
Multiprocessor Priority Ceiling Emulation for
Safety-Critical Java

Tórur Biskopstø Strøm
Department of Applied Mathematics and

Computer Science
Technical University of Denmark

torur.strom@gmail.com

Martin Schoeberl
Department of Applied Mathematics and

Computer Science
Technical University of Denmark

masca@dtu.dk

ABSTRACT
Priority ceiling emulation has preferable properties on unipro-
cessor systems, such as avoiding priority inversion and being
deadlock free. This has made it a popular locking proto-
col. According to the safety-critical Java specification, pri-
ority ceiling emulation is a requirement for implementations.
However, implementing the protocol for multiprocessor sys-
tems is more complex so implementations might perform
worse than non-preemptive implementations.

In this paper we compare two multiprocessor lock imple-
mentations with hardware support for the Java optimized
processor: non-preemptive locking and priority ceiling emu-
lation. For the evaluation we analyze the worst-case execu-
tion time of the locking routines. We also analyze a safety-
critical use case with each implementation.

We find that the additional software steps necessary for
managing priorities in priority ceiling emulation increase the
number of locking cycles by at least a factor 15, mainly
due to memory contention in a multiprocessor system. This
overhead results in the use case being unschedulable using
priority ceiling emulation. Any benefits of priority ceiling
emulation are also lost when the tasks are completely dis-
tributed among the processor. Therefore, given distributed
tasks with short critical sections, non-preemptive locking is
preferred.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems; C.3 [Special-Purpose
and Application-Based Systems]: Real-time and em-
bedded systems

General Terms
Design, Performance

Keywords
Priority Ceiling Emulation, Safety-critical Java, Multi-processor

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
JTRES ’15, October 07 - 08, 2015, Paris, France
Copyright 2015 ACM 978-1-4503-3644-4/15/10 ...$15.00.
http://dx.doi.org/10.1145/2822304.2822308.

1. INTRODUCTION
Locks in real-time systems need a way to avoid priority

inversion. Two approaches are common as priority avoid-
ance protocol: priority inheritance and priority ceiling em-
ulation (PCE). PCE is preferable in safety-critical systems
as its implementation is simpler than a priority inheritance
protocol. Furthermore, on uniprocessor systems PCE also
prevents deadlocks. The safety-critical Java specification re-
quires that all implementations support PCE. However, the
protocol is more complex on multiprocessor systems, so the
theoretical benefits of the protocol might not be viable in
practice.

On a multiprocessor system locking is usually implemented
with the help of a compare-and-set instruction that oper-
ates atomically. However, supporting this instruction in a
time-predictable way for shared memory becomes expensive;
the worst-case execution time (WCET) for this instruction
will be high. Therefore, direct on-chip hardware support for
locking avoids the high execution time of external memory
access.

We explored hardware support for locking in a multipro-
cessor version [9] of the Java processor JOP [10]. We pre-
sented a locking unit in parallel to the single global lock
in [15]. From that starting point we integrated those two
components into the Java locking unit (JLU).1

This paper extends the JLU to support PCE. Our imple-
mentation is twofold: (1) we add functionality to the JLU
that allows the unit to support preemption and (2) we add
software routines to manage priorities, such as reading the
ceiling priority of a lock and updating a thread’s priority
accordingly. Our implementation is time-predictable and all
functions are WCET analyzable.

The evaluation shows how the practical performance of
PCE can result in unschedulable task sets. First we present
a typical theoretical example where the thread set is not
schedulable without preemption of critical sections, but when
using PCE the set is schedulable. We then update the lock-
ing times of the thread set with the WCET results from our
analysis. This reveals the opposite result, i.e., the thread
set is not schedulable with PCE, but is with non-preemptive
locks. This analysis shows that practical implementations of
PCE on a multiprocessor shared memory system might be
less efficient than executing critical sections at top priority,
i.e., without preemption.

1A journal article, currently under revision, describes this
integration. For reference for the JTRES review process we
have put this unpublished article on a web server for access:
http://www.jopdesign.com/doc/jophwlocks.pdf.

http://www.jopdesign.com/doc/jophwlocks.pdf

We have briefly presented the PCE implementation in [18].
In this paper we extend the work by (1) providing a more
detailed description of our implementation, (2) extending
the performance analysis by adding a safety-critical use case,
and (3) discuss PCE viability based on the results.

The paper is organized in 8 sections. Section 2 gives back-
ground information on locking, safety-critical Java, and a
Java chip-multiprocessor. Section 3 presents the Java lock-
ing unit. Section 4 describes our implementation of priority
ceiling emulation. Section 5 analyses the WCET of the PCE
and non-preemptive (JOP’s default locks) implementation
and performs the utility analysis of the SCJ RepRap use
case [17] using the two locking routines. Section 6 discusses
the results from the evaluation. Section 7 presents related
work. Section 8 concludes the paper.

2. BACKGROUND
In the following section we provide background on locking,

PCE, safety-critical Java, and the Java processor JOP.

2.1 Locking
When two or more computing routines share a stateful re-

source, and modification of the state is not implicitly atomic,
it is necessary to ensure atomicity by other means. There are
multiple ways to achieve this, e.g., the timing of two real-
time threads is such that they finish modifying the state
before the other thread accesses the resource. However, one
of the most common methods is to use locks.

A lock has the notion of an owner and until the current
owner has released the lock no other thread shall access the
resource(s), ensuring atomicity. Locks are not without their
own issues though, and two of the main ones are deadlocks
and priority inversion [6].

Deadlocks can occur in settings with 2 or more locks where
threads do not acquire the locks in the same order, e.g.
threads τ1, τ2 execute and both try to acquire locks L1 and
L2:

1. τ1 obtains L1.

