
Educational Case Studies with an Open Source Embedded
Real-Time Java Processor

Rasmus Ulslev Pedersen
Embedded Software Laboratory

Dept. of Informatics
Copenhagen Business School

Howitzvej 60
2000 Frederiksberg, Denmark

rup.inf@cbs.dk

Martin Schoeberl
Institute of Computer Engineering
Vienna University of Technology

Austria
mschoebe@mail.tuwien.ac.at

ABSTRACT
In this paper we show a platform which allows for educa-
tion and training of a number of essential embedded skills.
The Java optimized processor (JOP) is open source and has
been used in several educational and training sessions and
we cover how each setting has trained a special skill set.
The experience covers basics from undergraduate education
to Ph.D. level education. At each level different properties
of the system are emphasized. Our emphasis on the in-
terdisciplinary of embedded systems education is based on
referenced research findings. This way we provide empirical
findings and couple it with academic frameworks.

1. INTRODUCTION
Training professionals and students on embedded systems
programming and design touches two fields: educational
learning theory and embedded programming.

According to [10], the design of embedded systems is multi-
disciplinary and inter-disciplinary. The skill set, we can add,
will also require the students, as well as professionals, to col-
laborate if they are to develop an application with a complex
human computer interface or something involving a stream-
ing data source, for example. With pair programming, and
especially using Java, we have a programming language with
APIs that span from embedded platforms such as JOP [19]
to desktop and server machines. The Java platform spans
from the Java Micro Edition (J2ME) to the Java Enterprise
Edition (J2EE).

The setup demonstrated in this paper is suited for introduc-
tional programming in Java as is offered in many textbooks
such as the one by Morik and Klingspor [11]. Often we have
a combination of human computer interaction and software
engineering terms to address in these classes. Clemmesen
and Nørbjerg combine the terms we use in this endeavor [2].
Another study concludes that students arrive at a study pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WESE’09, October 15th, 2009, Grenoble, France
Copyright 2009 ACM 978-1-XXXXX-XXX-X/09/10$10.00.

gram in their freshman year with different prerequisites [7].
The setup in this paper, where an embedded system like JOP
is programmed with Java and VHDL, is both very easy and
very complex at the same time. Some embedded educators
prefer reconfigurable hardware [17]. There are other inter-
esting virtual machines suitable for education like leJOS.1 In
terms of the study by Kautz and Kofoed, we can point to the
possibility of using the embedded Java virtual machine also
provided by the leJOS Sourceforge project or JOP2 to make
it more interesting for students with different backgrounds
to start in a computer program or for corporate training of
professionals. Lego Mindstorms NXT is an open source plat-
form for embedded programming and it is also possible to
teach the small operating system TinyOS on it [13]. In this
way, the students or professionals with previous (embedded)
system programming experience can program directly on the
embedded JVM and those without previous experience can
just take the PC solution. However, a FPGA-based Java
processor is the focus in this paper.

The paper outline is as follows: we start with a short tech-
nical overview (from an educational point of view) of the
Java Optimized Processor (JOP) in Section 2. We cover key
properties of JOP and relate them to training of students
and professionals. Then we cover several actual case studies
of using JOP for teaching at a non-technical university in
Section 3. This demonstrates the approachability of JOP
even for people with a different background. We list how
JOP is used at a technical university in Section 4. Finally,
we discuss the experiences and provide the conclusion for
the paper.

2. THE JAVA OPTIMIZED PROCESSOR
The Java processor JOP [19] is a hardware implementation
of the Java virtual machine (JVM). JOP is open source un-
der the GNU GPL. Thus, it is freely available for educational
purposes. All tools needed to build the processor, the appli-
cation, and the library are freely available. Therefore, this
system is an ideal teaching vehicle. JOP can be used as a
platform for low-level hardware exercises, system level exer-
cises within the implementation of the JVM, and real-time
application development for embedded Java. An interface
to Lego Mindstorms enables to build Java controlled Lego
robots. The most popular platform for JOP is the Cyclone

1http://lejos.sourceforge.net/
2http://www.jopdesign.com/

Figure 1: The FPGA used for hosting JOP.

