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Chip-multiprocessors are an emerging trend for embedded systems. In this paper, we introduce a real-time
Java multiprocessor called JopCMP. It is a symmetric shared-memory multiprocessor and consists of up to 8
Java Optimized Processor (JOP) cores, an arbitration control device, and a shared memory. All components are
interconnected via a system on chip bus. The arbiter synchronizes the access of multiple CPUs to the shared main
memory. In this paper, three different arbitration policies are presented, evaluated, and compared with respect to
their real-time and average-case performance: a fixed priority, a fair-based, and a time-sliced arbiter.

Tasks running on different CPUs of a chip-multiprocessor (CMP) influence each others’ execution times when
accessing a shared memory. Therefore, the system needs an arbiter that is able to limit the worst-case execution
time of a task running on a CPU, even though tasks executing simultaneously on other CPUs access the main
memory. Our research shows that timing analysis is in fact possible for homogeneous multiprocessor systems
with a shared memory. The timing analysis of tasks, executing on the CMP using time-sliced memory arbitration,
leads to viable worst-case execution time bounds.

The time-sliced arbiter divides the memory access time into equal time slots, one time slot for each CPU. This
memory arbitration scheme allows for a calculation of upper bounds of Java application worst-case execution
times, depending on the number of CPUs, the time slot size, and the memory access time. Examples of worst-case
execution time calculation are presented, and the analyzed results of a real-world application task are compared
to measured execution time results. Finally, we evaluate the trade-offs when using a time-predictable solution
compared to using average-case optimized chip-multiprocessors, applying three different benchmarks. These
experiments are carried out by executing the programs on the CMP prototype.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]: Realtime and
embedded systems; D.3.4 [Programming Languages]: Processors—Run-time environments, Java; B.7.1 [Inte-
grated Circuits]: Types and Design Styles—Microprocessors and microcomputers

Additional Key Words and Phrases: Real-time system, Multiprocessor, Java processor, Shared memory, Worst-
case execution time

1. INTRODUCTION

Modern applications demand ever-increasing processing power. They act as the main
drivers for the semiconductor industry. For over 35 years, transistors have been getting
faster and clock frequency has adapted accordingly. Additionally, the number of transistors
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on an integrated circuit at a given cost doubles every 24 months, as described by Moore’s
Law [Moore 1965]. The availability of more transistors facilitated an instruction-level par-
allelism (ILP) approach, which was the primary processor design objective between the
mid-1980s and the start of the 21st century. According to Hennessy and Patterson [2006],
we are now reaching the limits of exploiting ILP efficiently. Unfortunately, semiconductor
technology has also reached its apex in recent years because of theoretical physical limits.
As a result, the frequency, which used to increase exponentially, has leveled off [Laudon
and Spracklen 2007].

According to Hennessy and Patterson [2006], chip-multiprocessors (CMP) are the future
path of performance enhancements. The CMP technology integrates two or more process-
ing units and a sophisticated communication network into a single integrated circuit. A
major advantage of this approach is that progress in processing power would not be ac-
companied by an increase in the hardware complexity of the single processors. According
to Wolf [2006], CMPs combine the significant advantages of embedded systems: increased
performance, lower power consumption, and cost efficiency.

1.1 Java Chip-Multiprocessor

In this paper, we are offering a CMP architecture consisting of a number of Java Optimized
Processor (JOP) [Schoeberl 2005b; 2008] cores and a shared memory. The shared memory
is uniformly accessible by the homogeneous processing cores. A novel memory arbiter
controls the various JOPs’ access to the shared memory. It resolves the potential conflict
of a simultaneous access to the shared memory. Three different arbitration mechanisms
will be evaluated, and compared:

(1) Fixed priority arbitration
(2) Fair arbitration
(3) Time-sliced arbitration

We will show that for real-time systems, only a time-sliced arbitration of the main mem-
ory access is a feasible and analyzable solution. Furthermore, we describe the implemen-
tation of CMP booting, the CMP thread scheduling and its I/O device interconnection.
Additionally, we will present JopCMP, a prototype of the CMP composed of up to 8 JOP
cores, integrated in a low-cost FPGA, and connected to an external memory. This proto-
type is used to measure and evaluate the three arbitration algorithms. The ultimate goal of
our research work is a multiprocessor for safety-critical applications.

1.2 WCET Analysis for the Java CMP

Many embedded systems are used for applications that prioritize real-time behavior over
processing power. Such hard real-time systems must undergo timing analysis. Therefore,
the worst-case execution time (WCET) of each task in the system has to be a known factor.
The WCET is the amount of time a task eventually needs to execute under worst-case
conditions on a given processor. Wilhelm et al. [2008] define the goal of WCET analysis
concerning the upper bounds of execution time thus:

(1) they have to be safe and
(2) should be as tight as possible.

The calculated upper time bounds have to be safe in order to ensure hard real-time
system behavior; otherwise, unpredictable system reactions could put the mission at risk,



leading to serious consequences. Moreover, the upper bounds should be as tight as possible
to keep the overestimation low in order to conserve resources.

There are three different methods to estimate the WCET of a given task: by measure-
ment, static analysis, or a hybrid approach combining both methods. A WCET analysis
by measurement gauges the execution time of a program code using various input data.
The estimates are obtained by executing the program on the actual hardware. Therefore,
it is especially useful if average-case performance is of interest. A large drawback of the
measurement-based method is that a measured WCET result does not reliably confirm that
the worst-case program path has been triggered [Ermedahl and Engblom 2007].

The objective of a static WCET analysis is to find the maximum execution path and the
WCET of a program. It provides a safe upper bound by analyzing the program before
runtime, independent of any input values. Even though this method requires an elaborate
creation of a precise processor model, it is the only possibility to obtain a validated upper
bound of an application code. Therefore, this analysis method is especially suitable for
safety-critical systems.

A hybrid WCET analysis approach starts with a static analysis of the program. The
code is split into partitions. Execution times from these code fragments are derived by
measurement on real hardware. Finally, these execution times are added to the static anal-
ysis model, which calculates the WCET result. No processor model is needed like it is
in the static analysis, but safe WCET bounds cannot be guaranteed. In summary, mea-
surement and hybrid-based analysis can be sufficient for soft real-time systems, but the
authors believe that static analysis should become the conventional approach to modern
hard real-time systems.

JOP comes with a static WCET analysis tool, which is described by Schoeberl and
Pedersen in [2006]. The tool is enhanced for the WCET analysis of a CMP system. The
key component for real-time analysis of the CMP is a time-sliced arbiter that splits the
memory access bandwidth into time slots, one for each CPU. Therefore, we can analyze
the WCET of Java bytecodes depending on the size of the time slot, the number of CPUs
in the system, and the memory access time. These execution times are the basis for WCET
task analysis. Our approach is described using a simple example. Additionally, we will
provide measured data of the sample execution time. The results were obtained by running
the application on hardware. Subsequently, we were able to compare the analyzed results
to measured execution times. Furthermore, the measured and analyzed execution time
results of real-world applications show the reliability of the proposed method.

1.3 Contributions and Paper Organization

This paper is based on our previous work [Pitter and Schoeberl 2007b; 2008; Pitter 2008;
2009] on Java based CMP systems. In this paper, we will provide a coherent view of three
different arbitration policies with respect to WCET and average-case performance. The
time division multiple access (TDMA) based arbiter is the foundation of a time-predictable
CMP system. One contribution made by this paper is the enhancement of a WCET analysis
tool for the multiprocessor system. Furthermore, the various configurations are evaluated
using a larger application base. The proposed architecture is used by the EC funded project
Jeopard on real-time Java for multiprocessors [Siebert 2008]. Best to our knowledge, the
presented system is the first time-predictable CMP system that includes a WCET analysis
tool.



The remainder of the paper is structured as follows: Section 2 outlines work related to
this subject. In Section 3, a brief overview of the proposed CMP architecture is given.
Three different arbiters are described in detail in Section 4. Section 5 gives a short intro-
duction of the static WCET analysis of JOP. Additionally, it describes the WCET analysis
approaches of the different memory arbiters. Section 6, evaluates the performance of the
CMPs using three benchmarks. Section 7 discusses our findings. Finally, Section 8 con-
cludes the paper and provides guidelines for future work.

