
Evaluation of a Java Processor
Martin Schoeberl

Institute of Computer Engineering
Vienna University of Technology, Austria

mschoebe@mail.tuwien.ac.at

Abstract— In this paper, we will present the evaluation results
for a Java processor, with respect to size and performance. The
Java Optimized Processor (JOP) is an implementation of the Java
virtual machine (JVM) in a low-cost FPGA. JOP is the smallest
hardware realization of the JVM available to date. Due to the
efficient implementation of the stack architecture, JOP is also
smaller than a comparable RISC processor in an FPGA.

Although JOP is intended as a processor for embedded real-
time systems, whereas accurate worst case execution time analysis
is more important than average case performance, its general
performance is still important. We will see that a real-time
processor architecture does not need to be slow.

I. I NTRODUCTION

In this paper, we will present the evaluation results for
a Java processor [1], with respect to size and performance.
This Java processor is called JOP – which stands for Java
Optimized Processor –, based on the assumption that a full
native implementation of all Java Virtual Machine (JVM)
[2] bytecode instructions is not a useful approach. JOP is a
Java processor for embedded real-time systems, in particular
a small processor for resource-constrained devices with time-
predictable execution of Java programs.

Table I lists the relevant Java processors available to date.
Sun introduced the first version of picoJava [3] in 1997. Sun’s
picoJava is the Java processor most often cited in research
papers. It is used as a reference for new Java processors and
as the basis for research into improving various aspects of a
Java processor. Ironically, this processor was never released
as a product by Sun. A redesign followed in 1999, known
as picoJava-II that is now freely available with a rich set
of documentation [4], [5]. The architecture of picoJava is
a stack-based CISC processor implementing 341 different
instructions and is the most complex Java processor available.
The processor can be implemented [6] in about 440K gates.

aJile’s JEMCore is a direct-execution Java processor that
is available as both an IP core and a stand alone processor
[7], [8]. It is based on the 32-bit JEM2 Java chip developed
by Rockwell-Collins. The processor contains 48KB zero wait
state RAM and peripheral components. 16KB of the RAM is
used for the writable control store. The remaining 32KB is
used for storage of the processor stack.

Vulcan ASIC’s Moon processor is an implementation of
the JVM to run in an FPGA. The execution model is the
often-used mix of direct, microcode and trapped execution.
As described in [9], a simple stack folding is implemented
in order to reduce five memory cycles to three for instruction
sequences likepush-push-add. The Moon2 processor [10] is

TABLE I

JOPAND VARIOUS JAVA PROCESSORS

Target Size Speed
technology Logic RAM [MHz]

JOP
Altera, Xilinx
FPGA 1830 LCs 3KB 100

picoJava No realization 128K gates 38KB
aJile ASIC 0.25µ 25K gates 48KB 100
Moon Altera FPGA 3660 LCs 4KB
Lightfoot Xilinx FPGA 3400 LCs 4KB 40
Komodo Xilinx FPGA 2600 LCs 33
FemtoJava Xilinx FPGA 2710 LCs 0.5KB 56

available as an encrypted HDL source for Altera FPGAs or as
VHDL or Verilog source code.

The Lightfoot 32-bit core [11] is a hybrid 8/32-bit processor
based on the Harvard architecture. Program memory is 8 bits
wide and data memory is 32 bits wide. The core contains a
3-stage pipeline with an integer ALU, a barrel shifter and a
2-bit multiply step unit. According to DCT, the performance
is typically 8 times better than RISC interpreters running at
the same clock speed.

Komodo [12] is a multithreaded Java processor with a
four-stage pipeline. It is intended as a basis for research
on real-time scheduling on a multithreaded microcontroller.
The unique feature of Komodo is the instruction fetch unit
with four independent program counters and status flags for
four threads. A priority manager is responsible for hardware
real-time scheduling and can select a new thread after each
bytecode instruction.

FemtoJava [13] is a research project to build an application
specific Java processor. The bytecode usage of the embedded
application is analyzed and a customized version of FemtoJava
is generated in order to minimize the resource usage. Femto-
Java is not included in SectionIV, as the processor could not
run even the simplest benchmark.