FPGA from Altera as shown in Figure 1. It is available from
www.jopdesign.com.

2.1 JOP: Under The Hood
Java bytecodes are translated into microcode instructions
or sequences of microcode. The difference between the JVM
and JOP is best described as the following: The JVM is a
CISC stack architecture, whereas JOP is a RISC stack archi-
tecture. JOP is implemented in a field programmable gate
array (FPGA). One design goal for JOP is its applicability
to worst-case execution time (WCET) analysis. This design
principle is consistent throughout the JOP processor. As
the processor is implemented in an FPGA and all sources
are available, it is also possible to add specialized hardware
units [23]. From a training point of view this is interest-
ing as the JOP processor covers everything from easy-to-
understand Java to hardware specification in VHDL.

2.2 Thread Scheduling on JOP
The thread scheduler on JOP is preemptive with fixed pri-
orities. On a control switch a complete stack belonging to
the active thread is saved. Each frame on the stack contains
the saved program counter (PC) that points to the next in-
struction that will get executed once control returns from
the invoked method. JOP can be used to educate and train
professionals and students in multi-threaded programming.
The threading model of JOP is intended for the future stan-
dard on safety-critical Java [4]. Therefore, the students are
exposed to a system for real-time programming.

2.3 JOP’s Processor Pipeline
JOP is a fully pipelined architecture with single cycle execu-
tion of microcode instructions and a novel approach to map-
ping Java bytecode to these instructions. Three stages form
the JOP core pipeline, executing microcode instructions.
An additional stage in the front of the core pipeline fetches
Java bytecodes – the instructions of the JVM – and trans-
lates these bytecodes into addresses in microcode. Bytecode
branches are also decoded and executed in this stage. The
second pipeline stage fetches JOP instructions from the in-
ternal microcode memory and executes microcode branches.
Besides the usual decode function, the third pipeline stage
also generates addresses for the stack RAM. As every stack
machine instruction has either pop or push characteristics, it
is possible to generate fill or spill addresses for the following
instruction at this stage. The last pipeline stage performs
ALU operations, load, store and stack spill or fill. At the

execution stage, operations are performed with the two top-
most elements of the stack.

Since JOP has a rather simple pipeline it thus becomes even
more interesting from an educational point of view. In other
processors the pipeline stages can be many more, leading to
unnecessary clutter in a learning scenario. Furthermore, the
simple pipeline allows for tight estimation of the worst-case
execution time (WCET) of Java programs [21]. In one class
the students have to program a Lego robot with at least two
threads, perform WCET analysis with the provided tool,
and perform the resulting schedulability analysis.

2.4 JOP in Industry
Several real-world projects in industry are based on JOP
[18]. The first project with JOP was a distributed control
application in the railway domain. On a distance of up to
1 km the contact wire is tilted up to simplify loading and
unloading of goods wagons. Each mast is equipped with
one JOP powered embedded system that controls the asyn-
chronous motor. The program was written in a simple cyclic
executive style to simplify the safety argument. Further
projects followed: a remote terminal unit for supervisory
control, an industrial lift controller, and a support system
for single track railway control. Most of the applications
are under open-source and part of the JOP distribution.
Therefore, students can see how real-world applications are
written in embedded Java.

2.5 Available Material
The complete source of JOP and the documentation is online
available. A good start is the main web site of JOP:

http://www.jopdesign.com/

and a Wiki platform that is editable by the JOP users at:

http://www.jopwiki.com/

A reference handbook is available as PDF and as printed
book [20], which comprehensively covers the JOP processor
in terms of tool chain and PC setup. It is a point where
most newcomers to JOP will have to start. Furthermore,
teaching slides are available from the main web site3 with
sources when applicable. This makes JOP an interesting
choice for many embedded courses in industry or in higher
education.