2. τ2 preempts τ1 and obtains L2.

3. τ2 tries to obtain L1, but cannot and suspends.

4. τ1 tries to obtain L2 and suspends, making both threads
suspend indefinitely.

Priority inversion happens when a middle priority thread
preempts a lower priority thread that holds a lock on which
a high priority thread is waiting, even though the middle
priority thread might not share a lock with the other two
threads. E.g., threads τ1, τ2 and τ3, with increasing priori-
ties 1, 2 and, 3 respectively, execute:

1. τ1 obtains lock L1, after which τ3 preempts it.

2. τ3 tries to grab L1 and suspends while waiting for τ1
to release it.

3. τ1 continues executing, but is then preempted by τ2.

Thus τ2 delays the execution of τ3, even though τ2 has a
lower priority than τ3 and does not share a resource with τ3.

2.2 Priority Ceiling Emulation
There exist several protocols to alleviate the problems of

deadlocks and priority inversion. Lui Sha et al. [13] describe
the original priority ceiling protocol, which aims to prevent
priority inversion and deadlocks. Under this protocol each
lock has a priority assigned that is at least as high as the
highest priority of any thread accessing it. If a thread owns
a lock and another thread tries to acquire the same lock, the
owning thread’s priority is temporarily raised to that of the
lock, preventing the other thread from executing until the
owner has released the lock.

A simpler and, at least in our experience with uniprocessor
systems, more common variation of this protocol is priority
ceiling emulation [4] (PCE). With PCE a system raises a
thread’s priority to the lock’s ceiling priority as soon as the
thread acquires the lock, instead of waiting until there is
contention. Other threads on the same processor that would
acquire the same lock are thereby prevented from executing
until the owning thread has released the lock.

Applying PCE to the deadlocking example in Section 2.1
proceeds as follows:

1. τ1 obtains L1 and its priority raises to at least that of
τ2.

2. τ2 cannot preempt τ1, allowing τ1 to obtain L2.

Applying PCE to the priority inversion example in Sec-
tion 2.1 proceeds as follows:

1. τ1 obtains L1 and its priority raises to at least 3.

2. Neither τ2 nor τ3 can preempt τ1, allowing τ1 to exe-
cute until it releases L1.

Although locking is well understood on uniprocessor sys-
tems, this is not the case for multiprocessor systems, which
schedule threads according to partitions. A single global
partition allows all threads to execute on all processor, whereas
a fully partitioned system fixes threads to specific proces-
sors. There also exist systems that mix the two partitioning
methods.

Some of the benefits that locking protocols can provide
on uniprocessor systems disappear when using multiproces-
sors. Modifying the deadlocking example so that the threads
execute on their own processor (2 partitions):

1. τ1 executes on processor C1.

2. τ2 executes concurrently on processor C2.

3. τ1 obtains L1 and its priority raises to at least that of
τ2.

4. τ1’s new priority makes no difference to τ2, as it runs
on its own processor (and partition), so τ2 continues
executing and obtains L2.

5. τ1 tries to acquire L2, but either busy waits or suspends
until L2 becomes available.

6. τ2 tries to acquire L1 but either busy waits or suspends
until L1 becomes available, resulting in a deadlock.

Note that PCE still prevents priority inversion on multi-
processor systems. Sharing locks across partitions does not
enable lower priority threads within the same processor(s)
from preempting a higher priority thread.

2.3 Safety-Critical Java
The authors of safety-critical Java (SCJ) [8] envision SCJ

as a future runtime system for safety-critical systems that
need certification. They develop the SCJ specification within
the Java community process under specification request num-
ber JSR 302. To allow certification of Java programs, the
authors only define a very restricted subset of Java. SCJ
bases itself on the RTSJ [1]. It is a subset of RTSJ with
some additional classes. It shall be possible to provide the
reference implementation of SCJ on top of a standard RTSJ
implementation.

SCJ defines three different levels with increasing expres-
sive power for the application programmer, but also in-
creasing complexity of implementation and certification. A
level 0 application consists of periodic handlers under the
control of a single-threaded cyclic executive. The inten-
tion of this level is to be a stepping-stone for developers
that are using cyclic executives, programmed in C or Ada.
The concurrency model stays the same, only the language
changes. Level 1 introduces a preemptive scheduler, very
similar to the Ada Ravenscar tasking profile [3]. Level 2 in-
troduces nested missions and an adapted version of RTSJ’s
NoHeapRealtimeThread and wait/notify.

All three levels support the notion of missions, a sequence
of sub-applications with a mission memory and a set of pe-
riodic handlers. Level 2 introduces nested missions. The
nested missions of level 2 allow more dynamic systems, where
applications can start and stop threads, while an outer mis-
sion continues to execute.

With respect to memory areas, all three levels support
the memory model with three layers: immortal memory,
mission memory, and handler or thread private scopes. The
only difference between the levels is that all handlers in level
0 can use the same backing store for their private memories.

SCJ represents concurrency as handlers, similar to RTSJ
style event handlers. In fact the SCJ handlers are a sub-
class of RTSJ’s BoundAsyncEventHandler. These handlers
are either periodic or event triggered.

2.3.1 Missions and Scheduling
SCJ defines the concept of a mission. A mission consists of

a set of handlers (schedulable objects) and a mission mem-
ory. The notion of managed handlers and threads means
that the start and termination of those entities is under the
control of the SCJ implementation. The SCJ application
creates handlers within a mission during mission initializa-
tion and the number of handlers is constant for a mission.
Handlers come in two flavors: a periodic event handler re-
leased by a time-trigger and an aperiodic handler released by
an event. The event to release an aperiodic handler can be
a software event or an interrupt. The handlers and threads
are also called schedulable objects. An application may have
several missions.