2. RELATED WORK

Three quite different CMP architectures are state-of-the-art in mainstream desktop and
server processors: multi-core versions of super-scalar architectures by Intel and AMD
[Keltcher et al. 2003], multi-core chips with simple RISC processors like Sun Niagara
[Kongetira et al. 2005], and the Cell architecture [Hofstee 2005; Kahle et al. 2005; Kistler
et al. 2006]. The Cell is a heterogeneous multiprocessor consisting of a PowerPC micro-
processor and eight co-processors. These multiprocessors are not considered viable for
time-predictable systems, because their architectures are optimized for average-case per-
formance and not for WCET. Complex hardware complicates the timing analysis.

The following sections describe the progress made in CMP for embedded systems. Fur-
thermore, related work on timing analysis of processor architectures is summarized.

2.1 Embedded Multiprocessors

In the embedded system domain, there are two different types of CMP architecture:

(1) heterogeneous multiprocessors
(2) homogeneous multiprocessors

Multiprocessors with a heterogeneous architecture combine a core CPU for controlling
and communication tasks, and additional special processing elements, which are often tai-
lored to specific applications. Some examples of heterogeneous multiprocessors include
the ST Nomadik [Artieri et al. 2004], designed for mobile multimedia applications, the
Philips Nexperia PNX-8500 [Dutta et al. 2001], aimed at digital video entertainment sys-
tems, or the TI OMAP family [Martin and Chang 2003], designed to support 2.5G and 3G
wireless applications.

In this paper, we are concentrating on homogeneous multiprocessors consisting of two
or more similar CPUs sharing a main memory. Even though a lot of research has been
done on multiprocessors, the timing analysis has so far been disregarded.

2.1.1 ARM. The ARM11 MPCore [ARM 2006] introduces a pre-integrated symmetric
multiprocessor consisting of up to four ARM11 microarchitecture processors. The 8-stage
pipeline architecture, independent data and instruction caches, and a memory management
unit for the shared memory make a timing analysis difficult.

2.1.2 LEON. Gaisler Research AB designed and implemented a homogeneous multi-
processor system called LEON3-FT-MP [Gaisler and Catovic 2006]. It consists of one cen-
tralized shared memory and four LEON3-FT processor cores that are based on the SPARC
V8 instruction set architecture [SPARC International Inc. 1992]. All the CPUs, addi-
tional I/O controllers and memory controllers are connected using two AMBA-specified
advanced high-performance buses (AHB) [ARM 1999]. One AHB runs at the CPUs’ fre-



quency and connects the processors to the shared memory controller. The low-speed bus
connects all other peripheral devices.

According to the AMBA specification, a CPU takes on the role of a master because it
initiates transactions with other components (slaves). The pipelined AHB bus can integrate
up to 16 masters into an SoC. An arbiter controls the shared system bus. Even though the
AHB arbitration protocol specification is well defined, no priority strategies or arbitration
algorithms are specified. LEON’s AHB arbiter implementation uses fixed priority. As will
be shown later, a fixed priority arbiter is a problematic option for real-time systems.

2.1.3 MicroBlaze. MicroBlaze-based CMPs can be designed with the Xilinx Embed-
ded Development Kit (EDK). MicroBlaze is a 32-bit reduced instruction set computer
(RISC) optimized for FPGA implementation [Xilinx 2007]. The pipeline length of the
CPU can be configured to either 3 or 5 stages. It implements the Harvard architecture with
separate instruction and data buses. The CPU can be tailored to the individual application
needs (i.e. peripheral controllers or cache sizes).

Memory and peripheral devices are connected via the on-chip peripheral bus (OPB)
[IBM 2001]. Xilinx provides an OPB bus arbiter [Xilinx 2005] that can integrate up to 16
masters into the system. The available arbitration schemes include fixed priority (FP) or
least recently used (LRU) algorithms.

2.1.4 NIOS II. Altera’s Nios II [Altera 2007b] and the System-on-a-Programmable-
Chip (SOPC) Builder [Altera 2007c] support the design and implementation of CMPs in
Altera’s FPGA technology. The Nios RISC architecture implements a 32-bit instruction
set similar to the MIPS instruction set architecture. Nios II can be customized to meet
the application requirements: three different models, from non-pipelined up to a 6-stage
pipeline. Avalon [Altera 2007a] is the SoC bus used by the SOPC Builder. It connects the
master and slave components to the System Interconnect Fabric. This System Interconnect
Fabric hides all connection details from the user. While the Avalon specification can be
used freely, the System Interconnect Fabric is the property of Altera.

For multiprocessor systems, the System Interconnect Fabric integrates an arbitration
module [Altera 2007a]. The arbitration logic can be configured in the SOPC Builder. The
arbitration schemes include fairness-based shares, round-robin scheduling, burst transfers,
and minimum share value.

2.1.5 PRET. The core objective of the research collaboration between the universities
of Berkley and Columbia is to implement a processor architecture for real-time embedded
systems that is as predictable with regard to time as it is in the range of computed val-
ues. In [2008], Lickly et al. are proposing a precision-timed architecture (PRET), which
combines a SPARC-based processor architecture with time-predictable features. A 6-stage
thread-interleaved pipeline executes 6 threads in parallel, one thread at each stage. Hence,
data forwarding can be avoided. Furthermore, scratchpad memories are used in place of
common data and instruction caches. Access to the main memory is controlled by a so-
called memory wheel. It allocates a pre-determined time slot for each thread to access the
memory. The research group has presented a model of the PRET architecture in SystemC
and demonstrated applications running in simulation.

2.1.6 Discussion. The described multiprocessors are still using backplane style buses
that are not appropriate for an SoC interconnection. Furthermore, there is no use for a com-



plex bus hierarchy in our design. Our system consists of a couple of CPUs connected to
a single shared memory. Therefore, our choice of the interconnection network is the sim-
ple SoC bus called SimpCon [Schoeberl 2007], which is further described in Section 3.3.
Moreover, we are using a fixed priority, a fairness-based, and a time-sliced arbitration al-
gorithm.

JOP, the processor used for the proposed CMP system, is open source and freely avail-
able under the GNU GPL. Every single part of the processor core can be customized and
configured. JOP is technology-independent (like LEON) and has been ported to FPGAs
from Altera, Xilinx, and Actel. This soft-core processor avoids a lock-in to a single FPGA
vendor, as is the case for MicroBlaze and Nios.

2.2 WCET Analysis of Multiprocessors

WCET analysis is crucial to the timing analysis of hard real-time systems. The task set
of a real-time system requires a timing validation by schedulability analysis [Joseph and
Pandya 1986; Liu and Layland 1973]. Hence, the WCET of each task has to be calculated.
Only if these upper execution time bounds are known, the schedulability analysis can be
performed. Consequently, the analysis result shows whether the task deadlines will be met,
subsequently guaranteeing that all tasks can be executed by the system.

WCET analysis has been an active and well-established research area in the uniprocessor
domain for years. Both Puschner & Burns [2000], and Wilhelm et al. [2008] give a broad
overview of the WCET research. Nevertheless, not all of these achievements can be applied
to multiprocessor systems. They are based on the assumption that tasks are independent
and cannot influence one another. Using modern multiprocessors with shared resources
(i.e. a shared memory), tasks influence each others’ execution times and cannot be analyzed
independently.

One research group (from the University of Linkoeping) has studied the WCET analysis
of multiprocessors [Andrei et al. 2008; Rosen et al. 2007]. These publications are based
on a multiprocessor system-on-chip with a shared communication bus, connecting several
CPUs with two different types of memory. Each CPU has a private memory and all the
processing units share a common memory for communication. Their CPU is equipped with
instruction and data caches, which are used to fetch data and instructions from the private
memory. During execution, a task can only access private memory and no shared data
objects, so all input data must be placed into the private memory before the task can start
executing. Consequently, in most cases the execution time of a task can never be influenced
by other tasks (see: simple-task model [Kopetz 1997]). However, the communication bus
serves as a communication interface between CPUs and private memories, and CPUs and
the shared memory. If a cache miss occurs during task execution, data has to be fetched
from private memory using the communication bus. Therefore, a TDMA-based bus sharing
policy is used, as several CPUs may request a cache line from their private memories
simultaneously.

In this paper, we will introduce our approach to WCET analysis of a multiprocessor
using a shared resource. Even though the application tasks running on different CPUs may
influence each others’ execution times, we are able to limit the WCET of real-time tasks.

3. JOPCMP ARCHITECTURE

According to [Wolf 2006], a multiprocessor system consists of three major subsystems:
processing elements, memory and an interconnection network. JopCMP implements the
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Fig. 1. JopCMP Architecture.

symmetric (shared-memory) multiprocessor (SMP) model. Several Java processors pro-
vide the basis of a homogeneous CMP. The interconnection network is responsible for
connecting multiple processors to the memory. An arbiter is part of this network and con-
trols the memory access to the shared memory. An SoC bus, called SimpCon [Schoeberl
2007], is used to connect the processing cores to the arbiter, and the arbiter to the memory
controller. We consider the synchronization of shared data as a further major subsystem of
an SMP. It is responsible for coordinating the access to shared objects. Figure 1 illustrates
the typical architecture of an FPGA technology implementation. The following sections
describe the different elements in more detail.

