
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1–22
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Hardware Locks for a Real-Time Java Chip-Multiprocessor

Tórur Biskopstø Strøm,1∗Wolfgang Puffitsch,1 and Martin Schoeberl1

1Department of Applied Mathematics and Computer Science
Technical University of Denmark

SUMMARY

A software locking mechanism commonly protects shared resources for multi-threaded applications. This
mechanism can, especially in chip-multiprocessor systems, result in a large synchronization overhead.
For real-time systems in particular, this overhead increases the worst-case execution time and may void
a task set’s schedulability. This paper presents two hardware locking mechanisms to reduce the worst-
case time required to acquire and release synchronization locks. These solutions are implemented for the
chip-multiprocessor version of the Java Optimized Processor. The two hardware locking mechanisms are
compared with a software locking solution as well as the original locking system of the processor. The
hardware cost and performance are evaluated for all presented locking mechanisms. The performance of
the better performing hardware locks is comparable to the original single global lock when contending for
the same lock. When several non-contending locks are used, the hardware locks enable true concurrency
for critical sections. Benchmarks show that using the hardware locks yields performance ranging from no
worse than the original locks to more than twice their best performance. This improvement can allow a
larger number of real-time tasks to be reliably scheduled on a multiprocessor real-time platform. Copyright
c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Hardware locks, real-time systems, real-time Java, chip-multiprocessor

1. INTRODUCTION

The Java model of computation can be summarized as multithreading with shared data on a heap.
Locks enforce mutually exclusive access to the shared data. In Java each object (including class
objects) can serve as a lock. Protecting critical sections with a lock on a uniprocessor system
is relatively straightforward. For real-time systems, priority inversion avoidance protocols are
well established. The priority ceiling emulation protocol is especially simple to implement, limits
blocking time, and avoids deadlocks.

However, on chip-multiprocessor (CMP) systems with true concurrency more options exist for
the locking protocol and a best solution is not (yet) established. Locks have different properties: (1)
they can be used only locally on one core or be used globally; (2) they can protect short or long
critical sections; (3) they can have a priority assigned. The question is, does the user have to know
about these properties and set them for the locks, or can one default behavior be found that fits most
situations?

This paper examines options for CMP locking in the context of safety-critical Java (SCJ) [1]. SCJ
itself is based on the real-time specification of Java (RTSJ) [2]. Therefore, it inherits many concepts

∗Correspondence to: Tórur Biskopstø Strøm, Department of Applied Mathematics and Computer Science, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark. E-mail: torur.strom@gmail.com

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]



2 T. STRØM, W. PUFFITSCH, M. SCHOEBERL

of the RTSJ. SCJ defines some of the properties for locking (e.g., priority ceiling protocol on
uniprocessors), but leaves details for CMP systems unspecified. In this paper we examine possible
solutions and conclude that executing at maximum priority while waiting for a lock and holding a
lock leads to a reasonable solution for CMP locking.

This paper presents hardware support for the Java programming language on CMPs. For the
implementation we start with an existing locking mechanism on the Java optimized processor
(JOP) [3], which uses a single global lock in hardware. This global lock is simple and efficient
on a single core processor. However, this single lock negates the possibility of true concurrency on
a CMP platform.

We extend this locking in three ways: (1) software locks, (2) hardware support for locks, and (3)
hardware support for queues of threads waiting for locks. The software implementation provides
a standard lock implementation and uses the global lock to synchronize access to the locking data
structures. As the worst-case timing for acquiring a lock is on the order of thousands of cycles
for an 8-way CMP, we developed hardware support to improve the locking time. As a first step a
content-addressable memory is introduced that maps objects to locks. The access to this unit is still
protected by the single hardware lock. We further improve the locking unit, reducing the number of
memory accesses, by merging the locking unit with the global lock and adding queues in hardware
for the blocked threads.

The benefits and drawbacks of each lock type are also explored. We found that our first effort
in hardware locks did not yield any noticeable benefits in the benchmarks. However, our improved
locking units perform at their worst as well as the original locks whilst also enabling non-contending
locks. For some benchmarks the performance is more than twice that of the original locks.

This paper is an extended version of a paper presented at JTRES 2014 [4]. The new contributions
of this paper are twofold. First, we present an improved version of the hardware locking unit that has
far better performance than the previous unit. Second, this paper includes a more detailed evaluation
of the hardware implementation and locking performance.

The paper is organized as follows. The next section presents background and related work on
synchronization, safety-critical Java, and the Java processor JOP. Section 3 describes our three CMP
lock implementations: a software only version and two versions with hardware support. We evaluate
all three designs with respect to hardware consumption (for an FPGA-based implementation) and
performance in Section 4. The evaluation section also describes a use case, the RepRap controller,
to explore the lock implementation. In Section 5 we discuss our findings and some aspects of the
SCJ definitions related to locks. Section 6 concludes.

2. BACKGROUND AND RELATED WORK

Our work is in the context of shared memory systems with locks to provide mutual exclusion for
critical sections. We are especially interested in CMP systems in the context of safety-critical Java.
In this section we provide background information on those topics, including references to related
work.

2.1. Uniprocessor Synchronization

When a resource is shared between two or more threads, it may be necessary to serialize access
in order to prevent corruption of the data/state. A commonly used mechanism is locking, where a
thread acquires a lock before accessing the shared resource. The code segment accessing the shared
data and protected by a lock is also called critical section.

Other threads that wish to acquire the lock and access the resource have to wait until the current
owner has released the lock. While locking mechanisms guarantee mutual exclusion, the more
detailed behavior varies greatly depending on the environment and implementation.

One problem with locking is that, depending on the usage and implementation, priority inversion
can occur, as described by Lampson and Redell [5]. An example of the problem is as follows: given
three threads L, M, and H with low, medium, and high priorities and a lock shared between L and H.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



HARDWARE LOCKS FOR A REAL-TIME JAVA CHIP-MULTIPROCESSOR 3

Priority inversion may arise when L acquires the lock and H has to wait for it. Since M has a higher
priority than L and does not try to acquire the lock, it can preempt L, thereby delaying H further.

This problem can be solved by priority inversion avoidance protocols [6]. With priority
inheritance the lock-holding thread inherits the priority of a higher priority thread when that thread
tries to acquire the lock. Another protocol, called the priority ceiling protocol, assigns a priority to
the lock that must be higher or equal than the priority of each thread that might acquire the lock. A
simplified version of this protocol is the priority ceiling emulation (PCE) protocol [7], also called
the immediate ceiling priority protocol. In PCE a thread taking a lock is immediately assigned the
priority of the lock. When the thread releases the lock its priority is reset to the original priority.
If threads are prohibited from self-suspending, PCE ensures that the blocking is bounded and that
deadlocks do not occur on uniprocessor systems.

These PCE properties also apply to CMP systems when threads are pinned to processors and when
locks are not shared by threads executing on different processors. However, if locks are shared over
processor boundaries, deadlocks can occur. Individual priorities need to be set carefully in order to
keep blocking bounded.

2.2. Multiprocessor Synchronization

While the impact of locking on real-time systems is well understood for uniprocessors, the
multiprocessor case raises new issues. Several decisions need to be made when designing a
multiprocessor locking protocol. Should blocked threads be suspended or should they spin-wait?
Should the queue for entering the critical section be ordered according to priorities or a FIFO policy?
Can threads be preempted while holding a lock? These decisions influence the system behavior with
regard to blocking times and schedulability.

Spinning seems to be beneficial for schedulability according to an evaluation by Brandenburg et
al. [8], but of course wastes processor cycles that could be used for computations. Whether priority
queuing or FIFO queuing performs better depends on the properties of the thread set [9].

Rajkumar et al. [10] propose the multiprocessor priority ceiling protocol (MPCP), which is
a “distributed” locking protocol. In such a protocol, shared critical sections are executed on a
dedicated synchronization processor, i.e., tasks migrate to the synchronization processor while
executing a critical section. Depending on the task set properties, distributed locking protocols can
outperform protocols where critical sections execute on the same processor as regular code [9].
However, frequent task migrations are likely to reduce the (average-case) performance of distributed
locking protocols.

Gai et al. [11] propose the multiprocessor stack resource policy (MSRP), which extends the stack
resource policy (SRP) proposed by Baker [12]. The protocol distinguishes local and global critical
sections. Local critical sections are used when threads that share a lock execute on the same core.
These critical sections follow the SRP and are not directly relevant to the work presented in this
paper. Global critical sections are used when threads that share a lock execute on different cores.
When executing a global critical section on a processor, the priority is raised to the maximum
priority on that processor. Global critical sections are therefore non-preemptible. Tasks wait for
global resources by spinning non-preemptively and are granted access according to a FIFO policy.

Burns and Wellings [13] present a variation of MSRP that reduces the impact of resource sharing
on schedulability. Unlike MSRP, they allow preemption of tasks that wait for or hold a lock. The
key feature of this protocol is that waiting tasks can execute requests of preempted tasks that are
ahead of them in the FIFO queue. Therefore, processing time that would otherwise be wasted for
spinning can be used for actual computations.