A mission consists of three phases: initialization, execu-
tion, and cleanup. At the initialization phase the SCJ imple-
mentation creates the mission memory. The system enters
the mission memory and creates the handlers and threads
within the mission memory. Furthermore, the application
must allocate all data structures needed for the handlers
to communicate in mission memory (or in immortal mem-
ory). Only immortal and mission memory is shared between
threads.

On the transition to the execution phase the system starts

all handlers. During the execution phase the application
cannot register or start any new handlers. In the execution
phase the system allocates temporary objects in handler pri-
vate memory. Allocation in mission memory or immortal
memory is not prohibited. After the cleanup phase, the sys-
tem clears the mission memory and a new mission may start
in a new, possible differently sized, mission memory.

A class that implements Safelet, and at least one class
that extends Mission, together represent an SCJ applica-
tion. Simple programs, consisting of a single mission, can
use one class that extends Mission and implements Safelet.
How developers specify this main class as the SCJ applica-
tion is vendor specific.

2.3.2 Memory Model
SCJ defines three memory areas: immortal memory, mis-

sion memory, and anonymous private scope memories. Im-
mortal memory is like in the RTSJ for objects that live for
the whole application, which might consist of several mis-
sions. Mission memory represents a scoped memory that
exists for the lifetime of a mission and is the main mem-
ory for data exchange between handlers. Each handler has
an initial private scope, which the infrastructure enters on
release and cleans up at the end of the release. The han-
dler can enter nested private scopes. The private scopes
are anonymous, as the application code has no access to a
ScopedMemory object that might represent this private mem-
ory.

The SCJ specification restricts the usage of scoped mem-
ory and defines the maximum size of backing store for each
thread (handler). Therefore, systems can manage the back-
ing store without memory fragmentation.

2.3.3 Locking
Similar to standard Java, all objects can serve as locks.

However, SCJ does not allow synchronized blocks, meaning
that the specification restricts the use of the synchronized
keyword to methods.

Unlike standard Java, which has no specification on prior-
ity inversion avoidance, the SCJ specification requires that
all implementations support PCE. Additionally, for level 1
all handlers are fully partitioned, i.e., handlers only ever ex-
ecute on a dedicated processor. Level 2 allows scheduling
partitions that contain more than one processor. However,
JOP only supports full partitioning and therefor not SCJ
level 2. This limits our PCE implementation to SCJ level 1.
As level 0 is a single-threaded cyclic executive, no protec-
tion of resources is needed. Although, it is recommended to
protect resources by using synchronized methods for easier
migration of a level 0 application to a level 1 or level 2 SCJ
implementation.

The current draft of the SCJ specification [8] (p. 143)
specifies that locks shared between threads running on dif-
ferent processors need to have a priority so that synchronized
methods execute non-preemptively.

2.4 The Java Chip-Multiprocessor
For the implementation of the locking unit we use the

multiprocessor version [9] of the Java processor JOP [10].
The choice is motivated by two reasons: (1) the JOP dis-
tribution includes a prototype implementation of SCJ [12]
and (2) JOP is the only time-predictable Java platform that
includes a WCET analysis tool [11].

The multiprocessor version of JOP includes a time-division
multiplexing (TDM) arbiter for the shared main memory.
TDM arbitration enables WCET analysis of memory oper-
ations. Furthermore, TDM guarantees independent timing
of tasks executing on different processors. The timing of a
task is not disturbed by other tasks.

The drawback of TDM arbitration is that each memory
access might have a maximum waiting time of a full TDM
round. Therefore, worst-case memory access time increases
considerable with the number of processors. We will see this
cost in the implementation of PCE where access to data
structures allocated in the shared memory is part of the
monitorenter and monitorexit operations.

The JVM specification describes two different methods of
marking a monitor: (1) as an attribute of a method and (2)
with monitorenter and monitorexit bytecodes. To simplify
the implementation on JOP we support only the bytecode
version of monitor control. All synchronized methods are
modified at link time to start with a monitorenter bytecode
and have a monitorexit bytecode before each return.

Threads are scheduled using fully partitioned, fixed-priority
scheduling. Each core runs its own scheduler. When the
scheduler executes, it iterates through a list of the core’s
threads in descending priority order. As soon as a thread is
found that has been released, it is set as the currently exe-
cuting thread. If no thread is found the main/idle thread is
scheduled until the next thread release.

3. THE JAVA LOCKING UNIT
In this Section we describe JOP’s default multiprocessor

Java locking unit (JLU). Note that the unit is not JOP spe-
cific and possibly even usable in non-Java multiprocessor
systems.

The JLU is based on the work done in [15], where a con-
tent adressable memory (CAM) tracks the locks, a global
lock manages access to the CAM, and the queues of threads
waiting for locks are handled in software. The JLU improves
this by merging all of these entities into a single hardware
unit.

Figure 1 shows our hardware configuration with the JLU.
Several JOP processors connect to the shared memory via an
arbiter. To enable WCET analysis [11] of threads running
on the multiprocessor version of JOP, we use the TDM based
arbitration.

Similar to the arbiter, the JLU is connected to all pro-
cessors. Figure 2 shows an overview of the JLU’s structure.
The JLU maps into the I/O space for each processor. To
modify a lock, i.e., either acquire or release a lock, a thread
writes the request, as well as the lock’s address to the input
register. This simple write operation either performs the
acquire or release or blocks an acquire until the lock is free.

