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ABSTRACT
This paper describes the first steps towards a Java multiprocessor
system on a single chip for embedded systems. The chip multipro-
cessing (CMP) system consists of a homogeneous set of processing
elements and a shared memory. Each processor core is based on the
Java Optimized Processor (JOP). A major challenge in CMP is the
shared memory access of multiple CPUs. The proposed memory
arbiter resolves possible emerging conflicts of parallel accesses to
the shared memory using a fixed priority scheme. Furthermore, the
paper describes the boot-up of the CMP. We verify the proposed
CMP architecture by the implementation of the prototype called
JopCMP. JopCMP consists of multiple JOPs and a shared mem-
ory. Finally yet importantly, the first implementation of the CMP
composed of two/three JOPs in an FPGA enables us to present a
comparison of the performance between a single-core JOP and the
CMP version by running real applications.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.3.4 [Programming Languages]:
Processors—Run-time environments, Java; B.7.1 [Integrated Cir-
cuits]: Types and Design Styles—Microprocessors and microcom-
puters

Keywords
Multiprocessor, Java, Shared Memory

1. INTRODUCTION
Modern applications demand ever-increasing computation power.

They act as the main drivers for the semiconductor industry. For
over 35 years, the speed of transistors has become faster and the
frequency of the clock rate accordingly. Additionally the number
of transistors on an integrated circuit for a given cost doubles ev-
ery 24 months, as described by Moore’s Law [20]. The availability
of more transistors has been used by introducing the instruction-
level parallelism (ILP) approach, which was the primary processor
design objective between the mid-1980s and the start of the 21st
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century. According to [9], we are reaching the limits of exploiting
ILP efficiently. Unfortunately, semiconductor technology has also
run across limitations in recent years because of the theoretical lim-
its informed by the theory of physics, e.g., electrical signals cannot
travel faster than the speed of light. As a result, the frequency that
used to increase exponentially has leveled off [17].

To sustain the rapid growth of computation power new system ar-
chitecture advancements have to be made. According to [9] the fu-
ture direction of computer systems is chip multiprocessing (CMP).
Such a system combines two or more processing elements and a so-
phisticated communication network on a single chip. A major ad-
vantage of this approach is that progress in computation power does
not come along with an increase of the hardware complexity of the
single processors. However, the shared components like memory
and I/O of a multiprocessor system produce new challenges that
have to be addressed.

Real-time programs are naturally multi-threaded and a good can-
didate for on-chip multiprocessors with shared memory. The Java
virtual machine (JVM) thread model supports threads that share
the main memory. Therefore, a multiprocessor JVM in hardware
is a viable option. The basis for the CMP architecture has been
set with the Java Optimized Processor (JOP) [23, 24, 25]. JOP is
the implementation of a JVM in hardware. The used application
model is described in [22, 28] and is based on the Ravenscar Ada
profile [7]. In order to generate a small and predictable processor,
several advanced and resource-consuming features (such as instruc-
tion folding or branch prediction) were omitted from the design of
JOP. The resulting low resource usage of JOP makes it possible to
integrate more than one processor in a low-cost field programmable
gate array (FPGA).

In this paper, we propose a CMP architecture consisting of a
number of JOPs and a shared memory. The shared memory is uni-
formly accessible by the homogeneous processing cores. An arbi-
tration unit takes care of conflicts due to parallel memory requests.
Furthermore, we describe the implementation of the caching and
synchronization mechanisms. Additionally we present JopCMP,
the first prototype of the CMP with JOP cores. JopCMP is com-
posed of multiple JOP cores, integrated in an FPGA, and an exter-
nal memory. A novel memory arbiter controls the memory access
of the various JOPs to the shared memory. It resolves possible
emerging conflicts of parallel accesses to the shared memory. In
comparison to existent memory arbiters of system-on-chip (SoC)
busses (e.g. AMBA [3]), the proposed arbitration process is per-
formed in the same cycle as the request happens. This increases
the bandwidth and eases the time predictability of each memory
access. Therefore, the implementation of the JopCMP represents a
first step towards a time predictable multiprocessor. The ultimate
goal of our research work is a multiprocessor for safety-critical ap-



plications. Moreover, an acceptable performance compared with
mainstream non real-time Java systems is an objective.