Besides thereal Java processors a few FORTH chips
(Cjip [14], PSC1000 [15]) are marketed as Java processors.
Java coprocessors (Jazelle [16], JSTAR [17]) provide Java
execution speedup for general-purpose processors.

From the TableI we can see that JOP is the smallest
realization of a hardware JVM in an FPGA and also has the
highest clock frequency.

In the following section, a brief overview of the architecture
of JOP is given, followed by a more detailed description of the
microcode. SectionIII compares JOP’s resource usage with
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other soft-core processors. In the SectionIV, a number of
different solutions for embedded Java are compared at the
bytecode level and at the application level.

II. JOP ARCHITECTURE

JOP is a stack computer with its own instruction set,
called microcode in this paper. Java bytecodes are translated
into microcode instructions or sequences of microcode. The
difference between the JVM and JOP is best described as the
following:

The JVM is a CISC stack architecture, whereas JOP
is a RISC stack architecture.

Figure 1 shows JOP’s major function units. A typical
configuration of JOP contains the processor core, a memory
interface and a number of IO devices.

The processor core contains the three microcode pipeline
stagesmicrocode fetch, decodeandexecuteand an additional
translation stagebytecode fetch. The module called extension
provides the link between the processor core, and the memory
and IO modules. The ports to the other modules are the
address and data bus for the bytecode instructions, the two
top elements of the stack (A and B), input to the top-of-stack
(Data) and a number of control signals. There is no direct
connection between the processor core and the external world.

The memory interface provides a connection between the
main memory and the processor core. It also contains the
bytecode cache. The extension module controls data read and
write. The busy signal is used by the microcode instruction
wait1 to synchronize the processor core with the memory unit.
The core reads bytecode instructions through dedicated buses
(BC address and BC data) from the memory subsystem.

The extension module performs three functions: (a) it con-
tains hardware accelerators (such as the multiplier unit inthis

1The busy signal can also be used to stall the whole processor pipeline.
This was the change made to JOP by Flavius Gruian [18]. However, in this
synchronization mode, the concurrency between the memory access module
and the main pipeline is lost.
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example), (b) the control for the memory and the I/O module,
and (c) the multiplexer for the read data that is loaded into
the top-of-stack register. The write data from the top-of-stack
(A) is connected directly to all modules.

A. The Processor Pipeline

JOP is a fully pipelined architecture with single cycle
execution of microcode instructions and a novel approach to
mapping Java bytecode to these instructions. Figure2 shows
the datapath for JOP.

Three stages form the JOP core pipeline, executing mi-
crocode instructions. An additional stage in the front of the
core pipeline fetches Java bytecodes – the instructions of
the JVM – and translates these bytecodes into addresses in
microcode. Bytecode branches are also decoded and exe-
cuted in this stage. The second pipeline stage fetches JOP
instructions from the internal microcode memory and executes
microcode branches. Besides the usual decode function, the
third pipeline stage also generates addresses for the stack
RAM. As every stack machine instruction has eitherpop or
push characteristics, it is possible to generate fill or spill
addresses for thefollowing instruction at this stage. The last
pipeline stage performs ALU operations, load, store and stack
spill or fill. At the execution stage, operations are performed
with the two topmost elements of the stack.

A stack machine with two explicit registers for the two
topmost stack elements and automatic fill/spill needs neither an
extra write-back stage nor any data forwarding. Details of this
two-level stack architecture are described in [19]. The short
pipeline results in short branch delays. Therefore, a hard to
analyze, with respect to Worst Case Execution Time (WCET),
branch prediction logic can be avoided.

B. Interrupt Logic

Interrupts are considered hard to handle in a pipelined
processor, meaning implementation tends to be complex
(and therefore resource consuming). In JOP, the bytecode-
microcode translation is used cleverly to avoid having to
handle interrupts in the core pipeline.

Interrupts are implemented as special bytecodes. These
bytecodes are inserted by the hardware in the Java instruction



stream. When an interrupt is pending and the next fetched
byte from the bytecode cache is an instruction, the associated
special bytecode is used instead of the instruction from the
bytecode cache. The result is that interrupts are accepted at
bytecode boundaries. The worst-case preemption delay is the
execution time of theslowestbytecode that is implemented
in microcode. Bytecodes that are implemented in Java (see
SectionII-D) can be interrupted.