The flexible multiprocessor locking protocol (FMLP) [14] provides the possibility to adapt to
the application’s characteristics by distinguishing “long” and “short” resource requests. While short
requests use spin-waiting, long requests suspend waiting tasks. Both short and long requests use
FIFO ordering for waiting tasks.

The SCJ specification does not require a particular locking protocol for multiprocessors. On the
one hand, this solomonic non-decision is understandable, given that there does not seem to be a

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



4 T. STRØM, W. PUFFITSCH, M. SCHOEBERL

“best” solution. On the other hand, different SCJ implementers may choose different protocols,
leading to incompatibilities between the respective SCJ execution environments.

An overview of different approaches of locking on multicore versions of RTSJ and SCJ systems
is given by Wellings et al. [15]. They find that to bound blocking and prevent deadlocks, threads
holding global locks should be non-preemptible on both fully partitioned and clustered systems,
corresponding to a SCJ level 1 and level 2 implementation, respectively. All nested locking should
be refactored to follow FMLP or some other protocol that ensures access ordering. Wellings et
al. [15] note that FMLP introduces group locks, which have the side effect of reducing parallelism.
Any application developer wishing to use RTSJ or SCJ for predictability must identify global locks
and set the locks’ ceiling higher than all threads on all processors where the shared lock is reachable.
Threads should spin non-preemptively in a FIFO queue and should not self-suspend.

2.3. Hardware Support for Multiprocessor Locking

While hardware support for multiprocessor synchronization is not uncommon, few of the proposed
hardware mechanisms take into account the needs of real-time systems. An example of such a
hardware unit is US Patent 5,276,886 [16]. It provides atomic access to single-bit locking flags, but
does not provide any support for more sophisticated locking protocols.

Carter et al. compared the performance of software and hardware locking mechanisms on
multiprocessors [17]. They found that hardware locking mechanisms perform significantly better
under heavy contention than software mechanisms.

Altera provides a “mutex core” [18], which implements atomic test-and-set functionality on a
register with fields for an owner and a value. However, that unit does not provide support for
enqueuing tasks. Therefore, guaranteeing a particular ordering of tasks entering the critical section
(according to priorities of a FIFO policy) has to be done in software.

US Patent 8,321,872 [19] describes a hardware unit that provides multiple mutex registers with
additional “waiters” flags. The hardware unit can trigger interrupts when locking or unlocking, such
that an operating system can adapt scheduling appropriately. The actual handling of the wait queue
is done by the operating system.

The hardware unit described in US Patent 7,062,583 [20] uses semaphores instead of mutexes,
i.e., more than one task can gain access to a shared resource. The hardware unit supports both
spin-locking and suspension; in the latter case, the hardware unit triggers an interrupt when the
semaphore becomes available. Again, queue handling has to be done in software. US Patent
Application 11/116,972 [21] builds on that patent, but notably extends it with the possibility to
allocate semaphores dynamically.

US Patent Application 10/764,967 [22] proposes hardware queues for resource management.
These queues are however not used for ordering accesses to a shared resource. Rather, a queue
implements a pool of resources, from which processors can acquire a resource when needed.

2.4. Java Locks

In Java each object can serve as a lock. There are two mechanisms to acquire this object lock:
(1) executing a synchronized method, where the object is implicitly the receiving object; or (2)
executing a synchronized code block, where the object serving as lock is stated explicitly.

As each object can serve as a lock, a straightforward solution is to reserve a field in the object
header of an object for a pointer to a lock data structure. In practice only a very small percentage of
objects will be used as locks. Therefore, general purpose JVMs perform optimizations to avoid this
space overhead.

Bacon et al. [23] improve an existing Java locking mechanism by making use of compare-and-
swap instructions and encoding the locking information in an existing object header field, thereby
avoiding a size increase for every object. Having the locking information in an object’s header field
means no time is spent searching for the information. However, reusing existing header fields is not
always an option, which means an increase in size for every object.

Another option to reduce the object header overhead is to use a hash map to look up a lock object.
According to [24], an early version of Sun’s JVM implementation used a hash map. However,

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



HARDWARE LOCKS FOR A REAL-TIME JAVA CHIP-MULTIPROCESSOR 5

looking up a lock in the hash table was too slow in practice. For hard real-time systems, using
hash maps would be problematic due to their poor worst-case performance. Our proposed hardware
support for locks is similar to a hash table, but avoids the performance overhead. Furthermore, as
our hardware uses a fully associative table, there is no conflict for a slot between two different locks
and access is performed in constant time.

2.5. Safety-Critical Java

This paper considers a safety-critical Java (SCJ) [25, 1] compliant Java virtual machine (JVM) as
the target platform. SCJ is intended for systems that can be certified for the highest criticality levels.
SCJ introduces the notion of missions. A mission is a collection of periodic and aperiodic handlers†

and a specific memory area, the mission memory. Each mission consists of three phases: a non-
time-critical initialization phase, an execution phase, and a shutdown phase. In the initialization
phase, handlers are created and ceilings for locks are set. During the mission no new handlers can
be created or lock ceilings manipulated. An application might contain a sequence of missions. This
sequence can be used to restart a mission or serve as a simple form of mode switching in the real-
time application.

SCJ defines three compliance levels: Level 0 as cyclic executive, Level 1 with a static set of
threads in a mission, and Level 2 with nested mission to support more dynamic systems.

Level 0 applications use a single threaded cyclic executive. Within single threaded execution no
resource contention can happen. Therefore, no lock implementation needs to be in place. A level
0 application may omit synchronization for accesses to data structures that are shared between
handlers. However, it is recommended to have synchronization in place to allow execution of the
level 0 application on a level 1 SCJ implementation. Level 0 is defined for a uniprocessor only. If a
multiprocessor version of a cyclic executive would be allowed, locking would need to be introduced
or the static schedule would have to consider resource sharing. It has been shown that SCJ level 0 is
a flexible but still deterministic execution platform [26].

Level 1 is characterized by a static application with a single current mission that executes a static
set of threads. SCJ Level 1 is very similar to the Ravenscar tasking profile [27] and the first proposal
of high integrity real-time Java [28]. Our hardware support for locking targets SCJ level 1.

Level 2 allows for more dynamism in the system with nested missions that can be started and
stopped while outer missions continue to execute. Furthermore, Level 2 allows suspension when
holding a lock with wait() and notify().

The single most important aspect of SCJ is the unique memory model that allows some form of
dynamic memory allocation in Java without requiring a garbage collector. SCJ bases its memory
system on the concept of RTSJ memory areas such as immortal and scoped memory.

SCJ supports immortal memory for objects living as long as the JVM executes. Each mission
has a memory area called mission memory. All data that is shared between handlers and local to a
mission may be stored here. This data is discarded at the end of the mission and the next mission
gets a “new” mission memory. This memory area is similar to an RTSJ-style scoped memory with
mission lifetime. Handlers use this memory area for communication. For dynamic allocation of
temporary data structures during the release of handlers, SCJ supports private memory areas. An
initial and empty private memory is provided at each release and is cleaned up after finishing the
current release. Nested private memories can be entered by the handler to allow more dynamic
memory handling during a release.

For objects that do not escape a thread’s context, synchronization is not required to ensure mutual
exclusion. Synchronization on such objects becomes a “no-op” and thus can be optimized away. In
general, this optimization (also known as lock elision) requires an escape analysis. In SCJ, objects
allocated in private memory, by definition, cannot be shared between handlers. Consequently, lock
elision can be applied for such objects without further analysis.

†A SCJ level 2 implementation also includes threads.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



6 T. STRØM, W. PUFFITSCH, M. SCHOEBERL

2.6. Scheduling in Safety-Critical Java

In SCJ, scheduling is performed within scheduling allocation domains. A domain encompasses one
or more processors, depending on the implementation level. All domains are mutually exclusive.
The number of domains also varies according to the levels. At level 0 only a single domain and
processor is allowed. The domain uses cyclic executive scheduling. At level 1 multiple domains are
allowed, however only a single processor is allowed per domain. This is in fact a fully partitioned
system. Level 2 allows more than one processor per domain and scheduling is global within each
domain. Both level 1 and 2 domains use fixed-priority preemptive scheduling.

The PCE protocol is mandatory in SCJ. No approach is specified for threads waiting for a lock,
so implementors are free to use, e.g., FIFO queues, priority queues. However, it is required that the
implemented approach be documented.

2.7. The Java Processor JOP

For hard real-time systems the worst-case execution time (WCET) needs to be known. The WCET is
the input for schedulability analysis that can prove statically that all deadlines can be met. Many off-
the-shelf processors are too complex for WCET analysis and are not supported by standard WCET
tools such as aiT from AbsInt [29]. Furthermore, aiT analyzes binary programs and the analysis
of Java programs compiled to binaries (e.g., with an ahead-of-time compiler) leads to programs
that cannot be analyzed because it is not always possible to reconstruct the control flow from that
binary [30].