3.1 The Java Optimized Processor (JOP)

The Java optimized processor (JOP) [Schoeberl 2005b; 2008] is an implementation of the
Java Virtual Machine (JVM) in hardware. This processor has been designed from scratch to
provide a time-predictable execution environment for embedded real-time systems. Hence,
a couple of typical architectural advancements, used to increase the average processing
power, have been omitted. Examples include branch prediction or out-of-order execution.
Nevertheless, JOP shows good average performance and consumes lower logic resources
compared to other Java processors.

Java processors usually do not execute Java bytecodes directly, because some instruc-
tions are too complex to be implemented in hardware. Therefore, JOP translates the byte-
codes into its own instruction set called microcode. These microcode instructions, im-
plemented in hardware, are executed by the stack architecture. Most bytecodes can be
translated to a single microcode or a sequence of microcode instructions. Hence, the com-



plex instruction set of the JVM is transferred into a reduced instruction set. A few, more
complex bytecodes, e.g., new, are implemented in Java methods.

JOP’s core consists of a 4-stage pipeline. The first pipeline stage, bytecode fetch, fetches
a bytecode from the instruction cache and calculates the microcode address. The subse-
quent 3 stages of the pipeline called microcode fetch, microcode decode, and microcode ex-
ecute operate on native 8-bit microcode instructions. The top two stack machine elements
are stored in registers. All instructions operate on these two registers in the microcode
execute unit.

3.2 Memory Hierarchy

A shared memory is a global physical memory where all instructions and data are stored,
accessible to all processors. A memory controller connects the CPUs integrated on the
FPGA to the shared off-chip memory. Additionally, each JOP has access to two fast local
memories, referred to as cache memories.

Each application thread has a reserved stack area in the memory. This thread private data
is very frequently accessed, similar to registers in a typical register machine. Therefore,
JOP caches this data in a so-called stack cache [Schoeberl 2005a] in an on-chip RAM. The
spilling and filling of the stack cache is controlled by microcode instructions.

Additionally, an instruction cache – called method cache [Schoeberl 2004] – limits mem-
ory access frequency by caching bytecode instructions of complete methods. A cache miss
and consequently a new method load from the read-only method area can only occur at
invoke or return bytecodes.

According to the JVM specification [Lindholm and Yellin 1999], the heap stores JVM
shared data. Our CMP architecture operates without caching the heap’s shared data objects,
therefore a coherent view of all CPUs’ accessed data is ensured throughout. Our design
facilitates the avoidance of hardware demanding cache coherence mechanisms.

3.3 Interconnection Network

The selection of an interconnection network topology is a major decision in multiprocessor
architecture design. We use the simple SoC interconnect (SimpCon) [Schoeberl 2007] to
connect the SoC modules. This synchronous on-chip bus is intended for read and write
transfers via point-to-point connections. Only a master can initiate a transaction via a
write or read request. Compared to other commonly used SoC buses like Avalon [Altera
2007a], or AMBA [ARM 1999], this specification does not work like a backplane bus. No
bus request phase has to precede the actual bus transfer. Furthermore, the master’s driven
control, address, and data lines are only valid for a single clock cycle. A slave has to
register all signals (e.g. the address) needed for several clock cycles. Consequently, the
master can continue to execute its program until it needs a read result. The slave informs
the master of the time the requested data will be available, through a signal called rdy cnt.
Additionally, the signal serves as an early notification of data access completion. This
mechanism allows the master to send a new request before the former has been fulfilled.
This form of pipelining permits fast data transfers.

SimpCon is well suited for on-chip point-to-point connections. Nevertheless, the speci-
fication does not support the synchronization of multiple masters to one slave. Therefore,
we have introduced a central arbiter that controls memory access of multiple CPUs to the
shared memory. The arbiter acts as slave for each JOP and as master for the memory
controller. Section 4 is dedicated to memory arbitration.



3.4 Synchronization

Shared memory SMP systems need a synchronization mechanism. CPUs exchange data
by reading and writing shared data objects. In order to ensure that a CPU has exclusive
access to such an object, synchronization is necessary.

Therefore, we have introduced a synchronization unit to the hardware that controls one
global lock. If one core wants to access a shared object, it will request the lock using the
synchronization interconnection depicted in Figure 1. JOP will be granted access if no
other processor is holding the lock. Otherwise, it must wait until the other processor has
finished accessing the shared object.

The hardware lock allows fast implementation of the bytecodes monitorenter and
monitorexit that are used by the JVM for synchronization. For short critical sections,
this feature compensates for the less reactive behavior of a single global lock. One side
effect of a single lock is the avoidance of deadlock through design. Further information on
synchronization of JopCMP can be found in [Pitter and Schoeberl 2007b].

3.5 CMP Boot-up Sequence

One interesting aspect of a CMP system is how the startup or boot-up is performed. On
power-up, the FPGA starts the configuration state machine to read the FPGA configuration
data either from a Flash memory or via a download cable from the PC during the develop-
ment process. When the configuration has finished, an internal reset is generated. After this
reset, microcode instructions are executed, starting from address 0. At this stage, we have
not yet loaded any application program (Java bytecode). The first sequence in microcode
performs this task. The Java application can be loaded from an external Flash memory, via
a PC serial line, or an USB-port. The next step is the generation of a minimal stack frame.
From then on, JOP runs in Java mode and invokes the special method Startup.boot(),
even though some parts of the JVM are not yet setup. The method boot() performs the
following steps:

—Sends a greeting message to stdout

—Detects the size of the main memory

—Initializes the data structures for the garbage collector

—Initializes java.lang.System

—Prints out JOP’s version number, detected clock speed, and memory size

—Invokes the static class initializers in a predefined order

—Invokes the application class main method

The boot-up process is the same for all processors up to the execution of the first mi-
crocode instructions. At that moment, only one processor is allowed to perform the initial-
ization steps.

All processors in the CMP are functionally identical. Only one processor is designated to
boot-up and initialize the whole system. Therefore, it is necessary to distinguish between
different CPUs. A unique CPU identity number (CPUID) is assigned to each processor.
Only processor CPU0 is designated to perform all the boot-up and initialization work. The
other CPUs have to wait until CPU0 has completed the boot-up and initialization sequence.



3.6 CMP Scheduling

The scheduler on each core is a preemptive, priority based real-time scheduler. As each
thread gets a unique priority, no FIFO queues within priorities are needed. The best ana-
lyzable real-time CMP scheduler does not allow threads to migrate between cores. Each
thread is pinned to a single core at creation. Therefore, standard scheduling analysis can
be performed on a per core base.

Similar to the uniprocessor version of JOP, the application is divided into an initialization
phase and a mission phase. During the initialization phase, a predetermined core executes
only one thread that has to create all data structures and the threads for the mission phase.
During transition to the mission phase all created threads are started.

The uniprocessor real-time scheduler for JOP has been enhanced to facilitate the schedul-
ing of threads in the CMP configuration. Each core executes its own instance of the sched-
uler. The scheduler is implemented as Runnable, which is registered as an interrupt han-
dler for the core local timer interrupt. The scheduling is not tick-based. Instead, the timer
interrupt is reprogrammed after each scheduling decision. During the mission start, the
other cores and timer interrupts are enabled.

Another interesting option to use a CMP system is to execute exactly one thread per
core. In this configuration scheduling overheads can be avoided and each core can reach
an utilization of 100% without missing a deadline. To explore the CMP system without
a scheduler, a mechanism is provided to register objects, which implement the Runnable
interface, for each core. When the other cores are enabled, they execute the run method of
the Runnable as their main method.

3.7 I/O Devices

Each core contains a set of local I/O devices, needed for the runtime system (e.g., timer
interrupt, lock support). The serial interface for program download and a stdio device is
connected to the first core.

For additional I/O devices two options exist: either they are connected to one core, or
shared by all/some cores. The first option is useful when the bandwidth requirement of the
I/O device is high. As I/O devices are memory mapped they can be connected to the main
memory arbiter in the same way as the memory controller. In that case the I/O devices are
shared between the cores and standard synchronization for the access is needed. For high
bandwidth demands a dedicated arbiter for I/O devices or even for a single device can be
used.