The implementation of interrupts at the bytecode-microcode
mapping stage keeps interrupts transparent in the core pipeline
and avoids complex logic. Interrupt handlers can be imple-
mented in the same way as standard bytecodes are imple-
mented i.e. in microcode or Java. This special bytecode can
result in a call of a JVM internal method in the context of the
interrupted thread. This mechanism implicitly stores almost
the complete context of the current active thread on the stack.

C. Cache

A pipelined processor architecture calls for higher memory
bandwidth. A standard technique to avoid processing bot-
tlenecks due to the higher memory bandwidth is caching.
However, standard cache organizations improve the average
execution time but are difficult to predict for WCET analysis.
Two time-predictable caches are proposed for JOP: astack
cacheas a substitution for the data cache and amethod cache
to cache the instructions.

As the stack is a heavily accessed memory region, the stack
– or part of it – is placed in on-chip memory. This part of the
stack is referred to as thestack cacheand described in [19].
Fill and spill of the stack cache is subjected to microcode
control and therefore time-predictable.

In [20], a novel way to organize an instruction cache, as
method cache, is given. The cache stores complete methods,
and cache misses only occur on method invocation and return.
Cache block replacement depends on the call tree, instead of
instruction addresses. Thismethod cacheis easy to analyze
with respect to worst-case behavior and still provides sub-
stantial performance gain when compared against a solution
without an instruction cache.

D. Microcode

The following discussion concerns two different instruction
sets:bytecodeand microcode. Bytecodes are the instructions
that make up a compiled Java program. These instructions
are executed by a Java virtual machine. The JVM does not
assume any particular implementation technology. Microcode
is the native instruction set for JOP. Bytecodes are translated,
during their execution, into JOP microcode. Both instruction
sets are designed for an extended2 stack machine.

1) Translation of Bytecodes to Microcode:To date, no
hardware implementation of the JVM exists that is capable
of executingall bytecodes in hardware alone. This is due to
the following: some bytecodes, such asnew, which creates

2An extended stack machine contains instructions that make it possible to
access elements deeper down in the stack.
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and initializes a new object, are too complex to implement in
hardware. These bytecodes have to be emulated by software.

To build a self-contained JVM without an underlying oper-
ating system, direct access to the memory and I/O devices is
necessary. There are no bytecodes defined for low-level access.
These low-level services are usually implemented innative
functions, which mean that another language (C) is native to
the processor. However, for a Java processor, bytecode is the
native language.

One way to solve this problem is to implement simple
bytecodes in hardware and to emulate the more complex and
native functions in software with a different instruction set
(sometimes called microcode). However, a processor with two
different instruction sets results in a complex design.

Another common solution, used in Sun’s picoJava [4], is to
execute a subset of the bytecode native and to use a software
trap to execute the remainder. This solution entails an overhead
(a minimum of 16 cycles in picoJava) for the software trap.

In JOP, this problem is solved in a much simpler way. JOP
has a singlenative instruction set, the so-called microcode.
During execution, every Java bytecode is translated to either
one, or a sequence of microcode instructions. This translation
merely adds one pipeline stage to the core processor and
results in no execution overheads. With this solution, we are
free to define the JOP instruction set to map smoothly to the
stack architecture of the JVM, and to find an instruction coding
that can be implemented with minimal hardware.

Figure 3 gives an example of this data flow from the Java
program counter to JOP microcode. The fetched bytecode acts
as an index for the jump table. The jump table contains the
start addresses for the JVM implementation in microcode. This
address is loaded into the JOP program counter for every
bytecode executed.

Every bytecode is translated to an address in the microcode
that implements the JVM. If there exists an equivalent microin-
struction for the bytecode, it is executed in one cycle and the
next bytecode is translated. For a more complex bytecode, JOP
just continues to execute microcode in the subsequent cycles.
The end of this sequence is coded in the microcode instruction
(as thenxt bit).

2) Compact Microcode:For the JVM to be implemented
efficiently, the microcode has tofit to the Java bytecode. Since
the JVM is a stack machine, the microcode is also stack-
oriented. However, the JVM is not a pure stack machine.



