches its maximum performance for five cores. Supposedly due
to an unfortunate assignment of threads to cores, performance does
not improve between three and four cores.

The performance of the Queens benchmark reaches a speedup of
around 4.8 for the plain TDMA configuration, as shown in Figure 2d.
Using either TDMA $ or RR provides similar speedups of up 6.0
and 6.2, respectively. The scalability of the TDMA $ configuration
is limited by synchronization—memory bandwidth is reserved for
cores even if they are blocked by other cores. The RR configuration
can use this available bandwidth, but suffers from its high memory
bandwidth demands. The combination of RR arbitration and caching
combines the benefits, leading to speedups that scale almost linearly
with the number of cores for RR $, up to a factor of 7.0.

4.4 Cache Performance
Figure 3 shows the performance impact of the individual caches

in the split cache in a configuration with eight cores and TDMA
arbitration. DM shows the results with just the direct-mapped cache
for static variables enabled, CONST with just the cache for constant
data, FA with just the fully associative cache, and OBJ with just the
object cache. The results with all caches enabled is labeled all.

The DM and CONST configurations provide only minor perfor-
mance enhancements. As only a fraction of all instructions accesses
static or constant data, this is not surprising. Even if all such accesses
would be cache hits, we could not expect huge performance gains.
In contrast, the FA configuration increases performance significantly.
This is relatively surprising, given the small size of this cache. This
can be explained by the fact that a significant proportion of instruc-
tions accesses heap allocated data. Therefore, even a small cache
with moderate hit rates can provide significant speedups. As most
of the benchmarks are not written in a particularly object-oriented

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Number of cores

RR $
TDMA $

RR
TDMA

(a) LiftCMP

 0

 1

 2

 3

 4

 1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Number of cores

RR $
TDMA $

RR
TDMA

(b) Matrix

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Number of cores

RR $
TDMA $

RR
TDMA

(c) Raytrace

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
p

e
e

d
u

p
Number of cores

RR $
TDMA $

RR
TDMA

(d) Queens

Figure 2: Benchmark results scaled to the uncached uniprocessor configuration

style, we do not see a major effect of the object cache for these
benchmarks. The exception for this is the LiftCMP benchmark, for
which the object cache improves performance by more than 50%.
The LiftCMP benchmark also benefits the most from caching, with
a perfomance increase by a factor or 2.2 if all caches are enabled.

4.5 Comparison with Another Java CMP
In this section, we compare the performance of the JOP CMP

system with the CMP version of the SHAP Java processor [19].
While SHAP is in some regards similar to JOP, it is not explicitly
designed for time-predictability.

The SHAP CMP system has been evaluated with two different
FPGA boards: the Altera DE2 board and the Xilinx ML505. The
DE2 board has a asynchronous 16-bit memory and 32-bit memory
accesses take 2 cycles. On the Cyclone II FPGA (EP2C35) of the
DE2 board, SHAP can be clocked at 60 MHz. The ML505 features
a 32-bit synchronous memory with a latency of 3 cycles, but a
bandwidth of 1 cycle per access is achieved through pipelining. The
maximum clock frequency on the high performance Virtex-5 FPGA
of that board is 80 MHz.

In order to compare the performance of the JOP CMP system with
the performance of SHAP on the DE2, we implemented a variant
of JOP on the DE2-70 board with 6 cycles memory access latency.
This corresponds to the memory latency that earlier implementations
of JOP had on the DE2 board. For the scope of this comparison,
we ignore the fact that it would not be possible to implement a JOP
CMP with 8 cores on the DE2 board due to the smaller FPGA.

Figure 4 compares the results for JOP and SHAP on different
FPGA boards.1 For JOP, we show the results for the cached versions
with TDMA arbitration, labeled JOP DE2-70 TDMA $ for the “fast”
variant, and JOP DE2-70* TDMA $ with 6 cycles memory latency.

The results of the fastest configuration of JOP on the DE2-70 board,
with caching and RR arbitration, are labeled JOP DE2-70 RR $.
For SHAP, we show the results for the DE2 and the ML505 board
(SHAP DE2 and SHAP ML505).