An interrupt line of an I/O device can be connected to a single core or to several cores.
As interrupts can be individually disabled in software, a connection of all interrupt lines to
all cores provides the most flexible solution.

3.8 Hardware Platform

The system has been prototyped on Altera’s Development and Education Board (DE2
Board) with a low-cost Cyclone II (EP2C35) FPGA. It has a capacity of 33,000 logic
elements (LEs) and 483,000 bits of on-chip memory. This FPGA can be populated with
up to 8 JOP cores. The DE2 Board contains 512 KB SRAM connected via a 16-bit data
bus. All designs are clocked at 90 MHz and the main memory access time is 4 cycles for a
32-bit read operation, and 6 cycles for a 32-bit write operation.



All configurations consume the same amount of on-chip memory per core: 1 KB stack
cache and 2 KB of method cache. This configuration makes it possible to synthesize an
8-way version of the CMP in the low-cost FPGA.

4. MEMORY ARBITRATION

The memory arbitration of a real-time CMP with a shared memory presents a number of
closely related challenges:

—Synchronization of memory access
—Timing analysis of memory access
—Zero-cycle arbitration
—Scalability with the number of CPUs

The arbiter controls the memory access of multiple CPUs to the shared memory. Natu-
rally, if one CPU is accessing the shared memory, no other CPU can access the memory at
the same time. It is forced to wait until the CPU on turn has completed its memory transfer.
In this case, a memory arbiter resolves these access conflicts by serializing the CPUs’ read
and write operations.

Two different arbitration policies exist: the dynamic and the static arbitration approach.
A dynamic arbitration policy resolves simultaneous accesses at runtime. Each CPU in
the system is assigned a priority. The fixed and the fairness based arbitration policies are
examples of dynamic arbiters.

The static arbitration policy strictly defines the access pattern before runtime. Conse-
quently, no arbitration decision is necessary at runtime. Implementation of this policy is
typical for real-time systems where each CPU has an a priori allocated time to perform its
operations on the memory.

In uniprocessor systems, only one processor accesses the memory and the WCET of a
memory access can be predicted. However, tasks running on a CMP on different CPUs
influence each others’ execution times when accessing a shared resource [Thiele and Wil-
helm 2004], e.g. a shared memory. We wanted to remove the interdependencies between
task execution times. Therefore, an arbitration algorithm is necessary that is able to limit
the WCET of a task running on a CPU, even though tasks executing on other CPUs may
also access the main memory.

Arbiters perform an arbitration decision in the same cycle the request arrives. In com-
parison to existing arbiters like Avalon [Altera 2007a], or AMBA no additional cycle is lost
for arbitration. Subsequently, memory access time is reduced and the bandwidth increases.

Our implemented arbiters can be configured for variable numbers of CPUs. Compared
to existing arbiters like AMBA [ARM 1999] or CoreConnect [IBM 2007], the maximum
number of connected masters is not limited. As a result, the CMP system can be cus-
tomized to the application needs.

4.1 Fixed Priority Arbiter

The fixed priority arbitration policy is a typical example of a dynamic arbitration scheme.
Each CPU in the system is assigned a unique CPU identity, hereinafter referred to as
CPUID. This CPUID establishes priority for each CPU. The CPU with the lowest CPUID
has top priority to access the shared memory. The memory arbiter solves simultaneous
memory accesses by determining an access priority order.
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Fig. 2. Memory access arbitration of the fixed priority arbiter.

In Figure 2, an arbitration scenario of a 2-way CMP with a memory access time of
2 cycles is shown. All depicted signals are either input or output signals of the arbiter,
illustrated by the signals’ names. Furthermore, the subscripts indicate whether the signals
belong to a specific CPU (denoted by the CPUID) or to the memory controller. Some
SimpCon signals are disregarded in Figure 2, e.g. the signals for write access.

At the first clock cycle, both CPU0 and CPU1 want to perform a read access to the shared
memory. CPU0 is immediately granted access because it has a higher priority than CPU1
given that the memory is idle (rdy cnt inM equals to 0). Consequently, the read enable
signal of the memory (rd outM) is driven high and the memory address (addr outM) is
asserted. The read request of CPU1 is registered in the arbiter. It has to wait until CPU0
has finished accessing the memory, indicated by the value 0 of signal rdy cnt inM and no
further request of CPU0 is pending. As soon as CPU0’s data is available, the registered
memory access of CPU1 is processed. In the last cycle indicated in Figure 2, CPU0 wants
to access the memory again. This read access is registered in the arbiter and is performed
after CPU1 has completed its memory access.

The fixed priority arbiter has been used for a WCET analyzable configuration of a single
CPU and a DMA device [Pitter and Schoeberl 2007a]. The DMA device, e.g. a display
refresh unit, performs a regular memory access within a short period of time and is assigned
top priority.

4.2 Fair Arbiter

The fair arbiter implements an arbitration policy that guarantees fairness among the CPUs
accessing a shared memory. Each CPU in the system is assigned a unique CPU identity
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(CPUID). Our fair arbitration policy uses a wrapping counter. As soon as the preceding
memory access is complete, the counter is advanced by one. If the new counter value is
the same as a requesting CPUID and the memory is ready to execute a memory access,
memory access will be processed and the current counter value remains the same until the
data transmission has finished. If the counter shows a CPUID that does not want to access
the memory, the counter is immediately advanced.

Figure 3 shows an arbitration scenario of a 2-way CMP system with a memory access
time of 2 cycles. The signals clk and counter are internal signals of the arbiter. All other
signals are either input or output signals of the arbiter, as indicated by their names. Fur-
thermore, the subscripts indicate whether signals belong to a specific CPU (denoted by the
CPUID) or to the memory controller.

At the first clock cycle, both CPU0 and CPU1 want to simultaneously perform a read
access to the shared memory. CPU0 is immediately allowed to perform the read access
because the counter’s value is 0 and the memory is idle (rdy cnt inM equals to 0). Con-
sequently, the read enable signal of the memory (rd outM) is driven high and the memory
address (addr outM) is asserted. The read request of CPU1 is registered in the arbiter. It
has to wait until CPU0 has finished accessing the memory, as indicated by the value 0
of signal rdy cnt inM and, accordingly, by the received data on data inM and data out0.
When the memory access has been completed, the counter increments by one and the regis-
tered memory access of CPU1 is processed. When the data is available, the counter already
shows a 0 value. As opposed to CPU1, CPU0 does not request a memory access. The
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counter is therefore advanced in the following cycle and CPU1’s registered memory access
is processed.

The more CPUs are part of the system the higher is the probability that the counter
matches the CPUID with a pending memory request after a successful access. Therefore, a
high workload will result in a saturation of memory bandwidth. In case of low competition
among several CPUs, this scheme wastes memory bandwidth (and performance) because
delays without any memory access can occur.

4.3 Time-sliced Arbiter

According to [Andrei et al. 2008; Poletti et al. 0609; Rosen et al. 2007], a time division
multiple access (TDMA) arbitration policy guarantees constant bandwidth for each proces-
sor. Each processor is assigned a predefined part of the bandwidth, which is mapped to an
appropriate time slot, so each CPU has an a priori allocated time to perform its operations
on the memory. We agree that this arbitration policy is well suitable for timing analy-
sis of multiprocessor systems with shared resources. The arbitration information provides
significant data for timing analysis.

Figure 4 shows the TDMA memory access pattern for a CMP system with 3 CPUs. Each
CPU is allocated a time slot to access the shared memory in every TDMA period. This time
slot, configured to a predefined number of clock cycles, is divided into an access time and
an access gap. Memory operations of the corresponding CPU can only be started during
access time. During the gap segment an outstanding memory request can be finished, but
the CPU cannot initiate a new request. This gap permits the next CPU on turn to access
the shared memory in the first cycle of its time slot. The size of the gap is dependent on
memory access time. The larger the memory access time, the larger the gap.

5. TIMING ANALYSIS

This section starts with a short introduction of the static WCET analysis of JOP. The re-
maining sections describe the WCET analysis of a CMP system using different memory
arbiters.

5.1 Static WCET Analysis based on JOP

Real-time processors like JOP have simpler and less powerful architectures than modern
CPUs. Several advanced features increasing average-case performance (e.g. data caches,
out-of-order execution, and branch prediction) are disregarded [Schoeberl 2008]. Although
these methods speed up program execution, they impede the timing behavior predictability
because the WCET depends on the execution history. Hard real-time processors like JOP



benefit from a hardware model that assigns an accurate execution time to each machine
instruction.