The problem of WCET analysis of Java programs becomes manageable when performed directly
at bytecode level, the instruction set of the Java virtual machine. At this level control flow can easily
be extracted from the program and the class hierarchy reconstructed.

To allow WCET analysis at bytecode level we need to use an execution platform where WCET
numbers for individual bytecodes are statically known. The Java processor JOP [3] provides such
an execution platform and even provides the WCET analysis tools WCA [31]. To the best of our
knowledge JOP is the only execution platform that provides WCET analysis for Java programs and
furthermore for Java programs executing on a CMP. Therefore, we have chosen JOP to explore the
hardware support for multiprocessor locking.

Furthermore, JOP is open source and relatively easy to extend. The run-time of JOP also includes
a first prototype of SCJ level 0 and level 1 [32]. Additionally, a CMP version of JOP is available [33].
It shall be noted that the hardware support for locks is not JOP-specific and might even be used in
non-Java CMP systems.

JOP implements the Java virtual machine in hardware and is therefore a Java processor. The JVM
defines a stack machine including object oriented operations in the instruction set. Reflecting this
architecture, JOP includes slightly different caches than a standard processor. For instructions, JOP
contains a method cache [34]. The method cache caches whole methods. Therefore, a cache miss
can only happen on a call or a return instruction, all other instructions are guaranteed hits.

As a stack machine accesses the stack at each operation, often with two read and one write
operation, JOP contains a special stack cache that allows single cycle stack operations [35]. For
objects allocated on the heap (or in scopes) JOP contains an object cache [36].

The stack cache and the method cache are core local and do not need any cache coherency
protocol. The object cache is core local and needs to be cache coherent. Cache coherency for the
object cache is implemented by using a write through cache and by invalidating the object cache on
a montorenter, call of a synchronized method, and on access to a volatile variable.

Figure 1 shows the original JOP CMP configuration. Several JOP cores are connected to the
shared memory via a memory arbiter. The arbiter can be configured to use round-robin arbitration or
time division multiplexing (TDM) arbitration. To enable WCET analysis [31] of threads running on
a CMP version of JOP, we use the TDM-based arbitration. Method code, class structures, and objects
are allocated in main memory. Therefore, a cache miss for the method cache (the instructions),
access to class information, and object field access go through this arbitration. Access to the stack
(pop and push of values) and local variables is covered by the core-local stack cache. This stack
cache is only exchanged with main memory on a thread switch.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



HARDWARE LOCKS FOR A REAL-TIME JAVA CHIP-MULTIPROCESSOR 7

CPU0 CPU1 CPUN-1….

Arbiter Global lock

…. ….

External Memory

FPGA

Figure 1. A JOP Chip-Multiprocessor system with a single global lock

In addition to the arbiter there is a synchronization unit, called global lock in the figure. This unit
represents a single, global lock. This global lock is acquired by a write operation to a device mapped
into the I/O space. If the lock is already held by another core, the write operation blocks and the
core automatically performs a spinning wait in hardware. Requesting the global lock has very low
overhead and can be used for short critical sections. The global lock can be used directly for locking
or can serve as a base primitive operation to implement a more flexible lock implementation.

2.8. Original Lock Implementation in JOP

For the uniprocessor version of JOP, locks were implemented by disabling interrupts and using a
single, JVM-local monitor enter/exit counter. On a JVM monitorenter the interrupts are disabled
and the monitor counter is incremented. On a JVM monitorexit the counter is decremented. When
the counter reaches 0, interrupts are enabled again.

This form of lock implementation can be seen as a degraded form of priority ceiling emulation: all
lock objects are set to the maximum priority and there is no possibility to reduce the priority. This
protocol is also called the interrupt-masking protocol (IMP) [37]. This locking protocol has two
benefits: (1) similar to PCE it is guaranteed to be deadlock-free; and (2) it is simple to implement
and also fast to execute. This protocol is ideal for short critical sections where regular locks would
introduce considerable overhead. However, this protocol has two drawbacks: (1) All locks are
mapped to a single one. Therefore, even different, uncontended locks may result in blocking. (2)
Even threads that are not accessing a lock, but have a higher priority than the thread holding the
lock, are blocked by the lock-holding thread.

The IMP does not work in CMP systems where there is true concurrency. For the CMP version
of JOP [33] we have introduced a synchronization unit that serves as a single, global lock. To avoid
artificially increasing the blocking time by an interrupting thread, the core that tries to obtain the
global lock turns off interrupts. When the global lock is obtained, a thread that tries to access the
global lock blocks in that operation, implicitly implementing spinning wait at top priority. To avoid
the possible starvation of a core (thread), the cores blocking on the lock are unblocked in round
robin order. We call this implementation the multiprocessor global lock (MGL).

While MGL is correct in the sense that it ensures mutual exclusion, it does have some limitations.
The single lock essentially serializes all critical sections, even if they do not synchronize on the same
object. This severely limits the achievable performance in the presence of synchronized methods.
Additionally, it is impossible to preempt a thread that waits for the lock. Interrupts and other high-
priority events cannot be served until the thread is eventually granted the lock and subsequently
releases it again.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



8 T. STRØM, W. PUFFITSCH, M. SCHOEBERL

3. CHIP-MULTIPROCESSOR HARDWARE LOCKS

The purpose of the locks presented here is to improve upon JOP’s original CMP implementation
of locking. We first describe the behavior and implementation details that apply to all of our
implementations, after which each lock implementation is described in its respective subsection.
We present three locking implementations: (1) software locks, (2) hardware support with a content-
addressable memory, and (3) a locking unit with hardware support for queues of blocked threads.

We have chosen not to implement compare-and-swap (CAS). Supporting CAS on JOP requires,
at minimum, changes to the memory arbiter implementation and WCET tool. Even so, CAS requires
additional measures to be as time predictable as our solutions. In this paper we focus mainly on time
predictability with regards to schedulability. However, we acknowledge that CAS is one of the most
common hardware primitives used to implement locking routines, and a comparison of WCET, and
even average-case performance, between CAS and our solutions is lacking.

Another addition could be implementing separate “user” and “executive” modes, such that
interrupt handling is not turned off during “user” critical sections. However, the only interrupt used
in our benchmarks and use-case is the timer interrupt, which drives the scheduler. Enabling this
interrupt would make critical sections preemptible and alternative measures would have to be taken
to ensure correctness, such as raising a thread’s priority to the top priority. A potential optimization
could disable interrupts selectively, while restricting the programming idioms allowed in interrupt
handlers to avoid consistency issues. However, in the absence of other interrupts, we do not see a
benefit in doing so, and consequently, in distinguishing “user” and “executive” modes.

Like many Java processors, JOP does not implement all bytecodes in hardware. The more
advanced instructions are implemented either in microcode or in Java methods. This applies for
monitorenter and monitorexit. Although synchronized methods are called in the same manner
as normal methods in Java, the JOP implementation adds monitorenter and monitorexit to
them. Locking can therefore be handled almost entirely within the two monitor routines, even in the
context of SCJ where the use of the synchronized statement is prohibited and all mutual exclusion
is achieved through synchronized methods.

All of our lock implementations share the following behavior:

• Threads spin-wait until they acquire a lock
• The queue to acquire a lock is organized in FIFO order
• The priority of a thread is raised to top priority as soon as it tries to acquire a lock (i.e., before

starting to spin-wait)
• Threads remain at top priority until they release all locks again
• There is a limited number of locks
• If an application exceeds this number the system throws an “out of locks” exception

The rationale of the SCJ scheduling section states:

The ceiling of every synchronized object that is accessible by more than one processor
has to be set so that its synchronized methods execute in a non-preemptive manner. [38,
p. 143]

By raising the priority of a thread to top priority our implementations similarly execute in a non-
preemptive manner. However, we do this for all locks and do not differentiate between local and
global locks. Therefore, the local lock handling is more restrictive. We consider this difference to
be acceptable, as threads are not allowed to self-suspend, so the local locks are only bounded by the
time a thread holds the lock.

Throwing an exception when running out of lock objects is conceptually the same as throwing
an exception when running out of memory. In safety-critical systems, both types of exceptions are
unacceptable. To determine whether the number of lock objects is sufficient, we have to bound
the maximum number of objects that may be used for synchronization. This could be done when
statically analyzing the memory consumption of an application.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



HARDWARE LOCKS FOR A REAL-TIME JAVA CHIP-MULTIPROCESSOR 9

RtThread

level

queue

RtThread

level

queue

RtThread

level

queue

level

holder

Lock

tail

queue

Figure 2. Lock object with current lock holder and two enqueued threads

3.1. Java Chip-Multiprocessor Software Locks

In the course of implementing real-time garbage collection on the CMP version of JOP [39], the
limitations of using the global lock alone became too restrictive. For example, the garbage collection
thread notifies other cores via an interrupt to scan their local stack, but a thread that is blocked
waiting for the global lock cannot respond to interrupts. Consequently, a software solution on top
of the MGL was implemented. We call this implementation Java multiprocessor software locks
(JMSL).