The rest of the paper is structured as follows. Section 2 presents
related work. In Section 3, we describe the proposed CMP archi-
tecture and go into details of the memory model and caching. Ad-
ditionally the issue of synchronization is examined. Section 4 de-
scribes the first implementation of the JopCMP system, including
the boot-up sequence and the shared memory access management
of the CMP. Section 5 presents experiments with the JopCMP pro-
totype. We compare the performance of the CMP against a sin-
gle processor. Finally, Section 6 concludes the paper and provides
guidelines for future work.

2. RELATED WORK
In this paper, we argue that the replication of a simple pipeline on

a chip is a more effective use of transistors than the implementation
of super-scalar architectures. The following two subsections are
about the progress made in CMP.

2.1 Mainstream Multiprocessors
Due to the power wall [9], the trend towards CMP can be seen

in mainstream processors. Currently, three quite different architec-
tures are state-of-the-art:

1. Multi-core versions of super-scalar architectures (Intel/AMD)

2. Multi-core chip with simple RISC processors (Sun Niagara)

3. The CELL architecture

Mainstream desktop processors from Intel and AMD include
two or four super-scalar, simultaneous multithreading processors,
which are just replications of the original, complex cores. Sun
took a completely different approach with its Niagara T1 [15]. The
T1 contains eight processor cores. Each core consists of a sim-
ple six-stage, single-issue pipeline similar to the original five-stage
RISC pipeline. The additional pipeline stage adds fine-grained
multithreading. The first version of the chip contains just a sin-
gle floating-point unit that is shared by all eight processors. The
design is targeted to server workloads.

The Cell multiprocessor [10, 13, 14] is an example of a hetero-
geneous multiprocessor system. The Cell contains, besides a Pow-
erPC microprocessor, eight synergistic processors (SP). The bus is
clocked at half of the processor speed (1.6 GHz). It is organized in
four rings each 128 bit wide, two in each direction. A maximum of
three non-overlapping transfers on each ring are possible. The SPs
contain on-chip memory instead of a cache. All memory manage-
ment, e.g. transfer between SPs or between on-chip memory and
main memory, is under program control, which makes program-
ming a difficult task.

All of the above CMP architectures are optimized for average
case performance and not for worst-case execution time (WCET).
The complex hardware complicates the timing analysis. Our over-
all goal is a homogeneous CMP design that is analyzable with re-
spect to WCET. The paper presents the first step towards this.

2.2 Embedded Multiprocessors
In the embedded system domain, two different CMP architec-

tures are distinguished:

1. heterogeneous multiprocessors

2. homogeneous multiprocessors

Multiprocessors with a heterogeneous architecture combine a
core CPU for controlling and communication tasks and additional
digital signaling processing elements, interface processors or mo-
bile multimedia processing units. These units are connected to-
gether using multi-level buses or switches. Some functional units
may have their own individual memories along with shared mem-
ory structures. They are often tailored for specific applications.
Some examples of heterogeneous multiprocessors include the No-
madik [1] from ST designed for mobile multimedia applications,
the Nexperia PNX-8500 [8] from Philips aimed at digital video en-
tertainment systems, or the OMAP family [19] from TI designed to
support 2.5G and 3G wireless applications.

Gaisler Research AB designed and implemented a homogeneous
multiprocessor system. It consists of a centralized shared memory
and up to four LEON processor cores that are based on the SPARC
V8 architecture [11]. This embedded system is available as a syn-
thesizable VHDL model. Therefore, it is well suited for SoC de-
signs. We could not find any literature concerning WCET analysis
regarding the multiprocessor.

Another example is the ARM11 MPCore [4]. It introduces a
pre-integrated symmetric multiprocessor consisting of up to four
ARM11 microarchitecture processors. The 8-stage pipeline archi-
tecture, independent data and instruction caches, and a memory
management unit for the shared memory make a timing analysis
difficult.

The two leaders of the FPGA market Altera and Xilinx both pro-
vide software tools and intellectual property (IP) processors to de-
sign CMP systems [2, 5]. The Nios II CPUs depict the processing
units of the multiprocessor architecture from Altera. It is easy to
create a CMP architecture using the GUI interface of the System-
on-a-programmable-chip (SOPC) builder, a tool of the Altera Quar-
tus II design suite. Nevertheless, the dependence on specific IP
cores is unavoidable when designing such a system.

In this paper, we concentrate on homogeneous multiprocessors
consisting of two or more similar CPUs sharing a main memory.
Even though much research has been done on multiprocessors, the
timing analysis of the systems has so far been disregarded.