Using JOP’s WCET analysis tool [Schoeberl and Pedersen 2006], the WCET of a task
can be obtained. Java programs are compiled to form class files that include JVM instruc-
tions called bytecodes. For static WCET analysis, the bytecode sequence is transformed
into a directed graph of basic blocks called a control flow graph (CFG). Each basic block
consists of several bytecode instructions. JOP translates each bytecode into a microcode or
a sequence of microcode instructions that are executed by the processor. Every microcode
has a fixed execution time, therefore each basic block can also be assigned an exact execu-
tion time.

In addition, flow facts have to be added to the Java program code in advance. In general,
this is the only way to limit the loops and calculate the basic block frequency execution.
The CFG, including the flow facts and the mapping to the hardware, make WCET analysis
possible using the implicit path enumeration technique (IPET) [Li and Malik 1995].

5.2 Fixed Priority Arbitration Approach

The common factor in all arbitration approaches is that the WCET of a single memory
access is the sum of two parts. One part represents the maximum waiting time before the
memory access can be executed. The other part represents the CPU’s memory access time
without any memory contention. Throughout this paper, the WCET is measured in clock
cycles.

The fixed priority arbitration policy assigns a unique priority to each CPU. If memory
access contention occurs, the CPU with the highest priority will be granted access to the
memory. Using this arbitration policy, the WCET of a memory request of the highest
priority CPU, indicated by the subscript 0, can be calculated thus:

WCET0 = max
∀i6=0

{tWCETi −1}+ t0 (1)

whereby t0 denotes the memory access time of CPU0. The other part of the equation
represents the maximum waiting time. Let i be a variable that can take any number between
1 up to the number of CPUs-1 and tWCETi be the maximum duration of all possible instances
of memory access of CPUi. On the one hand, this variable can represent a single memory
access but on the other hand, it can account for a full method load to the method cache.
In the worst possible scenario, one or more CPUs in the system request memory access
during the previous clock cycle of CPU0. Therefore, CPU0 has to wait max{tWCETi −1}
cycles until it can read from or write to the memory. Consequently, the WCET of a single
memory access of the highest priority CPU is the load time of the longest method of all
lower priority CPUs added to the memory access time of CPU0.

Calculating the WCET of a lower priority CPU memory access is either rendered im-
possible or the result represents a very conservative estimate, depending on the number of
CPUs. In case of a 3-way CMP, for example, the WCET of the lowest priority CPU cannot
be estimated because the higher priority CPUs in the system may prevent that CPU from
accessing the memory indefinitely.

A fixed priority arbiter can be used for systems that execute hard real-time tasks on the
top priority CPU, and tasks with non-critical timing requirements on all other CPUs.



5.3 Fair Arbitration Approach

The fair arbiter implements a fair access to the shared memory for all CPUs of the CMP.
This policy avoids starvation of a CPU. The WCET of a memory access by an individual
CPU can be calculated using Equation 2.

WCETj = ∑
∀i6= j

tWCETi + t j (2)

As in the case of the fixed priority CPU, tWCETi is the WCET of all instances of memory
access of CPUi. Again, this variable can be either a single memory access or a full method
load. In the case of a CPU method load, the internal counter of the arbiter is stopped until
the full method load has been completed. After that, the counter is advanced and the next
CPU is allowed to access the memory. The worst-case scenario for a single CPU memory
access can be estimated to be the load time of the longest method of each CPU until the
CPU can access the shared memory.

5.4 Time-sliced Arbitration Approach

The TDMA arbitration policy strictly defines the memory access pattern. Each CPU is
assigned an allocated time slot. Using the TDMA arbitration scheme, the WCET of a
single memory access from an individual CPU can be calculated with Equation 3:

WCETj = (tgap−1)+(n−1) · tslot + t j (3)

whereby n specifies the number of CPUs in the system, and tslot defines the size of the
time slot in clock cycles. t j describes the memory access time of CPU j. In the worst-case
scenario, CPU j wants to access a memory in the first cycle of the gap segment (tgap) of its
own time slot.

The WCET of a single memory access increases with the number of CPUs in the system.
Moreover, the size of the time slot of the arbiter is of major importance. Later on, we
will examine whether a smaller or a larger time slot configuration achieves lower WCET
bounds. Nevertheless, the minimum size of the time slot is predetermined and dependent
on the memory access time. Otherwise, a processing unit could never successfully access
the memory within one time slot.

Applying Equation 3 to individual instances of memory access results in a conservative
WCET for bytecodes. To provide tighter WCET bounds, our method calculates the WCET
for complete bytecode instructions instead of analyzing the WCET of a single memory
access. The WCET is dependent on:

—the number of JOPs integrated in the CMP
—time slot size
—memory access time

First, the memory access pattern of each bytecode has to be investigated. The number
of JOPs has to be defined as well as the size of the time slot. This system configuration
introduces a fixed TDMA memory access scheme whereby each CPU is assigned a time
slot within the TDMA period. Within these set conditions, the WCET of each bytecode
can be determined using the algorithm described in Section 5.4.2. JOP’s WCET analysis
tool uses the generated bytecode estimates to calculate the WCET of a Java application.



Type Bytecode Memory Area

const ldc, ldc w, ldc2 w Method area
get getfield, getstatic Heap
put putfield, putstatic Heap
array aaload, aastore, baload, bastore, Heap

caload, castore, daload, dastore,
faload, fastore, iaload, iastore,
laload, lastore, saload, sastore,
arraylength

call invokeinterface, invokespecial, Method area
invokestatic, invokevirtual

return areturn, dreturn, freturn, Method area
ireturn, lreturn, return

new anewarray, multianewarray, new, Heap
newarray

switch lookupswitch, tableswitch Method Area
cast checkcast, instanceof Heap

Table I. Bytecodes accessing a shared memory.

5.4.1 Bytecode Memory Access Pattern. JOP translates most of the bytecodes into its
native set of microcode instructions. Each bytecode consists of one or a series of microcode
instructions. Some bytecodes are actually implemented in the hardware. A couple of byte-
codes are implemented in Java. The timing analysis of these bytecodes was not included
in this paper because these bytecodes are analyzed like normal Java code.

The heap and method areas are shared data areas located in the main memory. Conse-
quently, all bytecodes accessing these memory areas have to be examined. Some bytecodes
access the memory several times in a row, some only once. Therefore, it makes sense to
have a closer look at several different instructions. Table I summarizes the bytecodes that
access the main memory. As stated before, some bytecodes are implemented in Java, e.g.
bytecodes of type NEW, SWITCH and CAST, so they have been disregarded in the proposed
analysis.

Most bytecode memory access patterns can be analyzed statically, e.g. bytecodes that
access the heap and those of type CONST. The pattern is only dependent on the memory
access time. If the memory access time is known, the bytecode memory access pattern can
be analyzed regardless of the program source code. An example of such a bytecode is ldc,
which pushes a single word constant onto the stack. Therefore, only one memory access
to the method area is needed. JOP translates this bytecode into a series of microcodes.
If the memory access time is known, the memory access pattern can be specified using
JOP’s bytecode implementation. Another example is iaload, which is implemented in the
hardware. To analyze the memory access pattern, we examine the VHDL implementation
in combination with ModelSim simulations.

The memory access patterns of type CALL and RETURN bytecodes require a dynamic
analysis. Each JOP is equipped with an instruction cache that caches complete Java meth-
ods [Schoeberl 2004]. Consequently, the memory access patterns of these bytecodes vary,
depending on execution history. If the method is already in the cache, no additional mem-
ory access is needed to load the method into the cache. If a cache miss occurs, JOP will
have to load the whole method into the cache. Depending on a cache hit or a cache miss and



Listing 1. Algorithm to find the WCET of the bytecodes.
i n t wcet =0;

f o r ( i =0 ; i<TDMA PERIOD ; i ++) {
execTime =0;
p o s i t i o n = i ;

f o r ( j =0 ; j<b y t e c o d e . l e n g t h ; j ++) {
sw i t ch ( b y t e c o d e [ j ] ) {

case NOP:
execTime ++;
p o s i t i o n ++;
break ;

case READ:
whi le ( t d m a P a t t e r n [ p o s i t i o n ] ! = 1 ) {

execTime ++;
p o s i t i o n ++;

}

execTime ++;
p o s i t i o n ++;
break ;

case WRITE :

. . .

break ;
}

}
i f ( wcet<execTime ) {

wcet=execTime ;
}

}

the length of the method that has to be loaded, the access pattern has to be created for each
instance a bytecode occurs in the source code. We have therefore integrated the pattern
generation feature into the WCET analysis tool where the cache information is available.