The state machine that manages the locks switches be-
tween requests in the input selector in round-robin style,
completing each request before moving to the next request.
If a processor has no outstanding request the state machine
moves to the next processor in the next clock cycle.

The JLU contains a set of registers that represent lock
“entries”. Each entry consists of a flag indicating whether
the entry is empty, a field with the current owner (processor
number), a word (32-bit in the case of JOP) with a lock’s
address, and a counter to track the number of times the cur-
rent owner has acquired the lock. The counter is necessary
for Java-like systems where a lock can be acquired multiple

CPU0 CPU1 CPUN-1….

Arbiter JLU

…. ….

External Memory

FPGA

Figure 1: A JOP CMP system with the JLU

times and has to be released an equal number of times.
When requesting a lock, the unit checks if the lock’s ad-

dress already exists in the entries. If so, and another pro-
cessor already owns the lock, the JLU enqueues the current
processor in a FIFO residing in a local on-chip memory. Oth-
erwise the JLU registers the lock in an empty entry and reg-
isters the requesting processor as the owner. If the requested
lock is already owned by the thread the JLU just increments
the counter.

Before requesting a lock, a thread disables its processor’s
interrupts. In addition, during the JLU’s processing of ei-
ther an acquisition or release, the JLU blocks the processor’s
write request on the interconnect. This stalls the proces-
sor until the request is complete and the processor has ac-
quired/released the lock, effectively making the thread spin-
wait at top priority. If the processor releases its final lock
the thread enables interrupts.

Threads can read the result of a request by reading from
the same IO address. The result indicates whether the
thread now has acquired/released the lock or whether there
are no lock entries left so the system throws an exception.
Note that a read does not stall the processor like the re-
quests.

Mapping the JLU in IO space and using the interconnect
to stall a processor means that the JLU is not JOP specific
and is usable on other processors that have interconnects
with similar support.

Requesting a lock in the JLU has a low overhead. While
waiting for a lock, a thread non-preemptively spin-waits.
While owning a lock, a thread non-preemptively executes the
critical section. The JLU locking can therefore be considered
a degenerated form of PCE, hereafter referred to as DPCE.
The main difference between PCE and DPCE is that PCE
allows preemption when there are locks with ceiling priorities
that are lower than some thread priorities.

According to the SCJ specification, critical sections, pro-
tected by locks that are shared between processors, have to
run at top priority, as priorities between scheduling parti-
tions have no meaning. This means that DPCE behaves
like PCE except when a lock is not shared between proces-
sors and has a ceiling priority that is lower than at least one
other thread on the processor that does not access the lock.

The current draft of the SCJ specification [8] (p. 143)

CPU0 CPU1 CPUN-1….

Input Register

Input Selector

Match Encoder

Empty Encoder

Entry0

Entry1

EntryM-1

Processing State Machine

RAM

….
…
.

…
.

…
.

…
.…
.

Figure 2: The Java locking unit

specifies that locks shared between threads running on dif-
ferent processors need to have a priority so that synchronized
methods execute non-preemptively:

On a Level 1 system, the schedulable objects are
fully partitioned among the processors using the
scheduling allocation domain concept. The ceil-
ing of every synchronized object that is accessi-
ble by more than one processor has to be set so
that its synchronized methods execute in a non-
preemptive manner. This is because there is no
relationship between the priorities in one alloca-
tion domain and those in another.

On a Level 2 system, within a scheduling allo-
cation domain, the value of the ceiling priorities
must be higher than all the schedulable objects
on all the processors in that scheduling alloca-
tion domain that can access the shared object.
For monitors shared between scheduling alloca-
tion domains, the monitor methods must run in
a non-preemptive manner.

4. PCE IMPLEMENTATION
Although JOP already implements a degenerated form of

PCE there are quite a few changes necessary to implement
proper PCE.

As in standard Java, SCJ allows each object to serve as a
lock. In addition, SCJ allows the ceiling priority of each lock
to be configurable. It is therefore necessary to register and
remember the priority of object’s throughout their lifetime.
However, SCJ requires that each lock priority not explicitly
set uses a system default priority, so PCE implementations
need only register an object’s priority when that priority is
other than the default.

There are multiple options to maintain a object/priority
mapping, e.g., a hash map, a table, the object header, etc.
As a quick and efficient solution we found unused space in

JOP’s object header alongside the scope levels. This header
field is 32 bits long, which we split into two 16 bit words,
with one maintaining scope levels and the other maintaining
an object’s (potential) ceiling priority. This limits both the
scopes and the priorities to 65536 levels. However, we find
this to be more than adequate for most, if not all, solutions.
If the priority field is zero, the ceiling of the object is not
set, so if a thread uses the object as a lock, the ceiling will
be the system default.

The JLU implements DPCE, meaning that threads always
spin wait at top priority. It is therefore necessary to make
some changes to the JLU before it supports proper PCE.

The JLU only maintains queues of processors waiting for
locks and therefore doesn’t distinguish between threads on
each processor. It is therefore an issue if two threads on
the same processor try to request the same lock, as the JLU
would only enqueue the processor once. However, from PCE
we know that threads requesting the same lock should not
have a priority higher than the ceiling of the lock. Therefore,
other threads on the same processor trying to acquire the
same lock will not be scheduled as long as one of the threads
is holding the lock.

To support preemption, we have modified the JLU’s lock-
ing procedure. Instead of disabling interrupts until a proces-
sor releases all its locks, interrupts are only disabled for the
duration of a request, i.e., the processor immediately owns
the lock, the JLU has enqueued the processor or the proces-
sor released the lock. Furthermore, we add a request port
to the JLU that returns the state of a lock, i.e., whether
the current processor is the owner or not. A thread can
thereby spin in software (preemptively) while checking if it
has become the owner.