Martin Schoeberl, the creator of JOP, leads a growing com-
munity surrounding JOP. He manages online forums in the
form of a Yahoo mailing list.4 This community consists
mainly of two groups: people playing with JOP just for fun
and students using JOP as basis for their Master’s thesis or
PhD thesis (e.g., [3]).

3. AT A NON-TECHNICAL UNIVERSITY
In this section, we describe how JOP has been used at the
Dept. of Informatics, Copenhagen Business School. The de-
partment bought 20 JOP boards to have enough for all stu-

3http://www.jopdesign.com/teaching.jsp
4http://tech.groups.yahoo.com/group/
java-processor/

Bachelor Level Teaching:
”Distributed Systems”

Master Level Teaching:
”Very Small Information Systems”

Master Level Thesis:
”Bluetooth Java” and

”Speaker Recognition”

Figure 2: Using JOP at a non-technical University.

dents. We found the open community of JOP was helpful
for the students to find information.

It is an inter-disciplinary study program that we used the
JOP board for. The study program features about equal
amounts of computer science, organization, and economics.
Embedded systems are found everywhere and it is therefore
important that we train students and professionals outside
the traditional profiles in this kind of systems as well.

The JOP board has been used for bachelor level teaching,
master level teaching, and master level theses at this non-
technical university. Figure 4 shows the relation of the dif-
ferent courses at CBS. We will discuss the experience with
JOP for educational purposes below.

3.1 Bachelor Level Class
The JOP board was used for a class called Distributed Sys-
tems. There is teaching material available online from this
class. This class covers topics such as networking with the IP
protocols. In this class the board’s Ethernet controller was
used to let the embedded board serve as a small webserver.
It can serve a simple HTML page, which gave the students
a basic understanding of how this would work for an em-
bedded system. The relevance comes from seeing embedded
systems as small Internet connected devices. Furthermore,
the board was used for exercises that generated UDP pack-
ets, and these packets were collected with a network sniffer
such as the open source freely available sniffer called Wire-
shark.

3.2 Master Level Classes
The JOP board has been used for two classes at the master
level. One was called Distributed Data Mining. The other
class was on embedded systems and information systems.
The goal was to create small systems which served a pur-
pose in terms of making parts of a house more intelligent
for example. This class was called Very Small Information
Systems. The VSIS class is a 15 ECTS class requiring 450
student work hours. For the exam, the students created a

(a) Box from Outside (b) Box from Inside

Figure 3: Example student setup for the activity based heat-
ing project.

so-called product as described above.

There were a number of student projects and the format of
the class was also to let the students write a real article in
academic format about the project they did with the JOP
board. Each article was reviewed by a peer group and by the
teachers as well. We found this approach very productive,
and the final articles were better than we expected at a
business school. We also experimented with Wikiversity5 as
an interactive teaching platform during this course.

The projects were quite different. They ranged from a bar-
code recognizer to an intelligent heat controller (see Figure
3).

Intelligent Humidity and Temperature Controller This
group did a project to address the problem of remote
monitoring of humidity levels in wooden walls. It ad-
dresses a problem of monitoring a wooden house while
it is not occupied as is the case for holiday residences or
summer houses. The group used a humidity controller
to collect data and then they used a data mining pro-
gram called WEKA to make the decisions using an
XML feed over the internet.

Activity-based Intelligent Heat Regulation This group
set up the JOP FPGA board with infrared movent de-
tection sensors. The registered activity is then ana-
lyzed and the predicted activity is used to pro-actively
control the heat in the house. An overall aim of this
project was to save energy at it would be cheaper to
heat the house only in the rooms where it was known
that activity would take place at certain times of the
day. Figure 3 shows the experimental setup built by
the students.