3. CMP ARCHITECTURE
According to [12, 30], two different possibilities of a tightly cou-

pled multiprocessor system exist (see Figure 1). The core of the
Shared Memory Model is a global physical memory equally ac-
cessible to all processors. These systems enable simple data shar-
ing through a uniform mechanism of reading and writing shared
structures in the common memory. This multiprocessor model is
called symmetric (shared-memory) multiprocessor (SMP) because
all processors have symmetric access to the shared memory. This
architecture is known as UMA (uniform memory access).

In contrast, the Distributed Shared Memory Model implements
a physically distributed-memory system (often called a multicom-
puter). It consists of multiple independent processing nodes with
local memory modules, connected by a general interconnection net-
work like switches or meshes. Communication between processes
residing on different nodes involves a message-passing model that
requires extensive additional data exchange. The messages have
to take care of data distribution across the system and manage the
communication. This architecture is called non-uniform memory
access (NUMA) because the time for a memory access depends on
the location of the memory word.

For time-predictability, the NUMA architecture is less appropri-
ate. Each CPU can access its own local memory very fast but the
time to access a data word of another memory in the distributed
system takes much longer. Consequently, the memory access times



Figure 1: CMP Memory Models: a) Shared memory model, b)
Distributed shared memory model.

can vary extensively. In the SMP architecture, each memory re-
quest takes the same time independent of the CPU. Additionally, no
message-passing communication system that could limit the band-
width of the interconnection is needed. Therefore, the SMP archi-
tecture is the best choice for analyzing tight bounds of a memory
access.

3.1 JVM Memory Model
The JVM defines various runtime data areas that are used dur-

ing the execution of a program [18]. Some of these data areas
are shared between threads, while others exist separately for each
thread.

Stack: Each thread has a private stack area that is created at the
same time as the thread containing a frame with return infor-
mation for a method, a local variable area, and the operand
stack. Local variables and the operand stack are accessed as
frequently as registers in a standard processor. According to
[23], a Java processor should provide some caching mecha-
nism of this data area.

Heap: The heap is the data area where all objects and arrays are
allocated. The heap is shared among all threads. A garbage
collector (GC) reclaims storage for objects. The GC of the
proposed CMP runs on a designated processor.

Method area: The method area is shared among all threads. It
contains static class information such as field and method
data, the code for the methods and the constant pool. The
constant pool is a per-class table, containing various kinds of
constants such as numeric values or method and field refer-
ences. The constant pool is similar to a symbol table. Part
of this area, the code for the methods, is very frequently ac-
cessed (during instruction fetch) and therefore is a good can-
didate for caching.

The specification of the JVM mandates that the heap and the
method area be shared among the threads. This memory model
favors the shared global memory model as the adequate solution
for the multiprocessor using JOP cores. One single shared address
space is accessible from all processors.

3.2 CMP Cache Memory
Many SMP architectures support caching of private and shared

data [9]. Since many memory requests can be served by the caches,

the number of accesses to the main memory decreases. Neverthe-
less, caching of shared data may result in cache coherence problems
in a multiprocessor environment. Assume shared data are cached
and each processor has a copy of a data word in its own cache. If
one processor changes the data word, the other processor will not
notice that the data word has become invalid. Hence, two differ-
ent CPUs could see different values in their caches of exactly the
same memory location. There exist cache coherence techniques,
e.g. snooping protocols or directory based mechanisms, to secure
that no cache coherence problems can arise. Nevertheless, these
cache coherence mechanisms require processing overhead and la-
tencies.

In the JVM, each thread has its own JVM stack. The thread
very often accesses this memory area. Therefore, in a CMP system
it is cached in a so-called stack cache of the corresponding CPU.
No cache conflicts can occur because this data is private for each
thread.

The method area of the JVM is shared among all the threads.
Nevertheless, it is cached in the method cache [23] of each CPU.
This area is a read-only area. Consequently, no cache coherence
conflicts can occur.

The heap of the JVM is the memory region that is not cached,
as data cache WCET analysis is problematic. The heap contains
all objects that are created by a running Java application. There-
fore, the heap represents the memory area used for communication
between the multiple CPUs of a CMP.

To summarize, the CMP architecture operates without any cache
coherence mechanisms, as cache coherence conflicts are avoided
by our CMP architecture.