Method parameters and local variables are defined aslocals.
These locals can reside in a stack frame of the method
and are accessed with an offset relative to the start of this
localsarea. Additional local variables (16) are available at the
microcode level. These variables serve as scratch variables,
like registers in a conventional CPU. However, arithmetic and
logic operations are performed on the stack.

Some bytecodes, such as ALU operations and the short form
access tolocals, are directly implemented by an equivalent mi-
crocode instruction (with a different encoding). Additional in-
structions are available to access internal registers, main mem-
ory and I/O devices. A relative conditional branch (zero/non
zero of TOS) performs control flow decisions at the microcode
level. For optimum use of the available memory resources,
all instructions are 8 bits long. There are no variable-length
instructions and every instruction, with the exception ofwait,
is executed in a single cycle. To keep the instruction set this
dense, two concepts are applied:

Two types of operands, immediate values and branch dis-
tances, normally force an instruction set to be longer than 8
bits. The instruction set is either expanded to 16 or 32 bits,
as in typical RISC processors, or allowed to be of variable
length at byte boundaries. A first implementation of the JVM
with a 16-bit instruction set showed that only a small number
of different constants are necessary for immediate values and
relative branch distances.

In the current realization of JOP, the different immediate
values are collected while the microcode is being assembled
and are put into the initialization file for the local RAM. These
constants are accessed indirectly in the same way as the local
variables. They are similar to initialized variables, apart from
the fact that there are no operations to change their value
during runtime, which would serve no purpose and would
waste instruction codes.

A similar solution is used for branch distances. The assem-
bler generates a VHDL file with a table for all found branch
constants. This table is indexed using instruction bits during
runtime. These indirections during runtime make it possible
to retain an 8-bit instruction set, and provide 16 different
immediate values and 32 different branch constants. For a gen-
eral purpose instruction set, these indirections would impose
too many restrictions. As the microcode only implements the
JVM, this solution is a viable option.

To simplify the logic for instruction decoding, the instruc-
tion coding is carefully chosen. For example, one bit in the
instruction specifies whether the instruction will increment or
decrement the stack pointer. The offset to access thelocals is
directly encoded in the instruction. This is not the case forthe
original encoding of the equivalent bytecodes (e.g.iload 0 is
0x1a andiload 1 is 0x1b).

3) Flexible Implementation of Bytecodes:As mentioned
above, some Java bytecodes are very complex. One solution
already described is to emulate them through a sequence of
microcode instructions. However, some of the more complex
bytecodes are very seldom used. To further reduce the resource
implications for JOP, in this case local memory, bytecodes

can even be implemented byusing Java bytecodes. During
the assembly of the JVM, all labels that represent an entry
point for the bytecode implementation are used to generate
the translation table. For all bytecodes for which no such label
is found, i.e. there is no implementation in microcode, anot-
implementedaddress is generated. The instruction sequence
at this address invokes a static method from a system class
(com.jopdesign.sys.JVM). This class contains 256 static
methods, one for each possible bytecode, ordered by the
bytecode value. The bytecode is used as the index in the
method table of this system class. This feature also allows for
the easy configuration of resource usage versus performance.

III. R ESOURCEUSAGE

Cost, alongside energy consumption, is an important issue
for embedded systems. The cost of a chip is directly related
to the die size (the cost per die is roughly proportional to
the square of the die area [21]). Chips with fewer gates also
consume less energy. Processors for embedded systems are
therefore optimized for minimum chip size.

One major design objective in the development of JOP was
to create a small system that could be implemented in a low-
cost FPGA. TableII shows the resource usage for different
configurations of JOP and different soft-core processors imple-
mented in an Altera EP1C6 FPGA [22]. Estimating equivalent
gate counts for designs in an FPGA is problematic. It is
therefore better to compare the two basic structures, Logic
Cells (LC) and embedded memory blocks.

All configurations of JOP contain a memory interface to a
32-bit static RAM and an 8-bit FLASH for the Java program
and the FPGA configuration data. The minimum configu-
ration implements multiplication and the shift operationsin
microcode. In the basic configuration, these operations are
implemented as a sequential Booth multiplier and a single-
cycle barrel shifter. The typical configuration also contains
some useful I/O devices such as an UART and a timer with
interrupt logic for multi-threading. The typical configuration
of JOP needs about 30% of the LCs in a Cyclone EP1C6, thus
leaving enough resources free for application-specific logic.