Barcode Recognizer In this project, the JOP board was
used to recognize a bar code. The group made a system
where a picture was taken with a mobile phone, then
transferred to the Java board. It then used algorithms
such as Fisher discriminant analysis to recognize the
EAN-13 barcodes.

Automatic Speaker Verification The sound is collected
to a wave file format, which is then recognized by the
JOP board. Here the UDP protocol is used to transfer
the wave file to the JOP board. The group applied (on

5http://en.wikiversity.org/wiki/School:Very_Small_
Information_Systems

the JOP board) a Hidden Markov Model and a nearest
neighbor algorithm to the data.

Stock Data Analysis This group analyzed several algo-
rithms on a PC with a data mining package to see
which one provided the best tradeoff between accu-
racy and speed. They found a simple algorithm that
fitted the limited constraints of an embedded system,
and implemented it on JOP.

This class was a success as we trained a semi-technical group
of students at a business school to use an embedded system.
The group had no knowledge about embedded systems be-
fore the class, and it was possible to get them started with
this in just a few weeks. The students got exposed to the dif-
ferences between embedded systems programming and pro-
gramming on a desktop system – especially the resource con-
straints and the small available library on JOP.

We used a setup of two people. One with deep knowledge of
embedded systems (Martin Schoeberl), and one with inter-
disciplinary knowledge of data mining and embedded sys-
tems (Rasmus Ulslev Pedersen [12]).

3.3 Master Level Theses
The JOP board has been used for a master thesis project
on Bluetooth. Some of the students took the master level
class to get started with the JOP board (see Section(3.2)).
The board was equipped with a Bluetooth radio connected
to JOP via the serial line. The student who completed the
thesis implemented code on the JOP board to be able to ex-
change data via the OBEX protocol between the embedded
JOP based system and a mobile phone.

A second thesis was conducted with the aim of identifying
words recorded in real-time from a microphone. The group
needed to create a custom PCB [9] for recording the words
and to this end they received assistance from an outside
company. This custom PCB was plugged into the expansion
slots of the JOP board itself.

Figure 4: A Master Thesis Speech Recognition PCB.

4. AT A TECHNICAL UNIVERSITY
At the Vienna University of Technology JOP is used in sev-
eral settings by Martin Schoeberl. From a special course on
the JVM, for Bachelor and Master projects, up to research
in the context of Ph.D. theses.

In Vienna, we have built a group of students around that
project and have regular meetings. An interesting point
of that group of students, even at different levels, is that
the interaction among the students last longer than a single
semester.

4.1 The JVM in Hardware
At the Vienna University of Technology a specialized course,
the Java Virtual Machine in Hardware, has been given over
the last years. The students learn the inner working of the
JVM and tradeoffs between hardware and software imple-
mentation of system functions. The course is a combination
of given talks and lab work. The practical part of the course
consists of group work on a selected hardware or software
problem for embedded Java. The introduction course on the
JVM and JOP let several students to continue on embedded
Java with their Bachelor or Master’s thesis.

The course covers the whole embedded stack from processor
design, system programming (the JVM), library implemen-
tation, up to the application design. The students can de-
cide on which level they will perform the project. The more
successful projects are included in the main distribution of
JOP. The fact that the laboratory work contributes to an
open-source project is highly motivating for the students.
In the following list, a few project examples from the course
are given:

Long Bytecodes for JOP Long operations (64-bit) are ex-
pensive in hardware. Two students implemented the
JVM long operations on top of the available 32-bit in-
structions. The implementation was done in Java and
included an extensible test suite for the operations.

The JVM Instruction idiv in VHDL for JOP Integer
division was enhanced by two students moving the im-
plementation from software to hardware. They imple-
mented a division module in VHDL.

CACAO on a MIPS A group of Ph.D. students, taking
this master level course, solved a more challenging
task: to compare the performance of JOP against a
JIT based JVM they started to port the open-source
JVM CACAO [8] to the open-source, soft-core MIPS
processor YARI.6 As a follow up to this project we ex-
tended that work on using a JIT compiler for real-time
systems and published a scientific paper [1].