3.3 Synchronization
Synchronization is an essential part of a multiprocessor system

with shared memory. The CMP synchronization support has two
important responsibilities:

• Protect access to shared objects

• Avoid priority inversion

The first responsibility of synchronization is to protect access to
shared objects. As already mentioned in Section 3.2, the heap in-
side the JVM contains the objects that are shared between threads.
If multiple threads need to access the same objects or class vari-
ables concurrently, their access to the data must be properly man-
aged. Otherwise, the program will have unpredictable behavior.
Therefore, the JVM associates a lock with each object and class.
Only one thread can hold the lock at any time. When the thread
no longer needs the lock, it returns it to the JVM. If another thread
has requested the same lock, the JVM passes the lock to that thread.
The traditional approach implementing such objects centers around
the use of critical sections: only one process operates on the object
at a given time.

JOP, the implementation of the JVM in hardware, solves this
problem by a straightforward approach. Suppose several threads
are executed depending on the priority of each thread. If one thread
accesses a shared object and enters a so-called critical section, it
will have to hold exclusive ownership. Therefore, JOP provides
two software constructs called monitorenter and monitorexit.
In hardware, the synchronization mechanism is implemented by
disabling and enabling interrupts at the entrance and exit of the
monitor. This simple form of synchronization disallows any con-
text switches until the thread leaves the critical section. Even though
this is a viable option for single processor systems, the price is high
for this approach. Consequently, the processor cannot interleave



programs in different critical sections. This may lead to a degra-
dation of the execution performance. Therefore, a couple of con-
structs to implement critical sections in hardware [29] exist, e.g.
the atomic Read-Modify-Write operation based on a test and set
instruction.

Especially in the CMP, the synchronization solution with deacti-
vation and activation of interrupts does not suffice. Mutual exclu-
sion cannot be guaranteed because we cannot prevent other CPUs
from running in parallel. Threads of different processors may si-
multaneously access the shared object. Therefore, a synchroniza-
tion unit is essential for the CMP. If one processor wants to access
a shared object, it will have to request a lock. Either the CPU re-
ceives the lock or the request is rejected because another CPU is
using the object. With the grant of the lock, the processor resides
in the critical section and cannot be interrupted. After the processor
does not access the shared object anymore, it will release the lock
immediately. Another CPU, which is waiting for the lock, will get
the permission to access the memory object. The first implemen-
tation will make only one global lock available for the heap. Later
we will investigate to use multiple locks. The access of each object
of the heap will be controlled by its corresponding lock. Though
the introduction of multiple locks will increase concurrency, it may
induce the risk of deadlock see [32]. A deadlock is a condition in
which two or more threads cannot advance because they request a
lock that is held by another thread.

The second responsibility of the CMP synchronization support
is the avoidance of priority inversion. If a low priority thread holds
a shared resource, a high priority thread cannot access the same re-
source. Consequently, the high priority thread cannot interrupt the
low priority thread until the low priority thread releases the lock.
Assume one or more medium priority threads preempt the low-
priority task. Consequently, the high priority thread can be delayed
indefinitely, because the medium priority jobs will take precedence
over the low priority task and the high priority task as well. An un-
bounded priority inversion and in fact no time predictability would
be the consequence. Solutions for priority inversion for single pro-
cessor systems include the priority ceiling protocol or the priority
inheritance protocol [16]. The work of Wang et al. [31] presents
two algorithms of priority inheritance locks for multiprocessor real-
time systems. If a low priority processor locks a high priority pro-
cessor, the low priority processor will inherit the highest priority
of the waiting processors. Hence, no medium priority processors
get the chance of interrupting the low priority processor and conse-
quently lock the high priority processor for an indefinite time. The
time, the high priority CPU has to wait is bounded.

Even though we know that hardware assisted transactional mem-
ory models could be a promising approach for our multiprocessor,
we concentrate on memory locks for synchronization in this paper.
Future work will investigate the use of transactional memory for
the CMP.

3.4 CMP using JOPs
The proposed chip multiprocessing system (see Figure 2) uses

the SMP architecture. It consists of a shared memory that is uni-
formly accessible by a number of homogeneous processors. The
JOP cores are connected to the shared memory via a memory ar-
biter that is further explained in Section 4.2. This arbiter has to
control the memory access of the various JOPs to the shared mem-
ory. It resolves possible emerging conflicts of parallel accesses to
the shared memory dependent on the priority of the CPU that re-
quested access. Each CPU is assigned a unique priority in the sys-
tem.