As a reference, NIOS [23], Altera’s popular RISC soft-core,
is also included in the list. NIOS has a 16-bit instruction set,
a 5-stage pipeline and can be configured with a 16 or 32-bit
datapath. Version A is the minimum configuration of NIOS.
Version B adds an external memory interface, multiplication
support and a timer. Version A is comparable with the minimal
configuration of JOP, and Version B with its typical configu-
ration.

SPEAR [24] (Scalable Processor for Embedded Applica-
tions in Real-time Environments) is a 16-bit processor with
deterministic execution times. SPEAR contains predicated
instructions to support single-path programming [25]. SPEAR
is included in the list as it is also a processor designed for
real-time systems.

To prove that the VHDL code for JOP is as portable as
possible, JOP was also implemented in a Xilinx Spartan-3
FPGA [26]. Only the instantiation and initialization code for



TABLE II

FPGA SOFT-CORE PROCESSORS

Processor Resources Memory fmax
[LC] [KB] [MHz]

JOP Minimal 1,077 3.25 98

JOP Basic 1,452 3.25 98

JOP Typical 1,831 3.25 101

Lightfoot3 3,400 4 40

NIOS A 1,828 6.2 120

NIOS B 2,923 5.5 119

SPEAR4 1,700 8 80

TABLE III

GATE COUNT ESTIMATES FOR VARIOUS PROCESSORS

Processor Core Memory Sum.
[gate] [gate] [gate]

JOP 11K 40K 51K
picoJava 128K 314K 442K
aJile 25K 590K 615K
Pentium MMX 1125K

the on-chip memories is vendor-specific, whilst the rest of
the VHDL code can be shared for the different targets. JOP
consumes about the same LC count (1844 LCs) in the Spartan
device, but has a slower clock frequency (83MHz).

From this comparison we can see that we have achieved our
objective of designing a small processor. The commercial Java
processor, Lightfoot, is 2.3 times larger (and 2.5 times slower)
than JOP in the basic configuration. A typical 32-bit RISC
processor consumes about 1.6 to 1.8 times the resources of
JOP. However, the RISC processor can be clocked 20% faster
than JOP in the same technology. The only processor that is
similar in size is SPEAR. However, while SPEAR is a 16-bit
processor, JOP contains a 32-bit datapath.

Table III provides gate count estimates for JOP, picoJava,
the aJile processor, and the Intel Pentium MMX processor that
is used in the benchmarks in the next section. Equivalent gate
count for an LC5 varies between 5.5 and 7.4 – we chose a
factor of 6 gates per LC and 1.5 gates per memory bit for the
estimated gate count for JOP in the table. JOP is listed in the
typical configuration that consumes 1831 LCs. The Pentium
MMX contains 4.5M transistors [27] that are equivalent to
1125K gates.

We can see from the table that the on-chip memory dom-
inates the overall gate count of JOP, and to an even greater
extent, of the aJile processor. The aJile processor is about12
times larger than JOP.

3The data for the Lightfoot processor is taken from the data sheet [11]. The
frequency used is that in a Vertex-II device from Xilinx. JOPcan be clocked
at 100MHz in the Vertex-II device, making this comparison valid.

4As SPEAR uses internal memory blocks in asynchronous mode it is not
possible to synthesize it without modification for the Cyclone FPGA. The
clock frequency of SPEAR in an Altera Cyclone is an estimate based on
following facts: SPEAR can be clocked at 40MHz in an APEX device and
JOP can be clocked at 50MHz in the same device.

5The factors are derived from the data provided for various processors and
from the resource estimates in [19].

IV. PERFORMANCE

Running benchmarks is problematic, both generally and
especially in the case of embedded systems. The best bench-
mark would be the application that is intended to run on the
system being tested. To get comparable results SPEC provides
benchmarks for various systems. However, the one for Java,
the SPECjvm98 [28], is usually too large for embedded
systems.