Even with slowed-down memory accesses, JOP performs consid-
erably better than SHAP on the DE2 board. While the performance
of SHAP on that board saturates for five and six cores, JOP scales
up to eight cores.

Although the ML505 board contains a more powerful/faster
FPGA and provides a higher memory bandwidth than the DE2-
70 board, JOP outperforms SHAP on the respective boards for the
LiftCMP benchmark. Still, both CMP systems provide reason-
able scalability up to eight cores. The result in the PhD thesis of
Zabel [18] indicate that the performance of SHAP for this bench-
mark would saturate at around ten cores.

The results in Figure 4 demonstrate that a time-predictable so-
lution does not have to be slow and can even provide better per-
formance on the same FPGA platform than a CMP with different
design goals. Time-predictable caches are effective and can to some
degree compensate slower access to main memory, as demonstrated
by the similar or superior performance of JOP on the DE2-70 board
compared to SHAP on the ML505 board.

5. DISCUSSION
The results in Section 4 show that a time-predictable CMP scales

reasonably well and provides a performance that is comparable to
other Java CMPs. Only for the Matrix benchmark the memory

1The numbers of for the SHAP CMP system are according to the
JTRES 2010 paper [19]. We thank Martin Zabel for providing us
the raw data of the benchmark runs.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 1 2 3 4 5 6 7 8

It
e

ra
ti
o

n
s
 p

e
r

s
e

c
o

n
d

Number of cores

SHAP ML505
JOP DE2-70 RR $

JOP DE2-70 TDMA $
JOP DE2-70* TDMA $

SHAP DE2

Figure 4: JOP and SHAP scaling on different FPGA platforms for LiftCMP

bandwidth requirements impair the scalability significantly. For
both the Matrix and the LiftCMP benchmark, caching has a greater
impact on the performance than the arbitration policy. For con-
figurations that are severely limited in their performance by the
bandwidth requirements (most notably the uncached configurations
with six or eight cores), the performance gains by RR arbitration are
minimal. Therefore, the better predictability of TDMA arbitration
probably outweighs the performance gains for applications with
similar characteristics.

RR arbitration outperforms TDMA arbitration for the Queens
benchmark. In situations where a core executes within a critical
section while other cores wait for the respective lock, the RR arbiter
provides the unused bandwidth to the core holding the lock. While
this enhances the performance in measurements, such situations
are difficult to model for static analysis. It has to be proven that
other cores always wait for the held lock when executing a certain
program fragment. Otherwise, the analysis cannot assume that the
additional bandwidth is actually available.

The evaluation of the impact of individual caches showed that
both an object cache and a small fully associative cache with LRU
replacement can enhance performance significantly. As the caches
of JOP CMP are designed specifically to simplify static analysis,
they can not only increase the measured performance, but can also
decrease the analytical WCET [13].

6. CONCLUSION
In this paper we report on the scalability of a chip-multiprocessor

Java processor, which is designed to enable WCET analysis. Al-
though design optimization for WCET is different from optimiza-
tions for average-case throughput, the JOP CMP design scales rea-
sonable for parallel workloads. As the pressure on the memory
bandwidth increases with several processor cores on a shared mem-
ory architecture, we have added additional caches to the processor
cores: direct mapped caches for data where the address can be
statically predicted and highly associative caches for data with un-
predictable addresses. The resulting speedup of a eight core system
compared to a uniprocessor system is between 3 and 7, depending
on the type of application.

7. REFERENCES
[1] Christoph Cullmann, Christian Ferdinand, Gernot Gebhard,

Daniel Grund, Claire Maiza, Jan Reineke, Benoît Triquet, and

Reinhard Wilhelm. Predictability considerations in the design
of multi-core embedded systems. In Proceedings of
Embedded Real Time Software and Systems, May 2010.

[2] Benedikt Huber, Wolfgang Puffitsch, and Martin Schoeberl.
Worst-case execution time analysis driven object cache design.
Concurrency and Computation: Practice and Experience,
24(8):753–771, 2012.