The object header is expanded to accommodate a reference to an internal lock object. Each object
therefore has a field that indicates whether it acts as a lock and, if so, points to an internal lock object
that contains further details.

In order to avoid the allocation of lock objects during monitorenter, the software lock
implementation uses a pool of lock objects. Lock objects are taken from the pool when needed
and returned to the pool after all threads have exited the synchronized methods guarded by the
lock. As the lock objects are shared across all the cores, MGL is used to synchronize access.

Furthermore, all fields in the lock objects are treated as if they were integer values and converted
via a system intern method to pointers as needed. This avoids triggering write barriers when
manipulating the waiting queue. These write barriers are used for scope checks in SCJ or for the
garbage collector when JOP is used in a non-SCJ mode.

Figure 2 illustrates a lock object and an associated queue. The lock object includes a pointer to
the current lock holder and pointers to the head and the tail of the waiting queue. As a thread‡ can
be waiting for at most one lock, a single field in the thread object is sufficient to build up the queue.
The pointers to the head and the tail of the waiting queue enable efficient enqueuing and dequeuing.

Both the lock and the thread object contain a level field. The level field in the lock object is
used to handle the case of multiple acquisitions of the same lock by the one thread. It is incremented
every time a thread acquires the lock and decremented when it releases the lock again. Only when
this counter drops to zero has the thread released the lock completely and the next thread can enter
the critical section. The level field in the thread object is used to record if the thread is inside a
critical section. It is incremented/decremented whenever the thread enters/exits a critical section.
When the value of this field is non-zero, the thread executes at top priority; when the field is zero,
the thread has released all locks and executes at its regular priority.

An earlier evaluation showed that the worst-case timing for acquiring a lock (excluding time
spent for spinning) is approximately thousands of cycles for an 8-way CMP [39]. It should be noted
that this slow acquisition is not caused by accessing an object’s lock field, but is instead caused by
maintaining the software FIFO queue. The queue is merely a linked list, and therefore not inherently
slow. However, as described in Section 4, increasing the number of cores slows down all non-cached
memory accesses, as the TDM memory arbiter becomes a point of contention. This large overhead
motivated the development of the hardware locks presented in the section that follows.

‡SCJ level 0 and 1 provides handlers and not threads for the application. The mentioned threads (RtThread) are JOP
internal classes that are used to implement SCJ handlers.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



10 T. STRØM, W. PUFFITSCH, M. SCHOEBERL

CPU0 CPU1 CPUN-1….

OR Combined Inputs

Match Encoder

Empty Encoder

Entry0

Entry1

EntryM-1

Write/Read Process

…
.

…
.

…
.

…
.

Figure 3. CAM unit containing M entries and connected to N cores

3.2. Content-addressable Memory Locks for Java

The main issue with JMSL is the large number of memory operations (see Section 4). To reduce the
number of memory operations, we implemented a content-addressable memory (CAM), shown in
Figure 3, to map objects to locks.

The CAM consists of a number of entries, each containing an address field and an empty flag. If
the empty flag is not set, the address field contains the address of the object that is locked on, with
the entry index corresponding to a preallocated lock object in a software array. The lock objects
are similar to the data structures for the software lock implementation, i.e., they point to a queue of
threads and contain the current owner’s number of requests. The empty flag specifies whether the
entry is empty and usable.

When using the CAM, the address of a synchronized object is supplied and compared to the
content of all entries simultaneously. The result of the comparison is sent to the Match Encoder that
supplies the index of the matching entry (there can be at most one). The empty flags are connected
to the Empty Encoder (a priority encoder) that supplies a single index for a free entry that is to be
filled with the next, new address. If there are no matching entries, the entry specified by the Empty
Encoder will automatically be filled with the supplied address.

The CAM returns a word containing the result of the lookup. The highest bit specifies whether
the address already existed in the CAM or whether it was added. The rest of the bits represent the
index of either the existing lock or the index of the new lock.

The CAM is connected to all JOP cores, as shown in Figure 4, and is accessed from software as
a “hardware object” [40]. Using the CAM from software is a two-step operation: in the first step
the address of the lock is written to the CAM and in the second step the result is retrieved. Note
that the latency of the CAM itself is only 2 cycles for a whole operation. When there are no threads
waiting for a lock, the corresponding entry in the CAM can be cleared in a single step. It should be
noted that like JMSL, these hardware locks are only manipulated after acquiring the MGL. Since the
CAM is only accessed within the context of the MGL, there is no need for an arbiter or other access
synchronization to the CAM unit. This also means that all the inputs can be reduced to a single
input by first AND’ing an input with its corresponding write signal (masking) and then OR’ing all
the inputs (OR combined input). The write signal will be low for all other cores waiting for the
MGL.

At system startup one immortal lock object is created for each CAM entry. The results returned
by the CAM are used to update the lock objects. Each lock object can therefore represent many
different locks during an application’s runtime. However, the number of CAM entries/lock objects
is fixed, so there is a limit to the number of simultaneously active locks that the locking system

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



HARDWARE LOCKS FOR A REAL-TIME JAVA CHIP-MULTIPROCESSOR 11

CPU0 CPU1 CPUN-1….

Arbiter Global lock

…. ….

External Memory

FPGA

CAM

….

Figure 4. JOP chip-multiprocessor system with MGL and CAM

can handle. If the lock limit is exceeded the system throws an exception. The upside to this limit is
that no space needs to be reserved for lock information in object headers, potentially saving space
for every object. Note that this is only a potential side benefit to the CAM and not the primary
motivation. Furthermore, this only applies if there is no available space in the object header. In a
system where there is space in the header to encode a reference to the lock object, without expanding
the header, the CAM will not save any memory.

The fixed size of the CAM restricts the number of active locks. However, we assume that the
number of different locks acquired by a single thread is low (at least in carefully written safety-
critical applications). For example, when using a 32 entry table on a 8 core system, 4 concurrently
active locks per processor core are supported. As the threads run at top priority when they own a
lock, only a single thread per core might use entries in the CAM.

A conservative estimate for the number of objects used for synchronization is the maximum
number of allocated objects. Analyses to bound the maximum memory consumption as presented
by Puffitsch et al. [41] and Andersen et al. [42] (the latter targets in particular SCJ) can be reused
to compute such a bound. When allowing only synchronized methods, only objects of types that
implement such methods can be used for synchronization.§ We expect that taking this into account in
the analysis considerably reduces pessimism. Adapting the analyses mentioned above appropriately
is straightforward, but outside the context of this paper.

3.3. Java Locking Unit

Whilst the addition of the CAM reduces the number of memory operations, thereby improving
locking performance, the performance of this system is still much lower than the MGL (see
Section 4). The next step is to keep queues in hardware. However, the queues have to be shared
among the cores, so access to the unit has to be synchronized. Instead of just trying the next step
and adding the hardware queues, we decided to go further and merge the CAM, MGL, and the
queues into a single Java locking unit (JLU), shown in Figure 5.

The Input Register allows the cores to access the JLU concurrently by storing each core’s request,
although requests are not processed concurrently. Instead the processing state machine (PSM)
iterates over the requests in round-robin order, thereby ensuring that all requests are eventually
processed. Similar to the CAM locking unit, a lock request consists of the synchronized object’s
address which is checked against all non-empty entries. If there is no match the address is stored in
the index specified by the Empty Encoder. If there is a match, another core already owns the lock
and the PSM blocks the core, as well as enqueuing it. The queues are implemented in local on-chip

§We would like to thank Kelvin Nilsen for sharing this observation with us.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



12 T. STRØM, W. PUFFITSCH, M. SCHOEBERL

CPU0 CPU1 CPUN-1….

Input Register

Input Selector

Match Encoder

Empty Encoder

Entry0

Entry1

EntryM-1

Processing State Machine

RAM

….

…
.

…
.

…
.

…
.…
.

Figure 5. JLU with M entries and connected to N cores

CPU0 CPU1 CPUN-1….

Arbiter JLU

…. ….

External Memory

FPGA

Figure 6. JOP CMP system with the JLU replacing the MGL and CAM

memory. When the owner of a lock releases it, the head is dequeued (if the queue is non empty) and
the thread is unblocked. Requesting a lock in the JLU is a multicycle process handled by the PSM,
so when a core requests a lock the core is immediately blocked.

In the JMSL or CAM configuration, most of the lock handling is done in Java within
monitorenter and monitorexit. Moving the queues to hardware has reduced these software
operations. This also allowed us to further improve performance by implementing monitorenter
and monitorexit in microcode, similarly to the MGL. This also means that the JLU is not accessed
through hardware objects.

We have created two JLU configurations, where cores in the first configuration have to handle
interrupt enabling/disabling in microcode when locking (JLU-M) and the second configuration does
this in hardware (JLU-P).