Due to the absence of astandard Java benchmark for
embedded systems, a small benchmark suit that should run on
even the smallest device is provided here. It contains several
micro-benchmarks for evaluating the number of clock cycles
for single bytecodes or short sequences of bytecodes, and two
application benchmarks. To provide a realistic workload for
embedded systems, a real-time application was adapted to
create the first application benchmark (Kfl). The application is
taken from one of the nodes of a distributed motor control sys-
tem [29]. A simulation of both the environment (sensors and
actors) and the communication system (commands from the
master station) forms part of the benchmark, so as to simulate
the real-world workload. The second application benchmark
is an adaptation of a tiny TCP/IP stack for embedded Java.
This benchmark contains two UDP server/clients, exchanging
messages via a loopback device.

As we will see, there is a great variation in processing power
across different embedded systems. To cater for this variation,
all benchmarks are ‘self adjusting’. Each benchmark consists
of an aspect that is benchmarked in a loop. The loop count
adapts itself until the benchmark runs for more than a second.
The number of iterations per second is then calculated, which
means that higher values indicate better performance.

All the benchmarks measure how often a function is exe-
cuted per second. In the Kfl benchmark, this function contains
the main loop of the application that is executed in a periodic
cycle in the original application. In the benchmark the waitfor
the next period is omitted, so that the time measured solely
represents execution time. The UDP benchmark contains the
generation of a request, transmitting it through the UDP/IP
stack, generating the answer and transmitting it back as a
benchmark function. The iteration count is the number of
received answers per second.

The following list gives a brief description of the Java
systems that were benchmarked:

JOP is implemented in a Cyclone FPGA, running at
100MHz. The main memory is a 32-bit SRAM (15ns) with an
access time of 2 clock cycles. The benchmarked configuration
of JOP contains a 4KB method cache [20] organized in 16
blocks.

leJOS As an example for a low-end embedded device we
use the RCX robot controller from the LEGO MindStorms
series. It contains a 16-bit Hitachi H8300 microcontroller[30],
running at 16MHz. leJOS [31] is a tiny interpreting JVM for
the RCX.

TINI is an enhanced 8051 clone running a software JVM.
The results were taken from a custom board with a 20MHz
crystal, and the chip’s PLL is set to a factor of 2.



KVM is a port of the Sun’s KVM that is part of the Con-
nected Limited Device Configuration (CLDC) [32] to Alteras
NIOS II processor on MicroC Linux. NIOS is implemented
on a Cyclone FPGA and clocked with 50MHz. Besides the
different clock frequency this is a good comparison of an
interpreting JVM running in the same FPGA as JOP.

The benchmark results ofKomodo were obtained by
Matthias Pfeffer [33] on a cycle-accurate simulation of Ko-
modo.

aJile’s JEMCore is a direct-execution Java processor that
is available in two different versions: theaJ80 and theaJ100
[7]. A development system, the JStamp [34], contains the aJ80
with an 8-bit memory, clocked at 74MHz. The SaJe board from
Systronix contains an aJ100 that is clocked with 103MHz and
contains 10ns 32-bit SRAM.

The EJC (Embedded Java Controller) platform [35] is a
typical example of a JIT system on a RISC processor. The
system is based on a 32-bit ARM720T processor running at
74MHz. It contains up to 64 MB SDRAM and up to 16 MB
of NOR flash.

gcj is the GNU compiler for Java. This configuration
represents the batch compiler solution, running on a 266MHz
Pentium under Linux.

MB is the realization of Java on a RISC processor for an
FPGA (Xilinx MicroBlaze [36]). Java is compiled to C with
a Java compiler for real-time systems [37] and the C program
is compiled with the standard GNU toolchain.

In Figure 4, the geometric mean of the two application
benchmarks is shown. The unit used for the result is iterations
per second. Note that the vertical axis is logarithmic, in
order to obtain useful figures to show the great variation in
performance. The top diagram shows absolute performance,
while the bottom diagram shows the same results scaled
to a 1MHz clock frequency. The results of the application
benchmarks and the geometric mean are shown in TableIV.

It should be noted that scaling to a single clock frequency
could prove problematic. The relation between processor clock
frequency and memory access time cannot always be main-
tained. To give an example, if we were to increase the results
of the 100MHz JOP to 1GHz, this would also involve reducing
the memory access time from 15ns to 1.5ns. Processors with
1GHz clock frequency are already available, but the fastest
asynchronous SRAM to date has an access time of 10ns.