5.4.2 WCET Analysis of Bytecodes. Listing 1 shows a simplified version of the algo-
rithm used to the find the bytecode WCETs. The inner loop of this algorithm calculates the
array bytecode execution time starting at position. The bytecode describes the memory ac-
cess pattern of the instruction. It has a predefined length, which is equal to the length of the
microcode instruction sequence. Each element contains either a READ/WRITE request, or
a NOP (no memory access). If the indexed element is a NOP, the execution time illustrated
by execTime will be advanced by one. Additionally, the variable position is increased by 1,
which defines the position of the tdmaPattern array. If the element of the bytecode equals
either a READ or a WRITE access, the tdmaPattern will decide whether this CPU will be
allowed to access the memory. In case another CPU is on turn to access the memory (the
element equals to 0), execTime and position are advanced by one until the CPU is allowed
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Fig. 5. WCET calculation of iaload.

access again. The WRITE case of the switch-case statement is similar to the READ case
and is therefore omitted from the listing.

The outer loop changes the calculation starting point for each iteration. The constant
TDMA PERIOD is defined by the multiplication of the number of CPUs by the size of
the time slot. Each iteration of this loop calculates bytecode execution time value. If the
new execTime is greater than the current worst-case execution time, it will be assigned to
the wcet variable. Therefore, the resulting bytecode WCET, depending on the number of
CPUs and the size of the time slot, is available after the last iteration.

5.4.3 WCET Calculation of Bytecode iaload. Figure 5 shows a calculation of the
iaload bytecode assuming a CMP configuration of 3 CPUs and a time slot of 15 clock
cycles. A read access to the main memory takes 4 cycles. It should be noted that a time
slot of 15 cycles permits each CPU to access the memory until the 12th cycle. In the 13th,
14th, and 15th cycle, read access is not granted. Otherwise, memory access cannot be
guaranteed for the next CPU in the first cycle of its time slot.

The following access pattern is predetermined for iaload = {NOP, NOP, NOP, RD, NOP,
NOP, NOP, RD, NOP, NOP, NOP, RD, NOP, NOP, NOP, NOP}. We can see that iaload
performs a read access to the memory three times. The WCET scenario is shown in Fig-
ure 5. iaload starts with an NOP operation in the 2nd cycle of the CPU’s time slot. It can
be noted that the 3rd RD access of iaload cannot immediately be executed. It is delayed by
two time slots until it is allowed to access the memory. The WCET estimate results in 49
cycles.

5.5 A Simple Loop Example

In this section, we will systematically analyze the WCET of a simple loop to show how
the WCET is calculated. Listing 2 shows the source code, where a scalar s is added to a
vector. This loop is parallelizable because each iteration of the statement in the loop body
is self-contained. Therefore, the loop body could be easily executed on different CPUs
simultaneously.

Listing 2. Simple Loop.

f o r ( i =0 ; i <10; i ++) { / / @WCA loop =10
a [ i ]= a [ i ]+ s ;

}



Table II. Java bytecodes and basic blocks forming the loop.

Block Addr. Bytecode Cycles BB Cycles

B1 0 : iconst 0 1
1 : istore 3 1 2

B2 2 : iload 3 1
3 : iload 0 1
4 : if icmpge 4 6

B3 5 : aload 1 1
6 : iload 3 1
7 : aload 1 1
8 : iload 3 1
9 : iaload 49

10 : iload 2 1
11 : iadd 1
12 : iastore 89
13 : iload 3 1
14 : iconst 1 1
15 : iadd 1
16 : istore 3 1
17 : goto 2 4 152

As explained before, the WCET estimate for each bytecode accessing the main mem-
ory has to be calculated according to the CMP configuration. For this example, JopCMP
consists of 3 CPUs, and the time slot for each CPU is specified as 15 clock cycles. Conse-
quently, one TDMA period is 45 cycles. The bytecodes and basic blocks of the example,
as generated by the WCET analysis tool, are shown in Table II. The fourth column repre-
sents the execution time in clock cycles for each bytecode, and the fifth column gives the
execution time for each basic block. If we compare the bytecodes with Table I, only iaload
and iastore access the main memory. Therefore, their WCETs are dependent on the system
configuration.

The CFG, illustrated in Figure 6, is constructed from the basic blocks. The vertices
represent the basic blocks labeled with their name and execution time. All edges are labeled
with their execution frequency. The WCET can now be calculated and the result is 1588
cycles.

We can also measure the execution time of this simple example by running the JopCMP
on the FPGA development board described in Section 3. The measured execution time
of the loop example results in 1371 cycles. This result and the analytical WCET estimate
diverge slightly. This overestimation of the analytical result is not surprising because the
analysis always takes the WCET for the bytecodes iaload and iastore into account. Within
the measuring process, some array accesses are executed using fewer clock cycles than the
worst case.

5.5.1 WCET Dependency on the CMP Configuration. In Table III, WCET estimates
of the loop example are compared for varying system configurations. The number of CPUs
varies between 1 and 8. The size of the time slot varies between 6 and 24 clock cycles. The
third column shows the analyzed WCET results of the program depending on the CMP
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configuration. The WCET estimate of a single JOP is 578 cycles. In this case, no time slot
size is given because a single JOP does not have to share the main memory.

Only two bytecodes in the loop, iaload and iastore, access the main memory. The
WCET estimates of all other bytecodes are not affected by the dividing up of memory
bandwidth. The WCET varies depending on the time slot size. A time slot size between 12
and 18 cycles results in the smallest WCET estimate, independent of the number of CPUs.
With this configurations, iaload can be executed within two time slots. If smaller time
slot sizes are used, the execution needs more of them. If larger ones are used, the longer
TDMA period dominates the execution time. The dual-core configuration with the time
slot equaling 12, for example, results in a WCET of 31 cycles for iaload and 50 cycles for
iastore. If the time slot is configured to 18 cycles, the WCET of iaload calculates to 37 and
iastore to 44 cycles. The sums of the two bytecode WCETs are equivalent, regardless of
whether the size of the time slot equals 12 or 18 cycles. Consequently, loop body WCETs
in both configurations are equivalent as well.

Our experiments show that it is difficult to identify the optimal time slot for best WCET
results. It depends on the occurrences of memory accessing bytecode types in the program
code. In general, a time slice should be kept to a minimum for a single memory access.
Consequently, the length of the TDMA period is minimized as well. Sometimes it can
be advantageous to use larger time slots to allow more than one access within a slot (see
Table III). The ideal slot size can be determined with the help of the WCET analysis tool.

5.6 WCET vs. Measured Execution Time

In the last column of Table III, measured execution time results are given. The loop pro-
gramm is executed on one CPU, the other CPUs are idle. It has to be noted that the other
CPUs have no influence on the execution time with a TDMA arbiter. The measured exe-
cution time and the WCET estimate are the same for a single JOP system, because of the
characteristics of the example whereby only one execution path exists in the code.

All measured execution times vary depending on the time slot size. For a 2-way CMP
with a 12-cycle time slot the measured execution time results in 965 cycles. The same



Table III. Analyzed WCET and measured execution time of the given loop example.

Configuration Analyzed Measured
# of CPUs Time Slot WCET Exec.

(cycles) (cycles) (cycles)

1 − 578 578

2 6 1058 965
2 12 1018 965
2 18 1018 747
2 24 1138 987

4 6 1778 1661
4 12 1738 1469
4 18 1738 1470
4 24 2098 1946

8 6 3218 3101
8 12 3178 2905
8 18 3178 2210
8 24 4018 3866

system with a slot size equaling 18 cycles executes using only 747 cycles. This result
shows that iaload and iastore are frequently utilizing fewer time slots in an 18-cycle con-
figuration, which explains the difference between measured and analyzed execution times.
Furthermore, we can assert that the WCET estimates lie within an acceptable range.

In addition, we have used a benchmark called Lift as another example to calculate
WCET estimates. Lift is a real-world example with an industrial background - this em-
bedded application is a lift controller used in an automation factory. Lift is part of an
embedded Java benchmark suite called JavaBenchEmbedded, as described in [Schoeberl
2005b].

Table IV shows that the WCET of a single JOP results in 10567 cycles. The result of the
dual-core JopCMP with a time slot size of 12 cycles is 18417 cycles (worst-case scenario).
Both CPUs execute the Lift benchmark simultaneously, so the WCET increases by 74%.
The 8-way CMP version experiences an increase of 551% in execution time compared to
the single JOP. Whereas one JOP executes Lift only once, the CMP configuration executes
the benchmark 8 times concurrently.