For the JLU-M the microcode implementation first disables a core’s interrupts, after which the
synchronized object’s address is sent to the JLU. The JLU delays the core until the request has been
processed. The microcode then reads the response from the JLU which indicates whether a lock
was successfully acquired or an exception occurred, such as the JLU being out of entries. Although
the JLU keeps track of how many times each lock was entered, the microcode keeps track of the

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



HARDWARE LOCKS FOR A REAL-TIME JAVA CHIP-MULTIPROCESSOR 13

number of lock acquisitions the respective core currently has done. When the core has released all
locks, interrupts are re-enabled by the microcode.

In the JLU-P the JLU keeps track of the number of lock acquisitions for each core. As soon as
a core requests its first lock, the JLU disables the core’s interrupts on the hardware level, and only
enables them when the core has released all locks. This means that the microcode implementation
for the JLU-P only sends lock requests and checks for exceptions, thereby reducing the number of
software steps even further.

4. EVALUATION

We compare all different locking solutions (MGL, JMSL, CAM, and JLU) as follows:

• Hardware comparison between all locking configurations and locking units
• WCET comparison of lock acquisitions and releases for all locking units
• Benchmarks for all locking configurations

We differentiate between locking configurations and locking units, with a configuration being a
whole JOP system with a particular locking unit. We also use the shorthand CAM 8 to mean the
CAM unit with 8 locks or the configuration with the corresponding unit.

We use JOP’s WCET tool for all WCET analyses, except where stated otherwise. We use
the tool with the memory option WCET OPTIONS=--jop.jop-rws X --jop.jop-wws X, where
X = 3 ∗ n+ 2 and n is the number of cores. This option sets the WCET for the memory accesses,
such that read and write operations in a 4 core system take 3 ∗ 4 + 2 = 14 cycles. This reflects the
actual WCET for a memory operation using JOP’s TDM memory arbiter. This also makes it clear
that increasing the number of cores will increase the WCET for most software operations, unless
the data can be fetched from the cache or the operation does not access memory.

All locks are tested on an Altera DE2-70 board, which among other things includes a Cyclone-
II FPGA with around 70k logic elements (LEs), and 2 MB of synchronous SRAM. Furthermore,
all tests use the de2-70cmp.vhd top level and only differ in the locking components and their
connections. In this configuration JOP runs at 60 MHz.

4.1. Hardware Comparison

Table I shows the JOP hardware cost comparison between all the locking configurations. The cost
reflects the number of logic elements required by a particular configuration. The table includes
all hardware resources (including the processor cores, the shared memory arbiter, and the locking
hardware). The table includes results for 8-,16- and 32-entry hardware units. JOP is compiled with
the number of cores specified in the Cores column.

Table II shows a similar hardware comparison as Table I but reflects only the locking unit cost in
the corresponding system. Note that the MGL is also used in the JMSL and CAM configurations,
but has roughly the same size. We have therefore truncated the different costs into a single row and
show the cost range.

Table III shows the number of memory bits used by a locking unit in the respective configuration.
We only show the JLU, as the other units do not use any memory. The JLU is described such that
some of the registers can be inferred as memory instead, potentially saving logic elements.. If an
entry has 0 memory bits the potential savings for the configuration is too low to instantiate memory.

From the hardware costs we can conclude that the cost of incorporating a hardware locking unit
(other than the MGL) is comparatively high for a single- and dual-core JOP system, but becomes
more acceptable as the number of cores increases. The JLU grows with the number of entries and
cores, but not as much as the overall system. The CAM’s size is almost independent of the number
of cores, which is a results of it’s connection where all inputs are merged, since access to the unit
is synchronized by the MGL. The MGL is very small compared to the other units, showing that
incorporating multiple locks and queues in hardware does come with a price.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



14 T. STRØM, W. PUFFITSCH, M. SCHOEBERL

Table I. The total number of logic elements for different processor and locking unit configurations

Cores

1 2 4 8 12

MGL 5, 612 10, 773 20, 843 41, 067 60, 988

JMSL 5, 605 10, 785 20, 589 41, 139 61, 031

CAM 8 6, 255 11, 408 21, 668 42, 382 61, 892
CAM 16 6, 612 11, 888 21, 962 42, 298 62, 274
CAM 32 7, 343 12, 642 22, 666 43, 449 62, 973

JLU-M 8 6, 098 11, 515 21, 844 42, 673 63, 366
JLU-M 16 6, 539 12, 049 21, 913 43, 160 63, 645
JLU-M 32 7, 376 12, 957 22, 985 44, 141 64, 374

JLU-P 8 6, 123 11, 518 21, 539 42, 674 63, 416
JLU-P 16 6, 545 12, 070 22, 239 43, 220 63, 908
JLU-P 32 7, 409 12, 950 23, 320 44, 326 64, 436

Table II. The number of logic elements for different locking units

Cores

1 2 4 8 12

MGL 2 8 24 54− 55 89− 91

CAM 8 401 396 397 396 395
CAM 16 778 776 757 767 772
CAM 32 1, 472 1, 438 1, 439 1, 440 1, 459

JLU-M 8 489 661 858 941 1182
JLU-M 16 924 1, 175 1, 245 1, 471 1, 732
JLU-M 32 1, 775 2, 084 2, 308 2, 567 2, 866

JLU-P 8 492 680 878 1, 002 1, 240
JLU-P 16 925 1, 183 1, 264 1, 523 1, 822
JLU-P 32 1, 784 2, 102 2, 324 2, 656 2, 973

Table III. The number of memory bits for different locking units

Cores

1 2 4 8 12

JLU-M 8 0 0 0 192 384
JLU-M 16 0 0 128 384 768
JLU-M 32 0 64 256 768 1, 536

JLU-P 8 0 0 0 192 384
JLU-P 16 0 0 128 384 768
JLU-P 32 0 64 256 768 1, 536

4.2. Locking Performance

Table IV shows the WCET analysis of the two synchronization instructions for all the locks. The
WCET is independent of the number of hardware lock entries. We used JOP’s WCET tool to analyze

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



HARDWARE LOCKS FOR A REAL-TIME JAVA CHIP-MULTIPROCESSOR 15

Table IV. WCET in clock cycles for locking routines

Cores

1 2 4 8 12

monitorenter

MGL 19 19 19 19 19
JMSL 1349 1733 2501 4037 5573
CAM 1089 1398 2016 3252 4488
JLU-M 33 38 48 68 88
JLU-P 18 23 33 53 73

monitorexit

MGL 20 20 20 20 20
JMSL 789 1005 1437 2301 3165
CAM 1042 1360 1996 3268 4540
JLU-M 27 32 42 62 82
JLU-P 10 15 25 45 65

JMSL and CAM locks. The MGL and JLU cannot be analyzed by the tool as the routines are only
implemented in microcode and hardware, so we used manual analysis.

All the entries show the WCET for acquiring a non-contending lock, as well as releasing a lock.
We only show the values for non-contending locks as the values for contending locks are application
dependent. Note that the values for the MGL, JMSL and CAM locks show the WCET for acquiring
a lock under the assumption that no other core is currently trying to acquire a lock. For the MGL
this is necessary as all simultaneous locks are contending and therefore application dependent. For
JMSL and the CAM this is a simplification which does not change the conclusion, i.e. the WCET
will increase further so both will retain the worst performance. The JLU entries show the WCET
under the assumption that all cores simultaneously try to acquire non-contending locks and the
current core is the last in line, i.e., the proper worst case values.

The MGL has constant access time, as it uses a circular priority encoder, so if a core tries to
acquire the lock, the priority encoder switches to the core within a single cycle. Note that this only
applies under the previous assumption that no other core is simultaneously trying to acquire, or
already holds, the lock. The JMSL and CAM locks are very slow compared to the MGL and only
get slower as the number of cores increases, despite the number of software steps being constant.
This is caused by memory arbitration, where the memory controller becomes a point of contention.
Note that the CAM hardware access is only 2 cycles, so the issue is not with the hardware itself.
The JLU locks actually perform on par with the MGL, although performance does depend on the
number of cores so this only applies for a small number of cores. The JLU-P has slightly fewer
microcode steps compared to the JLU-M, as the interrupt disabling and enabling is performed in
hardware.

4.3. Benchmarks

For benchmarking we use the multiprocessor JemBench benchmarks [43]. JemBench automatically
increases the computational requirements of a benchmark if it is solved too quickly, so the results
reflect the difficulty of a benchmark divided by the time taken, i.e., a higher value indicates better
performance. We have only included the benchmarks which actually use synchronization.