A. Discussion

When comparing JOP and the aJile processor against leJOS,
TINI, and KVM, we can see that a Java processor is up to 500
times faster than an interpreting JVM on a standard processor
for an embedded system. The average performance of JOP
is even better than a JIT-compiler solution on an embedded
system, as represented by the EJC system.

Even when scaled to the same clock frequency, the compil-
ing JVM on a PC (gcj) is much faster than either embedded
solution. However, the kernel of the application is smallerthan
4KB [20]. It therefore fits in the level one cache of the Pentium
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Fig. 4. Performance comparison of different Java systems with application
benchmarks. The diagrams show the geometric mean of the two benchmarks
in iterations per second – a higher value means higher performance. The top
diagram shows absolute performance, while the bottom diagram shows the
result scaled to 1MHz clock frequency.

TABLE IV

APPLICATION BENCHMARKS ON DIFFERENTJAVA SYSTEMS IN

ITERATIONS PER SECOND– A HIGHER VALUE IS BETTER.

Frequency Kfl UDP/IP Geom. Mean Scaled
[MHz] [Iterations/s]

JOP 100 16,582 6,849 10, 657 107

leJOS 16 25 13 18 1.1

TINI 40 64 29 43 1.1

KVM 50 36 16 24 0.5

Komodo 33 924 520 693 21

aJ80 74 2,221 1,004 1, 493 20

aJ100 103 14,148 6,415 9, 527 92

EJC 74 9,893 2,822 5, 284 71

gcj 266 139,884 38,460 73, 348 276

MB 100 3,792

TABLE V

EXECUTION TIME IN CLOCK CYCLES FOR VARIOUSJVM BYTECODES

JOP leJOS TINI Komodo aJ80 aJ100

iload iadd 2 836 789 8 38 8
iinc 11 422 388 4 41 11
ldc 9 1,340 1,128 40 67 9
if icmplt taken 6 1,609 1,265 24 42 18
if icmplt n/taken 6 1,520 1,211 24 40 14
getfield 23 1,879 2,398 48 142 23
getstatic 15 1,676 4,463 80 102 15
iaload 29 1,082 1,543 28 74 13
invoke 126 4,759 6,495 384 349 112
invoke static 100 3,875 5,869 680 271 92
invoke interface 142 5,094 6,797 1617 531 148



MMX (16KB + 16KB). For a comparison with a Pentium class
processor we would need a larger application.

JOP is about 7 times faster than the aJ80 Java processor
on the popular JStamp board. However, the aJ80 processor
only contains an 8-bit memory interface, and suffers from this
bottleneck. The SaJe system contains the aJ100 with 32-bit,
10ns SRAMs and is a about 10% slower than JOP with its
15ns SRAMs.

The MicroBlaze system is a representation of a Java batch-
compilation system for a RISC processor. MicroBlaze is con-
figured with the same cache6 as JOP and clocked at the same
frequency. JOP is about four times faster than this solution,
thus showing that native execution of Java bytecodes is faster
than batch-compiled Java on a similar system. However, the
results of the MicroBlaze solution are at a preliminary stage7,
as the Java2C compiler [37] is still under development.

The micro-benchmarks are intended to give insight into
the implementation of the JVM. In TableV, we can see
the execution time in clock cycles of various bytecodes. As
almost all bytecodes manipulate the stack, it is not possible
to measure the execution time for a single bytecode. As a
minimum requirement, a second instruction is necessary to
reverse the stack operation. For compiling versions of the
JVM, these micro-benchmarks do not produce useful results.
The compiler performs optimizations that make it impossible
to measure execution times at this fine a granularity.

For JOP we can deduce that the WCET for simple bytecodes
is also the average execution time. We can see that the
combination ofiload and iadd executes in two cycles, which
means that each of these two operations is executed in a single
cycle. The iinc bytecode is one of the few instructions that
do not manipulate the stack and can be measured alone. As
iinc is not implemented in hardware, we have a total of 11
cycles that are executed in microcode. It is fair to assume that
this comprises too great an overhead for an instruction thatis
found in every iterative loop with an integer index. However,
the decision to implement this instruction in microcode was
derived from the observation that the dynamic instruction
count for iinc is only 2% [1].