One of the issues with PCE is the necessity to track prior-
ities as a thread acquires different locks, so that the thread
gets the priorities in reverse order as it releases the locks.
In the following example thread τ1, and locks L1 and L2,
have the corresponding priorities 1,2 and 3, with 3 being

the highest:

1. τ1 executes at priority 1.

2. τ1 requests L1 and its priority changes to 2.

3. τ1 requests L2 and its priority changes to 3.

4. τ1 requests L1 again, but its priority remains at 3.

5. τ1 releases L1 with no priority change.

6. τ1 releases L2 and its priority reverts to 2.

7. τ1 releases L1 and its priority reverts to 1.

To support this functionality we implemented priority“bread
crumbs” (PBC). Each thread contains an array index as well
as a priority array and a lock count array, both with length
k+2, where k is the number of locks with a priority other
than the default. k is found by registering all ceiling modi-
fications and counting the number of different priorities.

In SCJ priority modifications are only allowed during mis-
sion initialization. This means that the system can deter-
mine the PCB array sizes at the end of mission initialization
without degrading the performance of the mission itself. The
system uses the PBCs as follows:

Locking

1. Read object’s priority (P1).

2. Read thread’s current priority (P2).

3. If P1 > P2 increment PBC index, add P1 at new index
and set thread’s priority to P1.

4. Increment PBC lock count at current index.

Unlocking

1. Decrement PBC lock count at current index.

2. If lock count is 0, decrement PBC index and set thread’s
priority to the priority at the new index.

All of the operations only modify variables related to the
currently executing thread, which means no synchronization
is necessary. As such the locking procedures become as fol-
lows:

monitorenter

1. Update thread’s priority

2. Request lock in JLU

3. Spin while waiting for the lock

monitorexit

1. Release lock in JLU

2. Update thread’s priority

In addition to these modifications, we also update the
scheduler on JOP. Although the priority of a thread can
change during lock acquisition/release, we do not actually
modify the thread queue. Instead, we modify the scheduler
such that it iterates through the entire thread queue every

Table 1: WCET in clock cycles for each lock imple-
mentation.

processors

1 2 4 8 12

monitorenter

DPCE 33 38 48 68 88
PCE 606 1081 1362 1663 1964

monitorexit

DPCE 27 32 42 62 82
PCE 505 890 1128 1376 1624

time and finds the highest priority thread which is also re-
leased. Although this makes the WCET of a core’s scheduler
O(t), where t is the number of threads on the core, this is
not an issue for our tests, as the number of threads per core
are low (1 for the use case). The benefit of this is that we do
not have to manipulate the scheduler’s priority queue dur-
ing lock acquisition/release, thereby avoiding O(t) WCET
overhead during locking.

5. EVALUATION
In this section we compare the WCET of the lock imple-

mentations of DPCE and PCE. We use the Altera DE2-70
board with JOP’s alde2-70cmp top-level file for our analysis.

The number of lock entries in the JLU is configurable, but
we use the default configuration with 32 entries. Previous
tests have shown that the number of entries negligibly affects
the performance and mainly affects the size of the hardware.

5.1 WCET of Locking Operations
Table 1 shows the WCET analysis results for the locking

routines for DPCE and PCE on different number of proces-
sor configurations. For DPCE we manually count the num-
ber of microcode steps for monitorenter and monitorexit
in asm/src/jvm.asm. We also count the number of hardware
cycles used by the JLU by analyzing vhdl/scio/ihlu.vhd.
For PCE we have to analyze jopsys_lck_req, jopsys_lck_rel
and jopsys_lck_stat in asm/src/jvm.asm, as well as count-
ing cycles in vhdl/scio/ihlu.vhd. Additionally, we have
to analyze the two software routines, f_monitorenter and
f_monitorexit, that read, track, and update the priorities.
We do this using JOP’s WCET analysis tool with the op-
tions �jop.jop-rws=3n+2 and �jop.jop-wws=3n+2, where n
is the number of processors. These options ensure that the
worst-case memory access latency is used in the analysis that
corresponds to the latency experienced in the hardware with
the corresponding number of processors.

The results show that the additional complexity of PCE
negatively impacts the locking/unlocking performance by at
least a factor 15. As both implementations use the same
JLU with only minor hardware modifications, the negative
impact of PCE can be attributed to the necessary software
steps responsible for tracking/modifying priorities.

The WCET increase relative to the processor count is
understandable, as some of the software steps have to ac-
cess data structures in the shared memory. This access goes
through the TDM arbiter and the memory access time in-
creases with the number of processors.

5.2 The RepRap Use Case
In this section we show that the problems present before

propagate to the application level, affecting the schedulabil-
ity of the SCJ RepRap use case [17].

The SCJ RepRap application is the controller in a RepRap
3D printer setup. A host computer takes a 3D drawing and
generates textual printing instructions (G-codes). The host
then sends these instructions to the controller, which acts
accordingly, such as moving the printing head and extruding
the melted plastic.

The controller is implemented as an SCJ application con-
sisting of 4 periodic event handlers: RepRapController, Host-
Controller, CommandController, and CommandParser. The
HostController manages the serial communication between
the printer and the host. The CommandParser parses the
received textual instructions. If the received text represent
a valid instruction, a command object is set up and en-
queued in the CommandController, which executes the re-
ceived commands in FIFO order. Finally the RepRap con-
troller controls the printer itself according to the executed
command objects.