Table V shows the results of running Nqueens for each configuration. This test clearly scales
with the number of cores up to 8. The test has a large synchronized block but it is evident that
only a single shared lock is used, as the MGL scales well and only the JLU can keep up with it
in performance. The JMSL and CAM locks do not perform too poorly, which indicates that lock
acquisition/release is not the performance bottleneck of the benchmark.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



16 T. STRØM, W. PUFFITSCH, M. SCHOEBERL

Table V. Benchmark results for Nqueens N=9, L=3

Cores

1 2 4 8 12

MGL 29.43 56.73 103 143 109
JMSL 27.94 53.78 97.33 127 93.56

CAM 8 27.94 53.78 97.26 127 93.7
CAM 16 27.94 53.78 97.26 127 93.7
CAM 32 27.94 53.78 97.26 127 93.7

JLU-M 8 29.33 56.43 102 143 109
JLU-M 16 29.30 56.48 102 143 109
JLU-M 32 29.30 56.43 102 143 109

JLU-P 8 29.49 56.83 103 144 109
JLU-P 16 29.49 56.83 103 144 109
JLU-P 32 29.49 56.78 103 144 109

Table VI. Benchmark results for AES

Cores

1 2 4 8 12

MGL 86.66 140 127 88.76 71.03
JMSL 85.9 139 126 88.21 70.56

CAM 8 85.96 139 126 88.15 70.52
CAM 16 85.9 139 126 88.21 70.52
CAM 32 85.9 138 126 88.15 70.52

JLU-M 8 86.60 139 127 88.76 70.99
JLU-M 16 86.54 139 127 88.82 70.99
JLU-M 32 86.54 139 127 88.76 70.99

JLU-P 8 86.66 140 127 88.82 71.03
JLU-P 16 86.6 140 127 88.76 71.03
JLU-P 32 86.6 140 127 88.76 71.03

Table VI shows the results for the AES benchmark. This test scales only to two cores after which
performance gets worse. We investigated the benchmark and found an issue with the data generation
thread that uses the standard random function. That function uses long operations, which are slow
on 32-bit machines. In that case a single library function dominates the benchmarks execution time.
We think embedded benchmarks should be self contained and not depend on a system library. We
reported this issues to the benchmark maintainers and this issue should be fixed with an update of
JemBench. Configuration performance is similar to the Nqueens test in that locking does not have a
large impact on performance. Interestingly, the test uses 4 different locks; however, these locks are
used for short critical sections compared with the rest of the code.

We found that the two available benchmarks did not adequately represent non-contending locks,
so we added our own Increment benchmark to JemBench. Increment consists of 48 runnables which
are distributed evenly among the cores. Each runnable iterates through the list of runnables and in
turn locks on a runnable and increments its counter L times. Increment is therefore a test with an
abundance of locking and, depending on L, either long or short locks.

Table VII shows the results of running Increment on all configurations with L=1. The first thing
to notice is that this is a test where there is a significant difference between the MGL and JLU. The

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



HARDWARE LOCKS FOR A REAL-TIME JAVA CHIP-MULTIPROCESSOR 17

Table VII. Benchmark results for Increment L=1

Cores

1 2 4 8 12

MGL 34.46 27.63 28.72 15.84 11.23
JMSL 26.4 22.19 23.97 13.73 9.84

CAM 8 26.38 22.19 23.95 13.72 n/a
CAM 16 26.38 22.17 23.97 13.72 9.83
CAM 32 26.38 22.17 23.97 13.73 9.84

JLU-M 8 33.54 31.12 51.73 66.08 n/a
JLU-M 16 33.54 31.12 51.77 66.08 74.24
JLU-M 32 33.54 31.12 51.77 66.11 74.24

JLU-P 8 34.74 32.27 53.06 67.29 n/a
JLU-P 16 34.76 32.29 53.06 67.29 74.98
JLU-P 32 34.76 32.27 53.02 67.29 74.98

Table VIII. Benchmark results for Increment L=100

Cores

1 2 4 8 12

MGL 0.79 0.48 0.35 0.22 0.15
JMSL 0.78 0.48 0.41 0.22 0.15

CAM 8 0.78 0.48 0.41 0.22 n/a
CAM 16 0.78 0.48 0.41 0.22 0.15
CAM 32 0.78 0.48 0.41 0.22 0.15

JLU-M 8 0.79 0.72 1.22 1.52 n/a
JLU-M 16 0.79 0.72 1.22 1.52 1.71
JLU-M 32 0.79 0.72 1.22 1.52 1.71

JLU-P 8 0.79 0.72 1.22 1.53 n/a
JLU-P 16 0.79 0.72 1.22 1.53 1.71
JLU-P 32 0.79 0.72 1.22 1.52 1.71

MGL performance scales according to a negative logarithm, whereas the JLU scales according to a
positive logarithm. The performance of single core locking is roughly the same, which is expected
since there is no contention. Surprisingly the JMSL and CAM scale similarly to the MGL, even
with a lot of non-contending locks. It seems that memory arbitration has such a large impact that
the benefits of enabling non-contending locks is lost. Note that the values for the 12-core, 8-entry
hardware locks do not exist as there are too many simultaneously active locks.

Table VIII shows the results of running Increment on all configurations with L=100. In this test
the amount of work being done within a synchronized block is scaled roughly by a factor of 100.
This is evident in the lower numbers. The results are similar to L=1, with the MGL, JMSL and
CAM locks scaling according to a negative logarithm, and the JLU scaling according to a positive
logarithm.

From all the benchmarks we can conclude that the JLU’s performance is, at its worst, equivalent
to the MGL, and when using multiple processors, possibly more than twice as fast as the MGL’s
best performance. The JMSL and CAM locks have the worst performance, even for non-contending
locks. The MGL actually performs very well as long as the locks are contending or the number of
cores is low.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



18 T. STRØM, W. PUFFITSCH, M. SCHOEBERL

4.4. Use Case

In our previous locking paper [4] we included the SCJ RepRap use case [44] and argued that the
CAM locking unit allowed us to expand the system to 4 cores and improve performance. However,
the predicted performance numbers presented in our locking paper [4] were not correct, as we
ignored the delay due to memory arbitration for a CMP system. What follows is the updated use
case explanation, analysis, and conclusion.

The SCJ RepRap applications controls a RepRap 3D printer and consists of 4 periodic
event handlers: RepRapController, HostController, CommandController and CommandParser. A
host computer takes a 3D drawing and generates textual printer instructions (G-codes). The
HostController manages the serial communication between the printer and the host, receiving the
instructions from the host. The CommandParser receives the instruction from the HostController and
parses it. If the characters represent a valid instruction a command object is set up and enqueued
in the CommandController, which executes the commands in FIFO order. Finally the RepRap
controller controls the printer itself and receives parameters from the CommandController.

Table IX contains the periods for the event handlers. The HostController and RepRapController
have necessarily short periods dictated by the communication and hardware respectively. The other
two event handlers do not have such strict timing requirements and therefore operate at longer
periods. All four event handlers are constructed as a pipeline for processing printing instructions,
meaning that between each stage a lock is shared to synchronize data. Additionally, there is cyclic
synchronization between three of the handlers. The SCJ RepRap application therefore presents a
case where having multiple processors is desirable and just using the MGL should be detrimental to
performance.

The SCJ RepRap paper [4] tests schedulability of the 4 periodic event handlers on a single
JOP core. In our test we configure JOP with 4 cores and run each handler on a separate core.
However, due to the large memory arbitration overhead with 4 cores and unnecessarily large critical
sections when writing to the host, the use case is still not schedulable. We have therefore removed
unnecessarily coarse grained synchronizations, such as holding a lock while writing each part of a
message to the host when the application construction prevents the message from being interleaved
with other messages. Overall the changes are minor.

The new WCETs can be seen in Table IX. We did not include an analysis with the CAM, as
preliminary analysis showed that the software steps involving the CAMS’s locking queue were
severely hampered by the memory arbitration, so the use case with the CAM would not be
schedulable. It is worth noting that when analyzing the blocking times in a CMP environment,
an event handler can be blocked several times by event handlers on other cores acquiring the same
lock(s), as priorities have no meaning across cores. The total maximum potential blocked time is
shown in the table.

Our analysis from [4] differs in that blocking times do not propagate down the priority chain,
as there are no real priorities. Our schedulability analysis is thereby simplified to W +B < T ,
where W, B and T are the event handler’s WCET, maximum blocked time and period, respectively.
The HostController is not schedulable using the MGL, as its WCET and maximum blocked time
is higher than its period of 1. The HostController is schedulable using the JLU-M, as each event
handler’s WCET and blocked time is shorter than the respective period.

The main issue with the MGL reducing all locks to a single shared lock is quite evident in
Table IX, in that the WCETs are almost equal, whereas the MGL’s blocking times are up to 17
times longer than the JLU-M’s.

5. DISCUSSION

Our exploration of CMP locking led to some open questions with respect to the SCJ specification,
which we will discuss in the following.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



HARDWARE LOCKS FOR A REAL-TIME JAVA CHIP-MULTIPROCESSOR 19

Table IX. WCET for the updated PeriodicEventHandlers using the MGL and JLU-M

WCET (ms) Max. potential blocking time (ms)

PEH Period (ms) MGL JLU-M MGL JLU-M

RepRapController 1 0.256 0.253 0.951 0.054
HostController 1 0.729 0.717 0.951 0.270
CommandController 20 2.433 2.423 1.901 1.242
CommandParser 20 12.043 12.039 1.188 0.723

5.1. Specification

In [4] we pointed out that the statement of feasibility analysis ignores blocking times on CMP
systems. As a reaction to that paper the specification was updated.