Java Locks with PCE The current implementation of syn-
chronized on JOP is just turn off the scheduling inter-
rupt. That is effective priority ceiling emulation (PCE)
without setting the ceiling level (default is maximum).
One student adapted the real-time scheduler on JOP
to acknowledge the ceilings of objects on synchronized
blocks. This project involved the student in practical
application of real-time scheduling theory in a Java
context.

Scoped Memory Scoped memory is a simplified version
for dynamic memory management for real-time sys-
tems to avoid garbage collection. One student imple-
mented scoped memory, as defined by Safety Critical
Java. The implementation involved adaption of JVM
system code.

Wireless Robot Control The Lego robot, powered by JOP,
was extended with an XBee module for remote control
via a simple protocol. This project involved using a

6http://repo.or.cz/w/yari.git

solder iron and adapting the VHDL code of JOP at a
high level (configuring a second serial port and assign-
ing the correct pins).

Table/Lookupswitch in Microcode Bytecode instructions
tableswitch and lookupswitch are implemented in
Java on JOP to save microcode memory. To simplify
WCET analysis and to speedup those operations two
students implemented the two bytecodes in JOP mi-
crocode. The project covered the very internal layer
of the microcoded implementation part of the JVM.

WCET Analysis Using the UPPAAL Model Checker
This project produced a first prototype of a model
checking based WCET analysis for Java bytecodes.
One student continued with this topic towards his Mas-
ter’s thesis [5].

JOP User Interface One group implemented a user in-
terface for JOP. This project included VHDL design of
the mouse and keyboard interface, a VGA controller,
and the user interface Java library. Furthermore, the
JOP simulator was adapted for easier development of
the graphics library.

NFS with ejip Implementation of the network file system
(NFS) client on top of the ejip UDP/IP stack. Em-
phasis on this project was to provide a small, time-
predictable implementation. This project is now con-
tinued as a Bachelor project.

The examples show that individual groups selected different
layers of the full hardware/software stack for their project.
Some groups even decide to cover several levels of the em-
bedded stack.

4.2 Bachelor Projects
Several Bachelor projects are based on JOP. In the following
two examples from quite different fields are given:

A Lego Robot Controller PCB Two students built a PCB
to interface JOP with the sensors and actuators of the
Lego Mindsstorms. The resulting PCB is shown in Fig-
ure 5. They built the electronics, interface hardware in
the FPGA in VHDL, and a software library in Java for
various sensors and actuators. Therefore, they covered
the whole design stack of an embedded system. The
interface is now used in the JVM in Hardware course
to write small Lego robot programs, which have to be
analyzed for its WCET.

Bytecode Optimizer Java bytecode, as omitted by the
Sun javac compiler, is completely unoptimized. The
optimization is left to the JIT compiler. However, for a
Java processor optimization at bytecode level is an in-
teresting option. This Bachelor work implemented the
program analysis and optimization tool Joptimizer.
The main speedup was gained by inlining short meth-
ods. Joptimizer uses a heuristic that contains the
timing information of JOP to decide wether a method
shall be inlined or not.

Figure 5: A PCB to interface Lego Mindstorms sensors and
actuators.

4.3 Master Level Theses
As JOP is also used as a platform for research on real-time
Java and real-time computer architecture, the students get
involved with on-going research during their Master’s thesis.

• Wolfgang Puffitsch ported picoJava, a competing Java
processor from Sun, to an FPGA and compared it with
JOP during his Master’s thesis [15]. This thesis pre-
pared well for the following Ph.D. study in the context
of Java processors.

• Benedikt Huber continued after the JVM in Hardware
course with a Master’s thesis on WCET analysis. He
redesigned the available WCET tool [21] and evaluated
model checking for WCET analysis [5].

• Peter Hilber is currently implementing hardware trans-
actional memory on a JOP based chip-multiprocessor
system. The target of the work is an implementation
that shall be analyzable for real-time systems.