Table 2 shows the event handler periods. The HostCon-
troller and RepRapController have short periods, as this is
necessary for the host communication and RepRap hard-
ware. The other two event handlers do not have such strict
timing requirements and therefore operate at longer peri-
ods. The four event handlers are constructed as a pipeline
for processing printing instructions. A lock is shared be-
tween each stage to synchronize data. Additionally, there
is cyclic synchronization between three of the handlers. We
therefore find that the SCJ RepRap application functions
as a reasonable use case for testing hard real-time locking
performance.

The SCJ RepRap paper [17] uses a uniprocessor version of
JOP. In our test we configure JOP with 4 processors and run
each handler on a separate processor. We also optimize the
application for 4 processors, removing unnecessarily coarse
grained synchronizations, such as holding a lock while writ-
ing each part of a message to the host when the application
construction prevents the message from being interleaved
with other messages. Overall the changes are minor.

We use JOP’s WCET tool to analyze the even handlers.
JOP is configured with either DPCE or PCE, after which we
analyze the WCET of the application. Table 2 contains the
WCET of each handler using the respective locks. We also
include the total time an event handler can be blocked. In
a CMP environment both DPCE and PCE allow event han-
dlers to be blocked multiple times by event handlers on other
processors acquiring the same lock(s), as priorities have no
meaning across processors.

Our use of only a single event handler per processor simpli-
fies the utilization test, as blocking times do not propagate
down any priority chain. Our utilization test is therefore
W + B < T for each event handler, where W, B and T
are the event handler’s WCET, maximum blocked time and
period, respectively.

For DPCE the inequalities are:

RepRapController: 0.253 + 0.054 < 1

HostController: 0.717 + 0.270 < 1

CommandController: 2.423 + 1.242 < 20

CommandParser: 12.039 + 0.723 < 20

: Thread is executing

: Thread is blocked/preempted by higher priority thread

: Thread is holding lock

: Thread is waiting for lock

: Thread has violated deadline

: Core separator

: Thread is waiting for lock and preempted

Figure 3: The Legend for the schedulability exam-
ples

Each inequality is satisfied, meaning the set of event han-
dlers is schedulable.

For PCE the inequalities are:

RepRapController: 0.419 + 0.256 < 1

HostController: 1.454 + 0.432 < 1

CommandController: 3.765 + 1.886 < 20

CommandParser: 12.458 + 0.973 < 20

PCE’s overhead results in an overall reduction in event
handler performance, resulting in an unschedulable event
handler set.

6. DISCUSSION
As mentioned, PCE has qualities that make it preferred

in many real-time contexts, as evidenced by the SCJ specifi-
cation. However, as seen in Sections 5, the implementation
complexity has an impact on performance, and any benefits
of PCE are lost if the task set is completely distributed. In
this section we generalize our results by presenting a typical
argument for PCE, after which we apply the WCETs in Ta-
ble 1 and show in more details why the argument does not
necessarily hold when practical issues affect it.

Throughout the examples we use the conventions as shown
in Figure 3. All WCETs, locking times, etc. are in clock
cycles. For the critical section we assume a lock acquisi-
tion/release time of 180 cycles, which is included. Note that
the critical section is also included in the WCET.

6.1 Initial Example
The first example shows a thread set that is not schedula-

ble with DPCE, but is with the PCE. We use the thread set
in Table 3 for this example and list the threads in increasing
priority order, such that τ0 has the lowest priority and τ3 the
highest priority. All threads start at time 0. Additionally
we distribute them between 2 processors such that τ0 and τ1
execute on one processor, and τ2 and τ3 on the other. The
example only contains a single lock shared by τ0 and τ2.

Figure 4 shows the DPCE schedule for the thread set.
From the start τ1 and τ3 block τ0 and τ2 respectively. τ2
is then blocked by τ0 holding the lock. When τ3 is to be
released again, τ2 is still in its critical section. As all critical

Table 2: Periods and WCET for the periodic event handlers when using DPCE and PCE

WCET (ms) Max. potential blocking time (ms)

PEH Period (ms) DPCE PCE DPCE PCE

RepRapController 1 0.253 0.419 0.054 0.256
HostController 1 0.717 1.454 0.270 0.432
CommandController 20 2.423 3.765 1.242 1.886
CommandParser 20 12.039 12.458 0.723 0.973

Table 3: Thread set for the initial example

Thread WCET Period Deadline Critical Section

τ0 800 1600 1600 400
τ1 400 1600 1600 N/A
τ2 400 1600 1600 200
τ3 400 1000 400 N/A

T0

T1

T2

T3

Figure 4: The initial DPCE schedule

sections in DPCE are non-preemptable, τ2 delays τ3 so that
τ3 misses its deadline.

Figure 5 shows the PCE schedule for the same thread set.
The ceiling of the lock is not higher than the highest locking
thread, so τ3 preempts τ2, allowing τ3 to reach its deadline,
after which τ2 runs to completion.

6.2 WCET Updated Example
From the WCET analysis in Table 1 we see that DPCE

only uses 70 cycles for lock acquisition/release. We can
therefore reduce the critical section (and thereby WCET)
by 180 − 70 ≈ 100 cycles. Table 4 shows the new DPCE
thread set. The schedule then becomes as shown in Fig-
ure 6. We see that τ0’s reduced locking time means that τ2

T0

T1

T2

T3

Figure 5: The initial PCE schedule

Table 4: Thread set updated with the DPCE locking
times

Thread WCET Period Deadline Critical Section

τ0 700 1600 1600 300
τ1 400 1600 1600 N/A
τ2 300 1600 1600 100
τ3 400 1000 400 N/A

T0

T1

T2

T3

Figure 6: The WCET updated DPCE schedule

is not blocked for as long and manages to finish before τ3
executes again. Using DPCE is therefore not an issue here.

