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Abstract— In this paper, we will present the evaluation results JOPAND VARIOUS JAVA PROCESSORS

for a Java processor, with respect to size and performance. The
Java Optimized Processor (JOP) is an implementation of the Java

virtual machine (JVM) in a low-cost FPGA. JOP is the smallest tTafgetl Loai Size RAM Saeed
hardware realization of the JVM available to date. Due to the echnology ogic [MHz]
efficient implementation of the stack architecture, JOP is also Altera, Xilinx

smaller than a comparable RISC processor in an FPGA. ‘pp FPGA 1830 LCs 3KB 100

Although JOP is intended as a processor for embedded real- picoJava  No realization 128K gates ~ 38KB

time systems, whereas accurate worst case execution time anddys alile ASIC 0.2 25K gates  48KB 100
is more important than average case performance, its general E/'IO}?? Q!}eragggﬁ gggg tgs ng 40
performance is still important. We will see that a real-time l(lgmtoc:i%t xh::i FPoA 2600 ch A
processor architecture does not need to be slow. FemtoJava  Xilinx EPGA 2710 LOs 0.5KB 56

I. INTRODUCTION

In this paper, we will present the evaluation results for
a Java processor [1], with respect to size and performanggailable as an encrypted HDL source for Altera FPGASs or as
This Java processor is called JOP — which stands for JaDL or Verilog source code.

Optimized Processor —, based on the assumption that a fulllhe Lightfoot 32-bit core [11] is a hybrid 8/32-bit processo
native implementation of all Java Virtual Machine (JvMm)yased on the Harvard architecture. Program memory is 8 bits
[2] bytecode instructions is not a useful approach. JOP iswide and data memory is 32 bits wide. The core contains a
Java processor for embedded real-time systems, in patici#-Stage pipeline with an integer ALU, a barrel shifter and a
a small processor for resource-constrained devices with-ti 2-bit multiply step unit. According to DCT, the performance
predictable execution of Java programs. is typically 8 times better than RISC interpreters runnitig a
Table| lists the relevant Java processors available to datBe same clock speed.
Sun introduced the first version of picoJava [3] in 1997. Sun’ Komodo [12] is a multithreaded Java processor with a
picoJava is the Java processor most often cited in reseal@W-stage pipeline. It is intended as a basis for research
papers. It is used as a reference for new Java processors @hdeal-time scheduling on a multithreaded microcontrolle
as the basis for research into improving various aspects of e unique feature of Komodo is the instruction fetch unit
Java processor. Ironically, this processor was never seteaWwith four independent program counters and status flags for
as a product by Sun. A redesign followed in 1999, knowipur threads. A priority manager is responsible for hardwar
as picoJava-ll that is now freely available with a rich se€al-time scheduling and can select a new thread after each
of documentation [4], [5]. The architecture of picoJava iBytecode instruction.
a stack-based CISC processor implementing 341 different-emtoJava [13] is a research project to build an application
instructions and is the most complex Java processor alailatspecific Java processor. The bytecode usage of the embedded
The processor can be implemented [6] in about 440K gategpplication is analyzed and a customized version of FeméoJa
alile’s JEMCore is a direct-execution Java processor thatgenerated in order to minimize the resource usage. Femto-
is available as both an IP core and a stand alone proces¥@a is not included in SectidW, as the processor could not
[7], [8]. It is based on the 32-bit JEM2 Java chip developedin even the simplest benchmark.
by Rockwell-Collins. The processor contains 48KB zero wait Besides thereal Java processors a few FORTH chips
state RAM and peripheral components. 16KB of the RAM iCjip [14], PSC1000 [15]) are marketed as Java processors.
used for the writable control store. The remaining 32KB idava coprocessors (Jazelle [16], JSTAR [17]) provide Java
used for storage of the processor stack. execution speedup for general-purpose processors.

Vulcan ASIC’s Moon processor is an implementation of From the Tablel we can see that JOP is the smallest
the JVM to run in an FPGA. The execution model is theealization of a hardware JVM in an FPGA and also has the
often-used mix of direct, microcode and trapped executiohighest clock frequency.