Each core contains a local method and stack cache. Furthermore,

Figure 2: Time predictable CMP architecture.

the depicted CMP architecture shows a scheduling and synchro-
nization unit. The preemptive scheduler is assigned to distribute
the real-time tasks among the processors. Synchronization has the
responsibility to coordinate access to the shared objects by a mu-
tual exclusion mechanism. Due to different priorities of the multi-
ple processors, a low priority processor shall not be able to block
a high priority processor indefinitely. Therefore, this priority in-
version problem is solved by using priority inheritance locks for
shared objects.

On-chip IO devices, such as a controller for real-time Ethernet or
a real-time field bus, may be mapped to shared memory addresses
and are connected via the memory arbiter.

4. IMPLEMENTATION
In the following section, we describe our implementation of a

CMP system based on JOP. Multiple cores are connected via a low-
latency arbiter to a shared main memory. We subsequently refer to
the prototype as JopCMP.

4.1 JopCMP Boot-up Sequence
One interesting issue for a CMP system is the question how the

startup or boot-up is performed. Before we explain the CMP so-
lution, we need an understanding of the boot-up sequence of JOP
in an FPGA. On power-up, the FPGA starts the configuration state
machine to read the FPGA configuration data either from a Flash
or via a download cable (for development). When the configura-
tion has finished an internal reset is generated. After that reset, mi-
crocode instructions are executed starting from address 0. At this
stage, we have not yet loaded any application program (Java byte-
code). The first sequence in microcode performs this task. The Java
application can be loaded from an external Flash or via a serial line
(or USB port) from a PC. The microcode assembly configured the
mode. Consequently, the Java application is loaded into the main
memory. To simplify the startup code we perform the rest of the
startup in Java itself, even when some parts of the JVM are not yet
setup.



In the next step, a minimal stack frame is generated and the spe-
cial method Startup.boot() is invoked. From now on JOP runs
in Java mode. The method boot() performs the following steps:

• Send a greeting message to stdout

• Detect the size of the main memory

• Initialize the data structures for the garbage collector

• Initialize java.lang.System

• Print out JOP’s version number, detected clock speed, and
memory size

• Invoke the static class initializers in a predefined order

• Invoke the main method of the application class

The boot-up process is the same for all processors until the gen-
eration of the internal reset and the execution of the first microcode
instruction. From that point on, we have to take care that only one
processor performs the initialization steps.

All processors in the CMP are functionally identical. Only one
processor is designated to boot-up and initialize the whole sys-
tem. Therefore, it is necessary to distinguish between the different
CPUs. We assign a unique CPU identity number (CPU ID) to each
processor. Only processor CPU0 is designated to do all the boot-up
and initialization work. The other CPUs have to wait until CPU0
completes the boot-up and initialization sequence. At the beginning
of the booting sequence, CPU0 loads the Java application. Mean-
while, all other processors are waiting for an initialization finished
signal of CPU0. This busy wait is performed in microcode. When
the other CPUs are enabled, they will run the same sequence as
CPU0. Therefore, the initialization steps are guarded by a condi-
tion on the CPU ID.

In our current prototype, we let all additional CPUs also invoke
the main method of the application. This is a shortcut for a sim-
ple evaluation of the system1. In a future version, the additional
CPUs will invoke a system method to be integrated into the normal
scheduling system.

4.2 Memory Arbiter
The general structure of a system-on-a-chip (SoC) architecture

combines SoC modules with a data exchange interconnection. A
CMP is formed of several processors connected to a shared mem-
ory module. Some sort of SoC interconnection has to enable data
exchange between the SoC modules.

One major design decision regards the type of interconnection
that is used. Our system requires a fast, point-to-point connection
between each CPU and the memory. We still have to keep in mind
that a parallel access to the memory is not possible and would lead
to a conflict. Therefore, some kind of synchronization mechanism
has to take care of this problem. Additionally, each memory access
should be as fast as possible and time predictable.

Communication on SoC is an active research area with focus on
network-on-chip (NoC) [6]. NoC is not the appropriate architec-
ture for JopCMP. First, the interconnection of JopCMP does not
have to be a network because our system consists of a couple of
masters (JOP) and only one slave (shared memory). The commu-
nication between the masters takes place using shared memory and
not packet oriented messages. Consequently, there is no use of a

1In the main method we execute different applications based on the
CPU ID.

network connecting all modules with each other. A NoC usually in-
troduces long latencies that cannot be tolerated for our memory sys-
tem (we avoid data caches to achieve better temporal predictabil-
ity). Furthermore, the network contentions within the routers may
cause varying latencies [6] that make WCET analysis more com-
plex and conservative.