Table 1 shows that PCE uses at least 1600 cycles for lock
acquisition/release. For the sake of argument and the fig-
ures, we only add 200 cycles to the PCE critical sections.
The updated thread set is shown in Table 5 and the new
schedule in Figure 7. We see that the 200 cycle increase
expands τ0’s critical section to the point where τ3 blocks
τ2. When τ2 is finally able to execute, it hits its deadline,
meaning the PCE task set is not schedulable.

We acknowledge that the examples are still theoretical and
that in many cases our argument will not apply, such as if
many tasks run on a few processors, and the critical sections
are long. However, we find the examples still illustrate the
issues with choosing PCE as a requirement in SCJ based on
its theoretical benefits on uniprocessor systems.

Table 5: Thread set updated with the PCE locking
times

Thread WCET Period Deadline Critical Section

τ0 1000 1600 1600 600
τ1 400 1600 1600 N/A
τ2 600 1600 1600 400
τ3 400 1000 400 N/A

T0

T1

T2

T3

Figure 7: The WCET updated PCE schedule

7. RELATED WORK
We are not the first to implement PCE for SCJ. The Hard-

ware near Virtual Machine [14] is a uniprocessor platform
that implements SCJ and PCE. When an application sets
the priority of an object, the system creates a monitor object
and sets a reference to it in the lock object’s header. The
monitor object contains the specified priority and a field for
the acquiring handler’s priority. When a handler acquires
the lock the system saves its priority in the monitor and the
handler gets the monitor’s priority (if it is higher). When
the handler releases the lock, the handler regains its old pri-
ority. This means that a handler can acquire locks with
different priorities, but when releasing a higher priority lock
it will regain the priority of the last lock. We have the same
support in our implementation, although our solution differs
somewhat, as explained in Section 4. In the future we might
choose to implement the monitor object solution, as this is
more elegant. However, this is not enough on multiproces-
sor systems, where the system needs to maintain a queue for
threads on other processors waiting for the same lock.

Yodaiken [?] argues against priority inheritance on the
grounds that it adds complexity and is inefficient. This is
similar to our issue with PCE, although we admit that the
issues can be far more prominent in priority inheritance than
in PCE.

Yodaiken also argues that instead of using priority inher-
itance to solve the issue of priority inversion, the solution is
either to: (1) Make the resource related operations atomic
and fast, or (2) remove the contention or (3) priority sched-
ule the operations. With regards to (1) the author argues
that RTLinux programmers use the pthread_spin_lock op-
eration to disabled interrupts and, in the case of multipro-
cessor systems, let threads spin while waiting for a lock.
This solution is equivalent to the DPCE behavior of non-
preemptive spinning.

Brandenburg et al. [2] extend the LInux Testbed for MUl-
tiprocessor Scheduling in Real-Time systems (LITMUSRT)
with resource sharing and then empirically evaluate lock-
free execution, wait-free execution, spin-based locking, and
suspension-based locking. They do this under the Flexible
Multiprocessor Locking Protocol (FMLP). They conclude
that systems should avoid suspension when threads share
resources across partitions. This supports the SCJ specifi-
cation, which requires that all locks shared across partitions
should lock non-preemptively. However, they also conclude
that suspending is never preferable to spinning, and this will
most likely always be the case unless a system spends at least
20% of its time in critical sections. In our paper we analyze

DPCE and PCE, used for spinning and suspending respec-
tively. We similarly argue that the simplicity of DPCE can
render the theoretical benefits of PCE void when one adds
the actual locking overhead to the analysis.

Lin et al. [7] evaluate the current resource allocation poli-
cies and analyze their applicability in Ada and RTSJ. They
find that the lack of standardization in resource control pro-
tocols has resulted in priority inheritance becoming a de
facto standard. They find this unfortunate as the protocol is
not optimal or efficient in all application scenarios. Instead
they argue that languages and operating systems should pro-
vide facilities that allow the programmers to provide their
own protocol. We similarly argue that PCE is not optimal or
efficient with all applications, and use the RepRap use-case
as an example of this. However, if no policy requirement is
specified in SCJ, a SCJ application running on one platform
might not run another with a different locking policy, thus
increasing portability issues.

Burns et al. present in [5] the multiprocessor resource
sharing protocol (MrsP). MrsP is similar to PCE, with the
main addition that if a task holding a resource is preempted,
it either migrates to another cores that executes a task spin-
waiting for the same resource, finishing its critical section
there, or another task waiting for the resource will execute
the holding task’s critical section (specific for that resource),
after which it will execute its own critical section. Although
this can provide better processor utilization, MrsP should
have at least the same performance issues as we have found
for PCE, if not more given the more advanced behavior.
However, the lack of WCET analysis for the MrsP imple-
mentation means we cannot conclusively state this.

8. CONCLUSION
We have described our implementation of priority ceiling

emulation with hardware support. The added complexity
of supporting priority modifications on locking increases the
number of cycles by at least a factor 15, compared to only
using non-preemptive locking. The performance degrada-
tion is a result of the software steps involved in modifying
priorities when acquiring and releasing locks. As shown, a
theoretically schedulable task set can therefore be practically
un-schedulable with priority ceiling emulation. Any benefits
of PCE are also lost if the tasks are completely distributed
among the processor. We therefore do not find the choice
that all multiprocessor safety-critical Java implementations
are required to use priority ceiling emulation, based on its
uniprocessor-capabilities, as straightforward.

Source Access
Our implementation of PCE is open source and available at
https://github.com/torurstrom/jop.git on the pce branch.