As described in [9], a simple stack folding is implemented In the following section, a brief overview of the architerau
in order to reduce five memory cycles to three for instructioof JOP is given, followed by a more detailed description ef th
sequences likpush-push-addThe Moon2 processor [10] is microcode. Sectiorll compares JOP’s resource usage with
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_ ' example), (b) the control for the memory and the 1/0O module,
Fig. 1. Block diagram of JOP and (c) the multiplexer for the read data that is loaded into
the top-of-stack register. The write data from the toptatk

A) is connected directly to all modules.
other soft-core processors. In the Sectidh a number of ) y

different solutions for embedded Java are compared at the The Processor Pipeline

bytecode level and at the application level. JOP is a fully pipelined architecture with single cycle
1. JOP ARCHITECTURE execution of microcode instructions and a novel approach to

. _ . . mapping Java bytecode to these instructions. Figusbows
JOP is a stack computer with its own instruction Seﬁhe datapath for JOP.

called microcode in this paper. Java bytecodes are tradkslal Three stages form the JOP core pipeline, executing mi-

into microcode instructions or sequences of microcode. T@Pocode instructions. An additional stage in the front & th

d|ﬁergnc§ between the JVM and JOP is best described as (E%‘?e pipeline fetches Java bytecodes — the instructions of
following: ) . the JVM — and translates these bytecodes into addresses in
The JVM is a CISC stack architecture, whereas JOP  icrocode. Bytecode branches are also decoded and exe-
is a RISC stack architecture. cuted in this stage. The second pipeline stage fetches JOP
Figure 1 shows JOP's major function units. A typicalinstructions from the internal microcode memory and exesut
configuration of JOP contains the processor core, a memefjcrocode branches. Besides the usual decode function, the
interface and a number of 10 devices. third pipeline stage also generates addresses for the stack
The processor core contains the three microcode pipeliRAM. As every stack machine instruction has eitipep or
stagesmicrocode fetchdecodeand executeand an additional push characteristics, it is possible to generate fill or spill
translation stagéytecode fetchThe module called extensionaddresses for théollowing instruction at this stage. The last
provides the link between the processor core, and the memeipeline stage performs ALU operations, load, store ancksta
and IO modules. The ports to the other modules are thgill or fill. At the execution stage, operations are perfedm
address and data bus for the bytecode instructions, the twith the two topmost elements of the stack.
top elements of the stack (A and B), input to the top-of-stack A stack machine with two explicit registers for the two
(Data) and a number of control signals. There is no diregipmost stack elements and automatic fill/spill needs aeéh
connection between the processor core and the external wogxtra write-back stage nor any data forwarding. Detailshisf t
The memory interface provides a connection between thgo-level stack architecture are described in [19]. Thertsho
main memory and the processor core. It also contains thgeline results in short branch delays. Therefore, a hard t
bytecode cache. The extension module controls data read afglyze, with respect to Worst Case Execution Time (WCET),
write. The busy signal is used by the microcode instructiombranch prediction logic can be avoided.
wait! to synchronize the processor core with the memory unit. .
The core reads bytecode instructions through dedicateesbu8- INterrupt Logic
(BC address and BC data) from the memory subsystem.  Interrupts are considered hard to handle in a pipelined
The extension module performs three functions: (a) it coprocessor, meaning implementation tends to be complex
tains hardware accelerators (such as the multiplier urthizn (and therefore resource consuming). In JOP, the bytecode-
microcode translation is used cleverly to avoid having to
1.The busy signal can also be used to stall the whole procesgeline. handle interrupts in the core pipeline.
This was the change made to JOP by Flavius Gruian [18]. Howavehis . .
Interrupts are implemented as special bytecodes. These

synchronization mode, the concurrency between the memonssenedule . ) - .
and the main pipeline is lost. bytecodes are inserted by the hardware in the Java ingtnucti



Java Jump JOP microcode

stream. When an interrupt is pending and the next fetched bytecode table
byte from the bytecode cache is an instruction, the assatiat
special bytecode is used instead of the instruction from t
bytecode cache. The result is that interrupts are accepted a
bytecode boundaries. The worst-case preemption delayeis th
execution time of theslowestbytecode that is implemented Java instruction Startaddress of idiv
in microcode. Bytecodes that are implemented in Java (see (e9. 0x60) in VM ROM
Sectionll-D) can be interrupted.