Measured execution time results are illustrated in the fourth and fifth columns. Several
measurements are carried out for each configuration, so the best case and the worst case
are represented in the table. It has to be noted that the measured worst case is probably not
the real WCET. As the simulation environment does not cover all data possibilities, there
is no guarantee that the path for the real WCET has been triggered. The last column of
Table IV illustrates the pessimism of the WCET analysis. It is calculated by dividing the
analyzed WCET by the worst measured execution time. The pessimism ratio gives an idea
of the quality of our analyzed results. The pessimism of a single CPU is 1.55. The analysis
is not a great deal more conservative in configurations with more CPUs and a reasonable
time slot size. The authors believe that the pessimism in such cases is within an acceptable
range for a multiprocessor WCET analysis.



Table IV. Analyzed WCET and measured execution time of the Lift benchmark.

Configuration Analyzed Measured Pessimism

# of CPUs Time Slot WCET Best Exec. Worst Exec.
(cycles) (cycles) (cycles) (cycles) (Ratio)

1 − 10567 6309 6818 1.55

2 6 18793 8634 10463 1.80
2 12 18417 8472 9663 1.91
2 18 20529 9900 11263 1.82
2 24 22713 9988 11275 2.01

4 6 32001 13604 17579 1.82
4 12 31683 14238 17007 1.86
4 18 37917 17532 20875 1.82
4 24 44505 18604 21415 2.08

8 6 58305 24452 32747 1.78
8 12 58275 27528 33615 1.73
8 18 72693 35100 41755 1.74
8 24 88089 37228 42823 2.06
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Fig. 7. WCET performance of the Lift benchmark.

5.7 WCET Performance

One interesting question is how the CMP system scales with respect to the WCET. Our
goal using the time-predictable CMP system is twofold: (1) to provide a system where
safe WCET bounds can be estimated and (2) to enhance the performance by means of
multiple cores within the CMP.

We can use the WCET numbers from Table IV to estimate a possible increase of WCET
performance. Executing the Lift benchmark simultaneously, increases the WCET on
the individual cores, but also the number of iterations that are executed within the whole
system. Multiplying the increased executed workload, e.g. 8 for an 8-way system, by the
performance decrease, e.g. 18%, the resulting speed-up is by a factor of 1.45.

Figure 7 shows the WCET performance through multiprocessing. There is a measur-
able WCET speed-up for the TDMA arbiter with relatively small slot sizes. Choosing a
larger slot size actually decreases performance. Compared to an average-case performance



increase, as shown in the following section, the WCET performance enhancements are
moderate.

6. PERFORMANCE EVALUATION

Although the CMP is designed for hard real-time systems with a time-predictable task
execution, the average-case performance is still interesting. Applying three different ar-
bitration schemes, the trade-offs using a time-predictable solution compared to using an
average-case optimized CMP system can be explored.

The benchmarks highlight that several processors working simultaneously outperform
a uniprocessor that executes the same workload in sequence. Again, we have used the
FPGA-based platform to evaluate different configurations. We have also included FPGA
synthesis results.

6.1 Benchmarks

Using a multi-core system, application development is more complex because the appli-
cation code has to be split up among several processors. We evaluate the CMP with three
different benchmarks:

—a real-world embedded application in industrial use (Lift),

—a matrix multiplication (MMul), and

—an embedded TCP/IP stack (ejip).

Our benchmark methodology is as follows: Lift is executed 10000 times. This work-
load is distributed evenly among the processors. The benchmarks MMul and ejip perform
an automatic distribution of the workload.

6.1.1 Lift Application. The Lift benchmark, introduced in Section 5.6, is actually
written for an uniprocessor. Nevertheless, we use it for executing several Lift tasks on
multiple CPUs concurrently. This benchmark thus represents a medium computational,
fully parallelized application without any synchronization needs.

6.1.2 Matrix Multiplication. The benchmark MMul is designed to give an idea of the
performance of a computationally intensive algorithm showing good parallelism potential.
The benchmark multiplies two matrices with a dimension measuring 100x100. This cal-
culation results in 1 million multiplication operations. Each row of the resulting matrix
is calculated by a single CPU. A synchronization variable secures that the next idle CPU
takes the next unsolved row until the desired result is achieved. The benchmark measures
the elapsed time for the calculation. MMul is classified as a parallel workload – computa-
tionally intensive with low synchronization overhead.

6.1.3 Embedded TCP/IP Stack. As an example of an application with several commu-
nicating threads, we use an embedded TCP/IP stack for Java, called ejip. The benchmark
explores the possibility of parallelization of the TCP/IP stack. The application that uses
the TCP/IP stack is an artificial example of a client thread requesting a service (vector
multiplication) from a server thread. That benchmark consists of 5 threads: 3 application
threads (client, server, result), and 2 TCP/IP threads executing the link layer as well as the
network layer protocol.



Table V. Performance comparison of different arbiter types using the Lift benchmark.

Number of Fixed Fair TDMA

JOP cores Exec. time (ms) Exec. time (ms) Exec. time (ms)

1 702 702 702

2 389 399 469

4 336 292 405

8 340 277 395

Fixed Fair TDMA (6 cycleTDMA (12 cycles)
1 706 706 706 706
2 393 402 495 4712 393 402 495 471
4 339 295 423 406
8 345 280 395 397
Fixed Fair TDMA (6 cycleTDMA

1 1 1 1 1
2 1,80 1,76 1,43 1,50
4 2,08 2,39 1,67 1,74
8 2 05 2 52 1 79 1 788 2,05 2,52 1,79 1,78
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Fig. 8. Performance comparison of the Lift benchmark using different arbiters.

6.2 Measurements

Table V shows the measured execution time of Lift, running at a frequency of 90 MHz on
the Altera DE2 board. The first column gives the number of JOP cores in the system. The
results of three different arbiters are shown. Configurations using

—the fixed priority arbiter,
—the fair arbiter, and
—the time-sliced arbiter with a time slot of 12 cycles.

The execution time is measured for each combination of number of CPUs and arbitration
policy. One JOP executes the Lift workload in 702 ms and does not have to share memory
bandwidth. A dual-core system performs about 1.8 times faster than a single JOP, using a
fixed priority or a fair arbiter. The configuration with a TDMA arbiter shows a performance
improvement of 50%. Actually, a 4-processor system using a fixed arbiter nearly doubles
the performance of a single-core. The same system with a fair-based arbiter experiences
a speed-up of 2.4. A time-sliced arbiter cannot keep up with these system speed-ups but
is still 73% faster. Executing the workload on more than 4 processors does not give a
significantly better performance, irrespective of which arbiter is used.

Figure 8 summarizes the performance results. The horizontal axis describes the number
of CPUs, the vertical axis illustrates the relative speed-up. The relative speed-up is the
relation between the execution time on a single core and a multi-core version. The figure



Table VI. Performance comparison of different arbiter types using the MMul benchmark.

Number of Fixed Fair TDMA

JOP cores Exec. time (ms) Exec. time (ms) Exec. time (ms)

1 839 839 839

2 461 467 556

4 306 315 421

8 305 306 336

Table VII. Performance comparison of different arbiter types using the ejip benchmark.

Number of Fixed Fair TDMA

JOP cores Exec. time (ms) Exec. time (ms) Exec. time (ms)

1 305 305 305

2 193 196 245

4 125 124 210

8 271 223 334

shows that configurations up to 8 cores using the fair and the TDMA arbiters scale ade-
quately. The saturation point of the fixed arbiter configuration lies at 4 cores. The reason
for this slow-down is the large competition among the CPUs to access the memory.

Table VI depicts the measurement results of MMul. This computationally intensive al-
gorithm shows a good potential for parallelism. Execution time for the fair arbiter config-
uration is shorter than reported in [Pitter and Schoeberl 2008], as we have optimized the
benchmark code. We are assuming that in a CMP system, for this kind of processing task,
the code is optimized to avoid memory access as much as possible. The CMP speed-ups,
consisting of 2 cores, lived up to our expectations with 1.5 (TDMA) and 1.7 (fixed and
fair), respectively. The fixed arbitration policy scales well up to 4 processor cores. Adding
more CPUs to the system does not result in a better performance. Whereas the first four
CPUs calculate 97 rows altogether, the other CPUs calculate only 3 rows. Notably, CPU6
and CPU7 suffer from starvation because they never get their turn to calculate a single row.
The fair arbiter distributes a workload evenly among all the processors. Each CPU cal-
culates either 12 or 13 rows contributing to the final result. Nevertheless, 8 cores do not
provide a significant speed-up. Also, the TDMA arbiter distributes the workload evenly
and is only 10% slower than the fair arbiter using 8 CPUs.