4.4 Ph.D. Research
JOP is also used for Ph.D. studies. Christof Pitter finished
his PhD thesis on a time-predictable JOP chip-multiprocessor
(CMP) system [14] this year. The resulting CMP version of
JOP is also used in the EU project JEOPARD [22]. Wolf-
gang Puffitsch uses the CMP version of JOP as basis for
his PhD research on real-time garbage collection for multi-
processor systems [16]. Hi intends to finish his Ph.D. thesis
next year.

5. DISCUSSION
We have found that JOP is well suited for education at
higher level universities. JOP is more than a small em-
bedded system. The fact that it also features an Ethernet
controller makes it possible to use it in teaching that involves
network communication as well. The real-time properties of
JOP are appealing to students regardless of the needs for a
real-time embedded system. They find it interesting to work
with an embedded system where they can see that their Java
code will be executed in a precisely known time.

The embedded Java system with JOP is a computer with
very limited resources, e.g., the main memory is just 1 MB.

This limit of the main memory also results in a very re-
stricted subset of the Java library (JDK). Therefore, stu-
dents have to adapt their programming style for this con-
straint system. We are confident that this restriction pro-
vides a good preparation for the industrial needs of an em-
bedded programmer.

JOP is based on the Java programming language. This lan-
guage is very popular for teaching and it is one of the rea-
sons that it was possible to have students experiment with
the JOP board without too much introduction.

6. CONCLUSION
JOP as a flexible open source teaching platform for embed-
ded systems has been presented in this paper. The proces-
sor is introduced and we argue why this FPGA-based Java
processor is ideal for teaching and training of students and
professionals. For example, the simple three stage pipeline
is similar to other RISC processors, and the learning curve is
approachable, but additional benefits apply to JOP because
of the open source approach and the active community sur-
rounding it.

In this paper we have showed several situations where the
Java Optimized Processor have been used both in challeng-
ing embedded educational settings and for Master’s and
Ph.D. projects. Furthermore, we have shown case studies
of using it for applications which are focused on intelligent
embedded systems. Our observations and experiences are
similar to those expressed at the First Workshop on Embed-
ded Systems Education (WESE2005) [6]. For students and
potential researchers it is an advantage that JOP is rooted
in the academic environment.

Future work include experiencing with JOP in a distributed
team-programming setting using the Eclipse platform. We
plan to test a plugin for supporting JOP training and couple
it with the open source XPairtise7 Eclipse plugin. It will
be an interesting team-programming platform for embedded
systems education.

Acknowledgement
We would like to thank all our students for their sometimes
enthusiastic approaches to their projects, their questions,
their feedback, and the resulting discussions. Motivated stu-
dents are the best motivation for teachers.

7. REFERENCES
[1] F. Brandner, T. Thorn, and M. Schoeberl. Embedded

JIT compilation with CACAO on YARI. In
Proceedings of the 12th IEEE International
Symposium on Object/component/service-oriented
Real-time distributed Computing (ISORC 2009),
Tokyo, Japan, March 2009. IEEE Computer Society.

[2] T. Clemmensen and J. Nørbjerg. Separation in theory,
coordination in practice - teaching hci and se. Software
Process: Improvement and Practice, 8(2):99–110, 2003.

[3] T. Harmon. Interactive Worst-case Execution Time
Analysis of Hard Real-time Systems. PhD thesis,
University of California, Irvine, 2009.

7http://xpairtise.sourceforge.net/

[4] T. Henties, J. J. Hunt, D. Locke, K. Nilsen,
M. Schoeberl, and J. Vitek. Java for safety-critical
applications. In 2nd International Workshop on the
Certification of Safety-Critical Software Controlled
Systems (SafeCert 2009), Mar. 2009.

[5] B. Huber. Worst-case execution time analysis for
real-time Java. Master’s thesis, Vienna University of
Technology, Austria, 2009.