For the JopCMP the simple SoC interconnect (SimpCon) [26]
is used to connect the SoC modules. This synchronous on-chip
interconnection is intended for read and write transfers via point-
to-point connections. The master starts the transaction. The read or
write request, as well as the address and data of the slave, is valid
for one cycle. If the slave needs the address or data longer than
a cycle, it has to store it in a register. Consequently, the master
can continue to execute its program until the result for a read is
needed. The slave informs the master by a signal called rdy cnt
when the requested data will be available. In addition, this signal
also serves as an early notification of the completion of the data
access. This mechanism allows the master to send a new request
before the former has been completed. This form of pipelining
permits fast data transfer.

SimpCon is well suited for on-chip point-to-point connections.
Nevertheless, the specification does not support synchronization of
connecting multiple masters to a shared slave. Therefore, we intro-
duce a central arbiter. The SimpCon interface can be used as in-
terconnect between the masters and the arbiter and the arbiter and
the slave. In this case, the arbiter acts as slave for each JOP and
as master for the shared memory. The arbitration and signal rout-
ing is completely transparent for the masters and the slaves. No
bus request (as e.g., in AMBA [3]) phase has to precede the actual
bus transfer. Without contention, the arbiter introduces zero cycle
latency for a transaction.

The arbiter is designed for the SimpCon interface. In the JopCMP
architecture, it plays the important role of controlling the memory
access of the various CPUs to the shared memory. It resolves pos-
sible emerging conflicts of parallel accesses to the shared memory.
The implemented arbitration scheme uses fixed priority. As already
mentioned in Section 4.1, each CPU is assigned a unique ID. This
CPU ID establishes the priority for each CPU. The CPU with the
lowest CPU ID has top priority. The memory arbiter dissolves any
simultaneous memory accesses by determining an order of prece-
dence.

Zero cycle latency is the design objective of the memory arbiter.
Assume that two processors want to access the shared memory at
the same clock cycle. Consequently, the arbiter has to decide which
CPU is granted the request. This arbitration process is performed
in the same cycle as the request happens. Consequently, the time to
access the memory is reduced and the bandwidth increases exten-
sively. Whether this form of zero cycle arbitration would scale to
a large number of processors is an open question and the topic of
future work.

In [21] two different approaches of analyzing the timing behav-
ior are compared with respect to schedulability analysis and WCET
analysis. The system consists of a direct memory access (DMA)
and JOP, both accessing a shared memory using the proposed ar-
biter. Pitter and Schoeberl treat the DMA task as the top prior-
ity real-time task with a regular memory access pattern. The out-
come of this paper shows that this arbiter allows WCET analysis
by modeling the DMA memory access into the WCET values of
the tasks running on JOP. Each memory access is modeled with
the maximum blocking time: three cycles of the DMA unit. In
the JopCMP system, the DMA unit is replaced by another JOP.
Therefore, the blocking times can be much higher; for example,
because of a cache load. We will investigate different approaches



Figure 3: Dual-core JopCMP system.

to solve this problem in our future work in order to provide a time
predictable shared memory access scheme.

4.3 JopCMP Prototype
The first prototype of the proposed CMP consists of multiple

JOPs [23], the proposed memory arbiter, a memory interface and an
SRAM memory. Both CPUs, the memory arbiter and the memory
interface are implemented on an Altera Cyclone FPGA. SimpCon
[26], the SoC bus, connects the JOPs with the arbiter. The arbiter
is connected via SimpCon to the memory interface. As illustrated
in Figure 3 the memory interface connects the external memory to
the FPGA. This 1 MByte, 32-bit external SRAM device represents
the shared memory of the JopCMP.

The dual-core JopCMP runs at a clock frequency of 80 MHz,
resulting in a period of 12.5 ns per cycle. The SRAM-based shared
memory has an access time of 15 ns per 32-bit word. Hence, every
memory access needs a minimum of 2 cycles.

The JopCMP system features a couple of different I/O interfaces,
such as a serial interface, a USB interface and several I/O pins of
the FPGA board. Usually, the application pretends either one CPU
owns the exclusive access of the I/O ports, or more processors share
I/O interfaces. The benchmarks used for prototyping our JopCMP
do not require I/O access of all CPUs. Consequently, the top prior-
ity JOP holds the sole access to the I/O world.