[3] Thomas Lundqvist and Per Stenström. Timing anomalies in
dynamically scheduled microprocessors. In Proceedings of the
20th IEEE Real-Time Systems Symposium (RTSS 1999), pages
12–21, Washington, DC, USA, 1999. IEEE Computer Society.

[4] M. Paolieri, E. Quinones, F.J. Cazorla, and M. Valero. An
analyzable memory controller for hard real-time CMPs.
Embedded Systems Letters, IEEE, 1(4):86 –90, December
2009.

[5] Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla,
Guillem Bernat, and Mateo Valero. Hardware support for
WCET analysis of hard real-time multicore systems. In The
36th International Symposium on Computer Architecture
(ISCA 2009), pages 57–68, Austin, Texas, USA, 20-24, June
2009. ACM.

[6] David A. Patterson. Reduced instruction set computers.
Commun. ACM, 28(1):8–21, 1985.

[7] Christof Pitter and Martin Schoeberl. A real-time Java
chip-multiprocessor. ACM Trans. Embed. Comput. Syst.,
10(1):9:1–34, 2010.

[8] Wolfgang Puffitsch. Data caching, garbage collection, and the
Java memory model. In Proceedings of the 7th International
Workshop on Java Technologies for Real-Time and Embedded
Systems (JTRES 2009), pages 90–99, New York, NY, USA,
2009. ACM.

[9] Martin Schoeberl. JOP: A Java Optimized Processor for
Embedded Real-Time Systems. PhD thesis, Vienna University
of Technology, 2005.

[10] Martin Schoeberl. A Java processor architecture for embedded
real-time systems. Journal of Systems Architecture,
54/1–2:265–286, 2008.

[11] Martin Schoeberl. Time-predictable cache organization. In
Proceedings of the First International Workshop on Software
Technologies for Future Dependable Distributed Systems
(STFSSD 2009), pages 11–16, Tokyo, Japan, March 2009.
IEEE Computer Society.

[12] Martin Schoeberl. A time-predictable object cache. In
Proceedings of the 14th IEEE International Symposium on
Object/component/service-oriented Real-time distributed
Computing (ISORC 2011), pages 99–105, Newport Beach,
CA, USA, March 2011. IEEE Computer Society.

[13] Martin Schoeberl, Benedikt Huber, and Wolfgang Puffitsch.
Data cache organization for accurate timing analysis.
Real-Time Systems, DOI: 10.1007/s11241-012-9159-8:1–28,
2012. doi: 10.1007/s11241-012-9159-8.

[14] Martin Schoeberl, Thomas B. Preusser, and Sascha Uhrig. The
embedded Java benchmark suite JemBench. In Proceedings of
the 8th International Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES 2010), pages
120–127, New York, NY, USA, August 2010. ACM.

[15] Martin Schoeberl, Wolfgang Puffitsch, Rasmus Ulslev
Pedersen, and Benedikt Huber. Worst-case execution time
analysis for a Java processor. Software: Practice and
Experience, 40/6:507–542, 2010.

[16] Sascha Uhrig. Evaluation of different multithreaded and
multicore processor configurations for soPC. In Koen Bertels,
Nikitas J. Dimopoulos, Cristina Silvano, and Stephan Wong,
editors, Embedded Computer Systems: Architectures,
Modeling, and Simulation, 9th International Workshop,
SAMOS, volume 5657 of Lecture Notes in Computer Science,
pages 68–77. Springer, 2009.

[17] Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc
Schlickling, Markus Pister, and Christian Ferdinand. Memory
hierarchies, pipelines, and buses for future architectures in
time-critical embedded systems. IEEE Transactions on CAD
of Integrated Circuits and Systems, 28(7):966–978, 2009.

[18] Martin Zabel. Effiziente Mehrkernarchitektur für eingebettete
Java-Bytecode-Prozessoren. PhD thesis, Technische
Universität Dresden, Fakultät Informatik, 2011.

[19] Martin Zabel and Rainer G. Spallek. Application requirements
and efficiency of embedded java bytecode multi-cores. In
JTRES ’10: Proceedings of the 8th International Workshop on
Java Technologies for Real-Time and Embedded Systems,
pages 46–52, New York, NY, USA, 2010. ACM.