[6] D. J. Jackson and P. Caspi. Embedded systems
education: future directions, initiatives, and
cooperation. SIGBED Rev., 2(4):1–4, 2005.

[7] K. Kautz and U. Kofoed. Studying computer science
in a multidisciplinary degree programme: Freshman
students orientation, knowledge, and background.
Journal of Information Technology Education,
3:227–224, 2004.

[8] A. Krall and R. Grafl. CACAO – A 64 bit JavaVM
just-in-time compiler. In G. C. Fox and W. Li, editors,
PPoPP’97 Workshop on Java for Science and
Engineering Computation, Las Vegas, June 1997.
ACM.

[9] M. Lundsgaard and J. K. Rasmussen. Jopspeech:
Embedded java speech recognition sdk. Master’s
thesis, Copenhagen Business School, Dept. of
Informatics, 2006.

[10] P. Marwedel. Embedded systems education: how to
teach the required skills? Proceedings of the 2nd
IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis,
2004. Session Moderator-Marwedel, Peter and Session
Panelist-Gajski, Daniel and Session Panelist-De Kock,
Erwin and Session Panelist-De Man, Hugo and Session
Panelist-Sami, Mariagiovanna and Session
Panelist-Söderquist, Ingemar.

[11] K. Morik and V. Klingspor. Informatik kompakt.
Springer, 2005.

[12] R. U. Pedersen. Using Support Vector Machines for
Distributed Machine Learning. PhD thesis, Dept. of
Computer Science, University of Copenhagen, 2005.

[13] R. U. Pedersen. Tinyos education with lego
mindstorms nxt. In J. Gama and M. M. Gaber,
editors, Learning from Data Streams. Processing
Techniques in Sensor Networks, chapter 14, pages
231–241. Springer Berlin Heidelberg, September 2007.

[14] C. Pitter. Time-Predictable Java Chip-Multiprocessor.
PhD thesis, Vienna University of Technology, Austria,
2009.

[15] W. Puffitsch. picoJava-II in an FPGA. Master’s thesis,
Vienna University of Technology, 2007.

[16] W. Puffitsch. Decoupled root scanning in
multi-processor systems. In CASES ’08: Proceedings
of the 2008 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems,
pages 91–98, New York, NY, USA, Oct. 2008. ACM.

[17] F. Salewski, D. Wilking, and S. Kowalewski. Diverse
hardware platforms in embedded systems lab courses:
a way to teach the differences. SIGBED Rev.,
2(4):70–74, 2005.

[18] M. Schoeberl. Application experiences with a real-time
Java processor. In Proceedings of the 17th IFAC World
Congress, Seoul, Korea, July 2008.

[19] M. Schoeberl. A Java processor architecture for

embedded real-time systems. Journal of Systems
Architecture, 54/1–2:265–286, 2008.

[20] M. Schoeberl. JOP Reference Handbook: Building
Embedded Systems with a Java Processor. Number
ISBN 978-1438239699. CreateSpace, August 2009.
Available at
http://www.jopdesign.com/doc/handbook.pdf.

[21] M. Schoeberl and R. Pedersen. WCET analysis for a
Java processor. In Proceedings of the 4th International
Workshop on Java Technologies for Real-time and
Embedded Systems (JTRES 2006), pages 202–211,
New York, NY, USA, 2006. ACM Press.

[22] F. Siebert. JEOPARD: Java environment for parallel
real-time development. In Proceedings of the 6th
International Workshop on Java Technologies for
Real-time and Embedded Systems (JTRES 2008),
pages 87–93, New York, NY, USA, 2008. ACM.

[23] J. Whitham, N. Audsley, and M. Schoeberl. Using
hardware methods to improve time-predictable
performance in real-time Java systems. In Proceedings
of the 7th International Workshop on Java
Technologies for Real-time and Embedded Systems
(JTRES 2009), Madrid, Spain, September 2009. ACM
Press.