To summarize, the CPUs share the main memory but only one
JOP is able to communicate with external devices. Despite this, the
possibility of sharing the I/O can be implemented using an arbitra-
tion unit for the I/O access.

5. EXPERIMENTS
In this section, we provide performance measurements obtained

on real hardware. The FPGA platform enables us to compare the
performance between a single-processor system and the JopCMP
system composed of multiple JOP cores. The measured results are
achieved by running real applications in real hardware. We use
the embedded Java benchmark suite called JavaBenchEmbedded,
as described in [23], for our experiments.

We make use of two real-world examples with industrial back-
ground herein after referred to as Lift and Kfl to represent two
independent tasks. Lift is a lift controller used in an automation
factory. Kfl is one node of a distributed real-time system to tilt the
line over a train for easier loading and unloading of goods wagons.
Both applications consist of a main loop that is executed periodi-
cally. Only one task executes on a single CPU at a given time in
our experiments. We measure the execution in iterations per sec-
ond, which means that a higher value implies a better performance.

The baseline for the comparison is the performance of a single-
core. Table 1 shows the performance numbers at different clock
frequencies for the single-core.

Table 1: Benchmark results in iterations/s for a single-core JOP
at different clock frequencies.

App 75 MHz 80 MHz 100 MHz
Kfl 13768 14667 18347
Lift 12318 13138 16425

Table 2: Benchmark results in iterations/s of a dual JopCMP
system at a clock frequency of 80 MHz.

Processor JOP0 JOP1 JOP0 JOP1 JOP0 JOP1
Appl. Lift Lift Kfl Lift Lift Kfl
Result 12951 12951 14435 12374 12574 14296

5.1 Comparison at CMP Frequency
In the first experiments, we compare JopCMP versions with two

and three cores against a single-core at the same clock frequency.
Those measurements provide insights how limiting the memory
bandwidth is.

We start with a comparison of the performance measurements of
a dual-core JopCMP against the performance of a traditional single-
core JOP. Both systems run at the same clock frequency of 80 MHz.
Running only one task on JOP results in 14667 iterations/s for Kfl.
Task Lift achieves 13138 iterations/s (as shown in Table 1).

Table 2 shows the benchmark results running two tasks simulta-
neously on a dual-core JopCMP system at a frequency of 80 MHz.
First, we measured the execution by running two Lift tasks, one
on each CPU. The speedup of the overall system is calculated by
dividing the sum of the performance of both tasks by the perfor-
mance of the task running on the single processor. This calculates
to

Speedupdualcore =
12951+12951

13138
≈ 1.97. (1)

Each task running on a different CPU executes 12951 iterations/s.
The result indicates that the two tasks do not access the memory
very often in parallel. Otherwise, the memory contention would re-
flect a difference between the results. Additionally, each result does
not diverge greatly from the result of the single processor. The out-
come of the experiment is that the JopCMP is 1.97 times faster than
the single JOP for Lift both running at 80 MHz.

In the next experiment, the high priority JOP0 executes the Kfl
task and JOP1 runs the task Lift. The results show that the task
running on CPU0 is slowed down just by 1.6% comparing to the
execution of the single task on the single JOP. Furthermore, the
low priority CPU1 executes the main loop of Lift 12374 times
per second. This task is slowed down by 5.8% due to the memory
contention with the second JOP.

We exchange the tasks between the CPUs for a further exper-
iment. Task Lift experiences a decrease of 4.3% and task Kfl
decreases by 2.5%. The results of Table 2 indicate that task Lift
experiences a larger slowdown than task Kfl, irrespective whether
it is executed on CPU0 or on CPU1.

In conclusion, the processing performance greatly increases due
to the use of two JOPs in the JopCMP system. The comparison of
the measurements between the dual-core and the single JOP shows,
that each single task in the JopCMP system experiences only a
small slowdown in performance as measured by iterations per sec-
ond. The cause is the access contention to the shared memory.

The maximum frequency of the tri-core JopCMP is 75 MHz.



Table 3: Benchmark results in iterations/s of a tri-core JOP
system at a clock frequency of 75 MHz.

Processor JOP0 JOP1 JOP2
Appl. Lift Lift Lift
Result 11736 11538 11260

Therefore, we measure the speedup of the CMP system compared
to JOP running at a clock frequency of 75 MHz. The Lift achieves
12318 iterations/s on JOP. Table 3 depicts the results of the CMP.
Equation 2 presents the calculation of the speedup. Only 7% slow-
down relative to the theoretical maximum speedup of 3 indicates
either a large headroom in the memory interface or that the bench-
mark is actually small enough to fit into the method cache.