The results for the embedded TCP/IP example ejip are shown in Table VII. The ap-
plication, consisting of five communicating threads, scales quite well up to 4 cores. With
the fair arbiter, performance increases by a factor of 2.5. Even the TDMA-based system
is about 45% faster than a single core solution. The overheads introduced by 8 cores, with
only 5 cores executing threads, leads to a performance decrease compared to the 4-core
system.

One bottleneck in the TCP/IP stack is a global buffer pool. All layers communicate
via this single pool. The single pool is not an issue for a uniprocessor system, however
real parallel threads compete more often for pool access. As a result, we intend to rewrite



Table VIII. Synthesis results of different CMP configurations on the Cyclone II FPGA (EP2C35).

Number of Resources (LE) Memory (KBit) Frequency (MHz)

JOP cores Fixed Fair TDMA all Fixed Fair TDMA

1 3,329 3,329 3,329 62 104 104 104

2 6,534 6,789 6,849 92 102 103 101

4 12,974 13,461 13,568 184 101 100 100

8 25,622 26,877 26,870 368 97 90 90

the TCP/IP stack to use dedicated queues, preferably non-blocking, single reader/writer
queues, for the communication between layers. Furthermore, we will explore a finer par-
allelization within the TCP/IP stack to use the available CPUs.

6.3 Synthesis Results

Table VIII shows the resource consumption of different multicore systems using the three
different arbiters, synthesized with Altera Quartus II using the EP2C35 FPGA. Using 2 KB
instruction and 1 KB of stack cache for each CPU, the resource consumption of logic
elements (LE) and on-chip memory is balanced. CMPs with the same number of CPUs but
different arbiter types need fairly the same amount of LEs and identical on-chip memory
sizes. An 8-way CMP using the TDMA arbiter requires 81% of the available LEs and 76%
of the memory bits on the low-cost Cyclone II. These results show that CMPs based on
FPGA technology would prefer a different LE to on-chip memory ratio. Consequently, the
anyway small cache sizes could be increased.

The maximum frequency varies between 104 MHz for a single JOP and 90 MHz for an
8-way CMP with the TDMA Arbiter. Using the phase-locked loop (PLL) of the FPGA, the
clock frequency of all configurations is set to 90 MHz for the experiments. Even though
our arbiters execute an arbitration decision in the same cycle the memory request happens,
the different CMP versions scale quite well with respect to maximum clock frequency.
Significant clock frequency degradation cannot be observed up to a multicore version with
8 CPUs.

7. DISCUSSION

Three different arbiters were implemented to be able to experiment with different CMP
systems, highlight advantages and disadvantages, and find the most practical field of appli-
cation. Table IX summarizes the differences between various arbitration policies.

7.1 Starvation

CMPs using a fair or a TDMA arbiter cannot suffer from starvation because each CPU
gets the chance to access the memory. Only a fixed priority arbiter may cause starvation of
CPUs, because higher priority CPUs might access the shared memory first. This situation
can occur when more than 2 CPUs are integrated in a CMP. The two highest priority CPUs
could alternately access the shared memory. Consequently, the third CPU will never get to
access the memory.



Table IX. Comparison of the arbitration policies.

Property Fixed Fair TDMA

Starvation - + +

Predictability - +/- +

Performance +/- + -

7.2 Predictability

Even though a timing analysis approach of each arbitration policy is presented in Section 5,
some of them are not viable for hard real-time systems.

With the fixed priority arbiter only the highest priority CPU of a CMP is predictable.
WCETs cannot be calculated for all other CPUs. Therefore, this arbitration policy can
be used for real-time systems where one CPU executes hard real-time and the other ones
non-critical tasks.

A fair-based arbiter makes possible the timing analysis of all tasks running on different
CPUs. Nevertheless, the WCET of a single memory access by a CPU is a very conservative
estimate, because a possible method cache load by each CPU has to be taken into account.
The resulting WCET values are not feasible. Compared to the TDMA arbiter, the current
implementation cannot split a method cache load into several transactions.

The proposed timing analysis approach of a TDMA arbiter enables the WCET calcula-
tion of Java bytecodes instead of the WCET for a single memory access. The WCET is
dependent on the number of CPUs and the time slot size. It is preferable to keep the time
slot short if single memory access is dominant in the application code. A medium time slot
size is the solution for frequent field and array accesses, a large slot size for predominant
cache load accesses. Further experiments are necessary to be able to better define whether
to make time slot sizes larger or smaller.

7.3 Performance

Using three benchmarks, we were able to demonstrate how multiple processors speed up
real world applications. The speed-up increase has lived up to expectations for systems
using a fair arbiter. The Lift benchmark executes 2.5 times faster on an 8-way CMP
than on a single JOP. The performance improvement of CMP systems with a fixed priority
arbiter scales well up to 4 cores. When integrating more CPUs, some of them may suffer
from starvation using fixed priority arbitration. As expected, the average-case performance
of systems using the TDMA arbiter cannot keep up with the performance improvements of
other arbiters.

Comparing our JopCMP to a complex Java processor such as picoJava II, our conclusion
is that a multiprocessor version of a simpler and smaller architecture is more efficient
(performance/die area) for parallel workloads [Pitter and Schoeberl 2008].

7.4 Real-Time Speed-up of Multicore

The WCET analysis of an application task for a TDMA-based system showed only a mod-
erate speed-up (up to a factor of 1.5 for an 8-core system). We expected a lower increase of
a real-time performance compared to the increase of an average-case performance. How-
ever, the achievable speed-up was less than expected. It has to be noted that the measured



workload consisted of independent tasks without communication overheads. We assume
that the memory access now dominates the WCET. And for a TDMA arbiter the WCET of
a single memory access on a 8-way CMP is 8 times longer than for a uniprocessor system.
We consider this result a motivation for further improvements.

The reduced memory bandwidth calls for more research on time-predictable caching.
The WCET analysis tool only considers the leaf nodes of a call tree for the method cache
analysis. Tighter bounds on method cache misses will directly pay off for a system with
a pressure on memory bandwidth. First experiments with local cache analysis showed a
WCET reduction of 15% using an 8-way configuration.

Furthermore, we have to consider a time-predictable solution for the caching of heap-
allocated data. A small, fully associative buffer similar to a victim cache [Jouppi 1990]
will allow detection of some cache hits in the WCET analysis.

8. CONCLUSION AND FUTURE WORK

Our research shows that timing analysis is in fact possible for homogeneous multiprocessor
systems with a shared memory. In this paper, we have presented a Java multiprocessor
architecture consisting of a number of JOP cores and a shared memory. An arbiter is used
to synchronize memory access by multiple processors. Three different arbitration schemes
are described, analyzed, and compared for viable use in real-time CMPs.

The key component enabling WCET analysis of the CMP is a TDMA arbiter. It splits up
the memory access bandwidth into equal shares. We analyze the WCET of Java bytecodes
instead of the WCET for a single memory access. These WCETs are dependent on time
slot sizes, number of CPUs in the system, and memory access time. Therefore, JOP’s
WCET tool was enhanced to be able to integrate maximum latencies through memory
access collisions of multiple CPUs.

Furthermore, examples of WCET calculations are presented, and WCET estimates are
compared to measurement results. The experiments were carried out by executing three
benchmarks on real hardware. Several experiments have demonstrated that we have to
accept the exclusivity of applying either a time-predictable architecture or an architecture
designed for average-case performance.

The outlook of further research of time-predictable multiprocessor systems has two
closely related aspects: the design of multiprocessor architecture and the WCET analy-
sis. Modifications within the architecture might make the analysis more intricate but an
increase in processor performance is assured.

We plan to investigate the use of a percentage-based arbitration of the available mem-
ory access bandwidth, so memory bandwidth per CPU will be adjusted, dependent on the
workload of the multiple CPUs. For example, if one CPU needs 60% of the available
memory bandwidth, that is exactly what it will receive.

We also plan to investigate a fair arbiter upgrade. The method cache load might be
interrupted after a predetermined period of time. This would result in a mix of fair and
TDMA-based arbitration. Consequently, better average-case performance due to fair arbi-
tration would be combined with the time predictability through a maximum access time.

The quality of the WCET analysis results will also be enhanced. We will extend the
solution by performing a TDMA analysis on basic blocks in order to tighten the WCET
bounds. The increased cache pressure on the memory bandwidth requires further research
on time-predictable caching.
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