5.2. Multiprocessor Locking in SCJ

The current SCJ specification [38] is silent in the normative part on the correct locking protocol
for multiprocessors and the priority inversion avoidance protocol. Only the rationale gives some
indication of what versions could be implemented:

If schedulable objects on separate processors are sharing objects and they do not self-
suspend while holding the monitor lock, then blocking can be bounded but the absence
of deadlock cannot be assured by the PCE protocol alone.

The usual approach to waiting for a lock that is held by a schedulable object on a
different processor is to spin (busy-wait). There are different approaches that can be
used by an implementation such as, for example, maintaining a FIFO/Priority queue of
spinning processors, and ensuring that the processors spin non-preemptively. SCJ does
not mandate any particular approach but requires an implementation to document its
approach (i.e., implementation-defined). [38, p. 143]

This indicates that our implementation of spinning wait at top priority and a FIFO queue
is a possible implementation. Leaving the details of the multiprocessor locking open and
implementation defined will result in different scheduling behavior of the same SCJ application
on different SCJ implementations.

To avoid unbounded priority inversion, it is necessary to carefully set the ceiling
values. [38, p. 143]

This hint is for the application developer. However, with our implementation we simplify the
priority ceiling implementation by having the ceiling always at top priority. The top ceilings allow
less concurrency, but a simpler (and faster) locking implementation.

On a level 1 system, the schedulable objects are fully partitioned among the processors
using the scheduling allocation domain concept. The ceiling of every synchronized
object that is accessible by more than one processor has to be set so that its synchronized
methods execute in a non-preemptive manner. This is because there is no relationship
between the priorities in one allocation domain and those in another. [38, p. 143]

This is the suggestion for the application developer to set the ceiling of shared locks to top
priority. It is not specified if violating this suggestion is legal. With our simplified implementation
of the ceilings, execution of synchronized methods is always non-preemptive. Therefore, our
implementation introduces additional blocking on locks used only within an allocation domain.

The JMSL on JOP uses spinning at top priority plus FIFO queues. Evidence that spinning works
better than suspending can be found in a study by Brandenburg at al. [8].

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



20 T. STRØM, W. PUFFITSCH, M. SCHOEBERL

5.3. Locks in Private Memory

Objects that are allocated in private memory are guaranteed not to be accessible by other threads.
Therefore, locks for these objects never require a ceiling above the current thread’s priority. In fact,
the aspect of mutual exclusion vanishes, and monitorenter/monitorexit could be eliminated
through lock elision. However, these objects can have a ceiling above the thread’s priority. By
default, an object’s ceiling is maximum priority, and threads are raised to that priority even when
they synchronize on an object allocated in private memory. In our opinion, a useful optimization
would be to avoid any changes to a task’s priority when synchronizing on a local object.

Another observation with regard to ceiling values is that threads can allocate objects with different
ceilings and then can change their priority at will by synchronizing on a suitable object. Abuse of
this feature introduces dynamic priorities in a programming model that otherwise assumes fixed
priorities.

Related to this observation is the fact that third-party libraries might lead to unintended priority
changes of a handler. One does not always know if locks are used within library functions; and
internal locks might not be accessible. In that case there is no way to avoid the priority boosting to
the top priority.

We examined all method signatures specified in the SCJ library and found that the library is
practically lock free. Only the InterruptHandler class has a synchronized method, but that is
purposeful as locks are also used to provide mutual exclusion between Java threads and interrupt
handlers written in Java.

5.4. Future Work

The locking units have been motivated by the locking mechanism of Java and SCJ. However, they
might also be useful in a non-Java context. We may consider exploring hardware locking units
within the T-CREST CMP architecture [45], which is built out of VLIW RISC processors [46]. In
this context we might not need variable entries and instead use fixed locks, possibly reducing the
locking unit size and improving performance.

Related to this, we may consider a locking unit which reduces, or altogether avoids, access
serialization. This would improve performance for unrelated lock requests.

Given the increase in popularity of mixed-criticality systems, we may also consider further
exploring the interaction between cache architectures and locking mechanism performance to
reduce both the worst-case and average-case performance. Tighter worst-case bounds allow
more/longer tasks to be safely scheduled, but also allow more time for non-critical tasks to be
scheduled. The latter also applies when improving the average-case performance.

6. CONCLUSION

While there is a well-established best practice for locking protocols on uniprocessor real-time
systems, this is not the case for chip-multiprocessor systems. True concurrency can increase the
blocking time. To bound this blocking time, threads need to actively wait (spinning wait) for locks.
In this paper we presented hardware locks for a Java chip-multiprocessor. The hardware locks
support the common locking protocol for real-time chip-multiprocessors to spin wait at highest
priority when waiting for a lock on a different processor core.

Our performance analysis shows that merely moving the tracking of locks to hardware does
not yield any performance benefits, and is actually slower than a single global lock, even though
it enables concurrency for non-contending locks. This is caused by memory arbitration when
maintaining queues of threads waiting for locks in software, and only gets worse as the number
of cores increases. Moving the queues to hardware as well provides the best overall performance,
with performance ranging from at least as fast the global lock, to more than twice the global lock’s
best performance. This does come at a hardware price which is significant with a low core count,
but becomes negligible as the number of cores increases.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



HARDWARE LOCKS FOR A REAL-TIME JAVA CHIP-MULTIPROCESSOR 21

ACKNOWLEDGMENTS

We would like to thank Benedikt Huber for his support with the WCET analysis tool WCA for JOP.
This work is part of the project “Certifiable Java for Embedded Systems” (CJ4ES) and has received
partial funding from the Danish Research Council for Technology and Production Sciences under
contract 10-083159.

SOURCE ACCESS

Our work is published under the GNU open source license and can be downloaded freely. The
main repository for JOP is at https://github.com/jop-devel/jop. The hardware locks are
located in a separate JOP repository at https://github.com/torurstrom/jop. The CAM used
for this paper is on the master branch, commit d1756f4acb2bfc03cdbd424e94c13c935b694f50, and
the JLU-P has its own branch (ihlu p). The JLU-M has been merged with the main repository and is
used as the default locking tool for JOP. It therefore exists in both repositories on the main branch.

REFERENCES

1. Locke D, Andersen BS, Brosgol B, Fulton M, Henties T, Hunt JJ, Nielsen JO, Nilsen K, Schoeberl M, Vitek J,
et al.. Safety-critical Java technology specification, draft 2014. URL https://github.com/scj-devel/doc/
blob/master/scj-0-100.pdf.

2. Bollella G, Gosling J, Brosgol B, Dibble P, Furr S, Hardin D, Turnbull M. The Real-Time Specification for Java.
Java Series, Addison-Wesley, 2000.

3. Schoeberl M. A Java processor architecture for embedded real-time systems. Journal of Systems Architecture 2008;
54/1–2:265–286.

4. Strøm TB, Puffitsch W, Schoeberl M. Chip-multiprocessor hardware locks for safety-critical Java. Proceedings of
the 11th International Workshop on Java Technologies for Real-time and Embedded Systems, JTRES ’13, ACM,
2013; 38–46.

5. Lampson BW, Redell DD. Experience with processes and monitors in Mesa. Commun. ACM Feb 1980; 23(2):105–
117.

6. Sha L, Rajkumar R, Lehoczky JP. Priority inheritance protocols: An approach to real-time synchronization. IEEE
Trans. Comput. 1990; 39(9):1175–1185.

7. Burns A, Wellings AJ. Real-Time Systems and Programming Languages: ADA 95, Real-Time Java, and Real-Time
POSIX. 3rd edn., Addison-Wesley Longman Publishing Co., Inc., 2001.

8. Brandenburg BB, Calandrino JM, Block A, Leontyev H, Anderson JH. Real-time synchronization on
multiprocessors: To block or not to block, to suspend or spin? Real-Time and Embedded Technology and
Applications Symposium, 2008. RTAS’08. IEEE, IEEE, 2008; 342–353.

9. Brandenburg BB. Improved analysis and evaluation of real-time semaphore protocols for p-fp scheduling.
Proceedings of the 19th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2013),
2013.

10. Rajkumar R, Sha L, Lehoczky JP. Real-time synchronization protocols for multiprocessors. Real-Time Systems
Symposium (RTSS), 1988; 259–269.

11. Gai P, Lipari G, Di Natale M. Minimizing memory utilization of real-time task sets in single and multi-processor
systems-on-a-chip. Real-Time Systems Symposium, 2001. (RTSS 2001). Proceedings. 22nd IEEE, 2001; 73–83.

12. Baker TP. Stack-based scheduling of realtime processes. Real-Time Systems 1991; 3(1):67–99.
13. Burns A, Wellings AJ. A schedulability compatible multiprocessor resource sharing protocol – MrsP. Real-Time

Systems (ECRTS), 2013 25th Euromicro Conference on, 2013; 282–291.
14. Block A, Leontyev H, Brandenburg BB, Anderson JH. A flexible real-time locking protocol for multiprocessors.

Embedded and Real-Time Computing Systems and Applications, 2007. RTCSA 2007. 13th IEEE International
Conference on, IEEE, 2007; 47–56.