The sequence for the branch benchmark (if icmplt) contains
the two load instructions that push the arguments onto the
stack. The arguments are then consumed by the branch in-
struction. This benchmark verifies that a branch requires a
constant four cycles on JOP, whether it is taken or not.

During the evaluation of the aJile system, unexpected behav-
ior was observed. The aJ80 on the JStamp board is clocked at
7.3728MHz and the internal frequency can be set with a PLL.
The aJ80 is rated for 80MHz and the maximum PLL factor
that can be used is therefore ten. Running the benchmarks with
different PLL settings gave some strange results. For example,

6The MicroBlaze with a 8KB data and 8KB instruction cache is about 1.6
times faster than JOP. However, a 16KB memory is not available inlow-cost
FPGAs and is an unbalanced system with respect to the LC/memoryrelation.

7As not all language constructs can be compiled, only the Kfl benchmark
was measured. Therefore, the performance bar for MicroBlaze is missing in
Figure4
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Fig. 5. Execution time of the main function for the Kfl benchmark.The
values are scaled to the minimum execution time. The bottom figure shows a
detail of the top figure.

with a PLL multiplier setting of ten, the aJ80 was about 12.8
times faster! Other PLL factors also resulted in a greater than
linear speedup. The only explanation we could find was that
the internal time,System.currentTimeMillis(), used for the
benchmarks depends on the PLL setting. A comparison with
the wall clock time showed that the internal time of the aJ80
is 23% faster with a PLL factor of 1 and 2.4% faster with a
factor of ten – a property we would not expect on a processor
that is marketed for real-time systems. The SaJe board can
also suffer from the problem described.

B. Execution Time Jitter

For real-time systems, the worst-case of the execution time
is of primary importance. We have measured the execution
times of several iterations of the main function from the Kfl
benchmark. Figure5 shows the measurements, scaled to the
minimum execution time.

A period of four iterations can be seen. This period results
from simulating the commands from the base station that are
executed every fourth iteration. At iteration 10, a commandto
start the motor is issued. We see the resulting rise in execution
time at iteration 12 to process this command. At iteration 54,
the simulation triggers the end sensor and the motor is stopped.

The different execution times in the different modes of
the application are inherent in the design of the simulation.
However, the ratio between the longest and the shortest period
is five for the JStamp, four for the gcj system and only three



for JOP. Therefore, a system with an aJile processor needs
to be 1.7 times faster than JOP in order to provide the same
WCET for this measurement. At iteration 33, we can see a
higher execution time for the JStamp system that is not seen
on JOP. This variation at iteration 33 is not caused by the
benchmark.

The execution time under gcj on the Linux system showed
some very high peaks (up to ten times the minimum, not shown
in the figures). This observation was to be expected, as the
gcj/Linux system is not a real-time solution. The Sun JIT-
solution was also measured, but is omitted from the figure. As
a result of the invocation of the compiler at some point during
the simulation, the worst-case ratio between the maximum
and minimum execution time was 1313 – showing that a JIT-
compiler is impractical for real-time applications.

It should be noted that execution time measurement is
not a safe method for obtaining WCET estimates. However,
in situations where no WCET analysis tool is available, it
can give some insight into the WCET behavior of different
systems.

V. CONCLUSION

In this paper, we presented a brief overview of the concepts
for a real-time Java processor, called JOP, and the evaluation
of this architecture. We have seen that JOP is the smallest
hardware realization of the JVM available to date. Due to
the efficient implementation of the stack architecture, JOPis
also smaller than acomparableRISC processor in an FPGA.
Implemented in an FPGA, JOP has the highest clock frequency
of all known Java processors.

We compared JOP against several embedded Java systems
and, as a reference, with Java on a standard PC. A Java
processor is up to 500 times faster than an interpreting JVM
on a standard processor for an embedded system. JOP is about
seven times faster than the aJ80 Java processor and about 10%
faster than the aJ100. Preliminary results using compiled Java
for a RISC processor in an FPGA, with a similar resource
usage and maximum clock frequency to JOP, showed that
native execution of Java bytecodes is faster than compiled Java.

The proposed processor has been used with success
to implement several commercial real-time applications.
JOP is open-source and all design files are available at
http://www.jopdesign.com/.
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