Acknowledgments
This work was partially funded by the European Union’s 7th
Framework Programme under grant agreement no. 288008:
Time-predictable Multi-Core Architecture for Embedded Sys-
tems (T-CREST) and partially funded by the Danish Coun-
cil for Independent Research | Technology and Production
Sciences under the project RTEMP, contract no. 12-127600.

9. REFERENCES

https://github.com/torurstrom/jop.git

[1] Greg Bollella, James Gosling, Benjamin Brosgol, Peter
Dibble, Steve Furr, and Mark Turnbull. The
Real-Time Specification for Java. Java Series.
Addison-Wesley, June 2000.

[2] Björn B Brandenburg, John M Calandrino, Aaron
Block, Hennadiy Leontyev, and James H Anderson.
Real-time synchronization on multiprocessors: To
block or not to block, to suspend or spin? In
Real-Time and Embedded Technology and Applications
Symposium, 2008. RTAS’08. IEEE, pages 342–353.
IEEE, 2008.

[3] Alan Burns, Brian Dobbing, and G. Romanski. The
Ravenscar tasking profile for high integrity real-time
programs. In Proceedings of the 1998 Ada-Europe
International Conference on Reliable Software
Technologies, pages 263–275. Springer-Verlag, 1998.

[4] Alan Burns and Andrew J. Wellings. Real-Time
Systems and Programming Languages: ADA 95,
Real-Time Java, and Real-Time POSIX.
Addison-Wesley Longman Publishing Co., Inc., 3rd
edition, 2001.

[5] Alan Burns and Andy J Wellings. A schedulability
compatible multiprocessor resource sharing
protocol–mrsp. In Real-Time Systems (ECRTS), 2013
25th Euromicro Conference on, pages 282–291. IEEE,
2013.

[6] Butler W. Lampson and David D. Redell. Experience
with processes and monitors in Mesa. Commun. ACM,
23(2):105–117, February 1980.

[7] Shiyao Lin, Andy Wellings, and Alan Burns.
Supporting lock-based multiprocessor resource sharing
protocols in real-time programming languages.
Concurrency and Computation: Practice and
Experience, 25(16):2227–2251, 2013.

[8] Doug Locke, B. Scott Andersen, Ben Brosgol, Mike
Fulton, Thomas Henties, James J. Hunt,
Johan Olmütz Nielsen, Kelvin Nilsen, Martin
Schoeberl, Jan Vitek, and Andy Wellings.
Safety-critical Java technology specification, draft,
2014.

[9] Christof Pitter and Martin Schoeberl. A real-time
Java chip-multiprocessor. ACM Trans. Embed.
Comput. Syst., 10(1):9:1–34, 2010.

[10] Martin Schoeberl. A Java processor architecture for
embedded real-time systems. Journal of Systems
Architecture, 54/1–2:265–286, 2008.

[11] Martin Schoeberl, Wolfgang Puffitsch, Rasmus Ulslev
Pedersen, and Benedikt Huber. Worst-case execution
time analysis for a Java processor. Software: Practice
and Experience, 40/6:507–542, 2010.

[12] Martin Schoeberl and Juan Ricardo Rios.
Safety-critical Java on a Java processor. In Proceedings
of the 10th International Workshop on Java
Technologies for Real-Time and Embedded Systems
(JTRES 2012), pages 54–61, Copenhagen, DK,
October 2012. ACM.

[13] Lui Sha, R. Rajkumar, and J.P. Lehoczky. Priority
inheritance protocols: an approach to real-time
synchronization. Computers, IEEE Transactions on,
39(9):1175–1185, 1990.

[14] Hans Søndergaard, Stephan E. Korsholm, and
Anders P. Ravn. Safety-critical Java for low-end

embedded platforms. In Proceedings of the 10th
International Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES 2012),
Copenhagen, DK, October 2012. ACM.

[15] Tórur Biskopstø Strøm, Wolfgang Puffitsch, and
Martin Schoeberl. Chip-multiprocessor hardware locks
for safety-critical Java. In Proceedings of the 11th
International Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES 2013),
pages 38–46, Karlsruhe, DE, October 2013. ACM.

[16] Tórur Biskopstø Strøm, Wolfgang Puffitsch, and
Martin Schoeberl. Chip-multiprocessor hardware locks
for safety-critical Java. In Proceedings of the 11th
International Workshop on Java Technologies for
Real-time and Embedded Systems, JTRES ’13, pages
38–46. ACM, 2013.

[17] Tórur Biskopstø Strøm and Martin Schoeberl. A
desktop 3d printer in safety-critical Java. In
Proceedings of the 10th International Workshop on
Java Technologies for Real-Time and Embedded
Systems (JTRES 2012), pages 72–79, Copenhagen,
DK, October 2012. ACM.

[18] Tórur Biskopstø Strøm and Martin Schoeberl.
Hardware locks with priority ceiling emulation for a
Java chip-multiprocessor. In Proceedings of the 17th
IEEE Symposium on Real-time Distributed Computing
(ISORC 2015), pages 268–271, Aukland, New
Zealand, April 2015. IEEE.

[19] Victor Yodaiken. Against priority inheritance, 2004.

	Introduction
	Background
	Locking
	Priority Ceiling Emulation
	Safety-Critical Java
	Missions and Scheduling
	Memory Model
	Locking

	The Java Chip-Multiprocessor

	The Java Locking Unit
	PCE Implementation
	Evaluation
	WCET of Locking Operations
	The RepRap Use Case

	Discussion
	Initial Example
	WCET Updated Example

	Related Work
	Conclusion
	References