15. Wellings AJ, Lin S, Burns A. Resource sharing in RTSJ and SCJ systems. Proceedings of the 9th International
Workshop on Java Technologies for Real-Time and Embedded Systems, JTRES ’11, ACM: New York, NY, USA,
2011; 11–19.

16. Dror A. Hardware semaphores in a multi-processor environment Jan 4 1994. US Patent 5,276,886.
17. Carter JB, Kuo CC, Kuramkote R. A comparison of software and hardware synchronization mechanisms for

distributed shared memory multiprocessors. University of Utah, Salt Lake City, Utah 1996; 84112.
18. Altera. Embedded peripherals IP user guide June 2011.
19. Terrell JR II. Reusable, operating system aware hardware mutex Nov 27 2012. US Patent 8,321,872.
20. Kolinummi P, Vehvilainen J. Hardware semaphore intended for a multi-processor system Jun 13 2006. US Patent

7,062,583.
21. Tuan C. Apparatus and method for hardware semaphore Jun 22 2006. US Patent App. 11/116,972.
22. Parson D. Resource management in a processor-based system using hardware queues Jul 28 2005. US Patent App.

10/764,967.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

https://github.com/jop-devel/jop
https://github.com/torurstrom/jop
https://github.com/scj-devel/doc/blob/master/scj-0-100.pdf
https://github.com/scj-devel/doc/blob/master/scj-0-100.pdf


22 T. STRØM, W. PUFFITSCH, M. SCHOEBERL

23. Bacon DF, Konuru R, Murthy C, Serrano M. Thin locks: featherweight synchronization for Java. Proceedings of
the ACM SIGPLAN 1998 conference on Programming language design and implementation, PLDI ’98, ACM: New
York, NY, USA, 1998; 258–268.

24. Bacon DF, Fink SJ, Grove D. Space- and time-efficient implementation of the Java object model. ECOOP 2002 -
Object-Oriented Programming, 16th European Conference, Malaga, Spain, June 10-14, 2002, Proceedings, Lecture
Notes in Computer Science, vol. 2374, Magnusson B (ed.), Springer, 2002; 111–132.

25. Henties T, Hunt JJ, Locke D, Nilsen K, Schoeberl M, Vitek J. Java for safety-critical applications. 2nd International
Workshop on the Certification of Safety-Critical Software Controlled Systems (SafeCert 2009), York, United
Kingdom, 2009.

26. Ravn AP, Schoeberl M. Safety-critical Java with cyclic executives on chip-multiprocessors. Concurrency and
Computation: Practice and Experience 2012; 24:772–788.

27. Burns A, Dobbing B, Romanski G. The Ravenscar tasking profile for high integrity real-time programs. Proceedings
of the 1998 Ada-Europe International Conference on Reliable Software Technologies, Springer-Verlag, 1998; 263–
275.

28. Puschner P, Wellings A. A profile for high integrity real-time Java programs. 4th IEEE International Symposium on
Object-oriented Real-time distributed Computing (ISORC), 2001. URL http://ieeexplore.ieee.org/iel5/
7351/19938/00922813.pdf.

29. Heckmann R, Ferdinand C. Worst-case execution time prediction by static program analysis. Technical Report,
AbsInt Angewandte Informatik GmbH. URL http://www.absint.de/aiT_WCET.pdf, [Online, last accessed
November 2013].

30. Hunt JJ, Tonin I, Siebert F. Using global data flow analysis on bytecode to aid worst case execution time analysis
for real-time java programs. Proceedings of the 6th International Workshop on Java Technologies for Real-time and
Embedded Systems, (JTRES 2008), ACM International Conference Proceeding Series, vol. 343, Bollella G, Locke
CD (eds.), ACM, 2008; 97–105.

31. Schoeberl M, Puffitsch W, Pedersen RU, Huber B. Worst-case execution time analysis for a Java processor.
Software: Practice and Experience 2010; 40/6:507–542.

32. Schoeberl M, Rios JR. Safety-critical Java on a Java processor. Proceedings of the 10th International Workshop on
Java Technologies for Real-Time and Embedded Systems (JTRES 2012), ACM: Copenhagen, DK, 2012; 54–61.

33. Pitter C, Schoeberl M. A real-time Java chip-multiprocessor. ACM Trans. Embed. Comput. Syst. 2010; 10(1):9:1–
34.

34. Schoeberl M. A time predictable instruction cache for a Java processor. On the Move to Meaningful Internet Systems
2004: Workshop on Java Technologies for Real-Time and Embedded Systems (JTRES 2004), LNCS, vol. 3292,
Springer: Agia Napa, Cyprus, 2004; 371–382, doi:10.1007/b102133.

35. Schoeberl M. Design and implementation of an efficient stack machine. Proceedings of the 12th IEEE
Reconfigurable Architecture Workshop (RAW2005), IEEE: Denver, Colorado, USA, 2005, doi:10.1109/IPDPS.
2005.161.

36. Schoeberl M. A time-predictable object cache. Proceedings of the 14th IEEE International Symposium on
Object/component/service-oriented Real-time distributed Computing (ISORC 2011), IEEE Computer Society:
Newport Beach, CA, USA, 2011; 99–105.

37. Klein MH, Ralya T, Pollak B, Obenza R. A Practitioner’s Handbook for Real-Time Analysis: Guide to Rate
Monotonic Analysis for Real-Time Systems. Kluwer Academic Publ.: Boston, MA, USA, 1993.

38. The Open Group. Safety-critical Java technology specification Dec 27 2014. URL https://github.com/
scj-devel/doc/blob/master/scj-0-100.pdf, the SCJ specification is still in public review.

39. Puffitsch W. Design and analysis of a hard real-time garbage collector for a Java chip multi-processor. Concurrency
and Computation: Practice and Experience 2012; Published on-line, to appear in print.

40. Schoeberl M, Korsholm S, Kalibera T, Ravn AP. A hardware abstraction layer in Java. ACM Trans. Embed. Comput.
Syst. November 2011; 10(4):42:1–42:40.

41. Puffitsch W, Huber B, Schoeberl M. Worst-case analysis of heap allocations. Proceedings of the 4th International
Symposium On Leveraging Applications of Formal Methods, Verification and Validation (ISoLA 2010), 2010. URL
http://www.jopdesign.com/doc/wcmem.pdf.

42. Andersen JL, Todberg M, Dalsgaard AE, Hansen RR. Worst-case memory consumption analysis for scj.
Proceedings of the 11th International Workshop on Java Technologies for Real-time and Embedded Systems, JTRES
’13, ACM: New York, NY, USA, 2013; 2–10.

43. Schoeberl M, Preusser TB, Uhrig S. The embedded Java benchmark suite JemBench. Proceedings of the 8th
International Workshop on Java Technologies for Real-Time and Embedded Systems (JTRES 2010), ACM: New
York, NY, USA, 2010; 120–127.

44. Strøm TB, Schoeberl M. A desktop 3d printer in safety-critical Java. Proceedings of the 10th International
Workshop on Java Technologies for Real-Time and Embedded Systems (JTRES 2012), ACM: Copenhagen, DK,
2012; 72–79.

45. Schoeberl M, Abbaspour S, Akesson B, Audsley N, Capasso R, Garside J, Goossens K, Goossens S, Hansen S,
Heckmann R, et al.. T-CREST: Time-predictable multi-core architecture for embedded systems. Journal of Systems
Architecture 2015; (0):accepted for publication, doi:http://dx.doi.org/10.1016/j.sysarc.2015.04.002.

46. Schoeberl M, Schleuniger P, Puffitsch W, Brandner F, Probst CW, Karlsson S, Thorn T. Towards a time-predictable
dual-issue microprocessor: The Patmos approach. First Workshop on Bringing Theory to Practice: Predictability
and Performance in Embedded Systems (PPES 2011), Grenoble, France, 2011; 11–20.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://ieeexplore.ieee.org/iel5/7351/19938/00922813.pdf
http://ieeexplore.ieee.org/iel5/7351/19938/00922813.pdf
http://www.absint.de/aiT_WCET.pdf
https://github.com/scj-devel/doc/blob/master/scj-0-100.pdf
https://github.com/scj-devel/doc/blob/master/scj-0-100.pdf
http://www.jopdesign.com/doc/wcmem.pdf

	Introduction
	Background and Related Work
	Uniprocessor Synchronization
	Multiprocessor Synchronization
	Hardware Support for Multiprocessor Locking
	Java Locks
	Safety-Critical Java
	Scheduling in Safety-Critical Java
	The Java Processor JOP
	Original Lock Implementation in JOP

	Chip-Multiprocessor Hardware Locks
	Java Chip-Multiprocessor Software Locks
	Content-addressable Memory Locks for Java
	Java Locking Unit

	Evaluation
	Hardware Comparison
	Locking Performance
	Benchmarks
	Use Case

	Discussion
	Specification
	Multiprocessor Locking in SCJ
	Locks in Private Memory
	Future Work

	Conclusion