Speeduptricore =
11736+11538+11260

12318
≈ 2.80. (2)

5.2 Comparison Against a Single Core
As we see in Table 4 the maximum clock frequency depends

on the number of cores. For a fair comparison of the full system
speedup, we have to take the reduced clock frequency for JopCMP
into account. Therefore, we compare the dual- and tri-core speedup
against a single-core where all designs are clocked at their maxi-
mum frequency.

Equation 3 shows that the real speedup of a dual-core version
of JOP, measured with the benchmark Lift, against a 100 MHz
single-core is about 58%.

Speedupdualcore =
12951+12951

16425
≈ 1.58. (3)

In the last experiment, we compare the performance of JOP with
a tri-core JopCMP system both running at their maximum clock
frequencies. JOP executes the Lift 16425 iterations/s at a clock
speed of 100 MHz (see Table 1). Table 3 shows the benchmark
results running the Lift task simultaneously on a tri-core JopCMP
at the maximum frequency of 75 MHz. The speedup of the tri-core
system calculates to

Speeduptricore =
11736+11538+11260

16425
≈ 2.10. (4)

Even though the CMP runs at a reduced clock frequency of 75
MHz, the tri-core JopCMP provides a 2.1 times better overall per-
formance compared to the traditional single-core JOP at 100 MHz.

To recapitulate, the performance measurements provide a promis-
ing indication that the memory system is not the bottleneck of the
JopCMP. It seems that there is enough headroom for further de-
vices. As future research, we will evaluate if the single cycle arbi-
tration is worth the reduced clock frequency or if a pipeline stage
that introduces an additional cycle latency is a better solution. Fur-
thermore, we will evaluate the influence of different arbitration
schemes on the WCET of the individual tasks.

5.3 Resource Consumption
Finally, Table 4 shows the resource consumptions and the maxi-

mum frequencies of a typical version of JOP and the JopCMP ver-
sions implemented in an Altera EP1C12 FPGA. We can see the dif-
ferences in the resource consumptions by looking at the two basic

Table 4: Comparison of resource consumption between JOP
and the JopCMP versions.

Processor Resources Memory fmax
(LC) (KB) (MHz)

JOP 2815 7.63 100
Dual-core 5540 15.62 80
Tri-core 8219 23.42 75

structures of an FPGA, Logic Cells (LC) and embedded memory
blocks. The dual-core consumes roughly twice as much of LCs and
memory blocks as JOP. Nevertheless, only 46% of LCs and 52% of
memory blocks of the low-cost Cyclone FPGA are used. It runs
at a clock frequency of 80 MHz. The tri-core JopCMP runs at a
maximum clock frequency of 75 MHz. It requires 68% of the total
LCs and 78% of the total memory blocks available on the FPGA.
Therefore, this low-cost FPGA does not provide enough space to
integrate additional JOPs. In summary, the experimental results
and the resource consumptions of the JopCMP prototype are en-
couraging. We can observe a slight degradation of the maximum
clock frequency when using more and more JOP cores due to the
increasing combinational logic of the arbiter. Nevertheless, we will
further evaluate CMP implementations with additional JOPs shar-
ing a single memory in future work.

6. CONCLUSION
In this paper, we introduced a CMP architecture consisting of a

number of JOP cores and a shared memory. We demonstrated the
effectiveness of the architecture by the first prototype of a Java mul-
tiprocessor called JopCMP. Correct executions of real application
tasks verified the implementation with multiple JOP cores. Exper-
iments showed the correct functioning of the implemented boot-up
and the memory arbiter. Measurements made a comparison be-
tween a single JOP and the JopCMP possible, and endorsed further
pursuit of the CMP approach. Future research will show how the
CMP system will behave when integrating more than three process-
ing cores in an FPGA.

We have to admit, that the lack of the implementation of a syn-
chronization mechanism prevents more advanced experiments; not
any with objects (e.g. producer-consumer problem), shared by mul-
tiple processors, could be carried out. This implementation of the
combined synchronization mechanism and priority inversion avoid-
ance defines our future work. Additionally, we will investigate real-
time multiprocessor scheduling for the proposed CMP.

Furthermore, we will integrate the maximum latency due to col-
lisions on the memory into the WCET tool [27] as we have done
for the simpler case of DMA devices [21]. We will investigate the
influence on the WCET with different arbitration schemes.
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