The implementation of interrupts at the bytecode-micrecod
mapping stage keeps interrupts transparent in the coréngpe
and avoids complex logic. Interrupt handlers can be imple-

mented in the same way as standard bytecodes are imple-

mented i.e. in microcode or Java. This special bytecode c%'ﬂd initializes a new object, are too complex to implement in
result in a call of a JVM internal method in the context of thgardware. These bytecodes have to be emulated by software.

interrupted thread. This mechanism implicitly stores ajmo 10 build a self-contained JVM without an underlying oper-
ating system, direct access to the memory and /O devices is

the complete context of the current active thread on theksta )
necessary. There are no bytecodes defined for low-levetacce
C. Cache These low-level services are usually implementedchative

functions, which mean that another language (C) is native to

A pipelined processor architecture calls for higher memo%e processor. However, for a Java processor, bytecode is th

bandwidth. A standard technique to avoid processing bot- .
native language.

tlenecks due to the higher memory bandwidth is caching.‘%}ne way to solve this problem is to implement simple

However, standard cache organizations improve the aver%%/ - codes in hardware and to emulate the more complex and
execution time but are difficult to predict for WCET analysis. ! W u plex

Two time-predictable caches are proposed for JORtaak native functions in software with a different instruction set

cacheas a substitution for the data cache anmethod cache (sometimes called microcode). However, a processor with tw
to cache the instructions different instruction sets results in a complex design.

As the stack is a heavily accessed memory region, the stackAnOtther cotr)nmtonfstﬁluttl)o?, usded n t$un N 5'?0‘]6“/& [4], 'f? to
— or part of it — is placed in on-chip memory. This part of th&Xecute a subset of the bytecode nalive and 10 use a sottware

stack is referred to as thatack cacheand described in [19]. trap to execute the remainder. This solution entails anhmaet

Fill and spill of the stack cache is subjected to microcoo(g m|n|mum.of 16 cycle§ N plco\].ava) for the. software trap.
control and therefore time-predictable. In JOP, this problem is solved in a much simpler way. JOP
In [20], a novel way to organize an instruction cache 6[gas a singlenative instruction set, the so-called microcode.

method cacheis given. The cache stores complete method@,uring execution, every Java bytecode is translated teeeith
{}Re: or a sequence of microcode instructions. This traoslat

ely adds one pipeline stage to the core processor and
results in no execution overheads. With this solution, we ar

with respect to worst-case behavior and still provides sug-ee to define the JOP instruction set to map smoothly to the

stantial performance gain when compared against a soluti ck architecture of the JVM, and to find an instruction ngdi
without an instruction cache that can be implemented with minimal hardware.

Figure 3 gives an example of this data flow from the Java
D. Microcode program counter to JOP microcode. The fetched bytecode acts
. . . . . . as an index for the jump table. The jump table contains the
The following discussion concerns two different instranti . L .
i : . . start addresses for the JVM implementation in microcodé Th
sets:bytecodeand microcode Bytecodes are the instructions : )
. . .address is loaded into the JOP program counter for every
that make up a compiled Java program. These instructign

are executed by a Java virtual machine. The JVM does nitltze\;:c—:(‘)rdebe;(:ccou;?i.s translated to an address in the microcode
assume any particular implementation technology. Micdeco y by

is the native instruction set for JOP. Bytecodes are tréatla that implements the JVM. If there exists an equivalent miero

during their execution, into JOP microcode. Both instrcti ig:fgo,?eg:j;hies ?r)gr?;(;?;a Itliljrzxri%urfgolr:] Olre'i Eyfelioad? :[]r(')
sets are designed for an extenfisthck machine. y ' P y '

1) Translation of Bytecodes to Microcodefo date, no just continues to execute microcode in the subsequentsycle

hardware implementation of the JVM exists that is capablehe end of this sequence is coded in the microcode instructio

of executingall bytecodes in hardware alone. This is due t a52 thant bit)'t Mi de-For the JVM to be impl ted
the following: some bytecodes, such asw, which creates _)_ ompact Wicrocode-or the 0 be Impiemente
efficiently, the microcode has fi to the Java bytecode. Since

2An extended stack machine contains instructions that makesiiple to th? JVM is a stack machlne,. the microcode is also St?'Ck'
access elements deeper down in the stack. oriented. However, the JVM is not a pure stack machine.
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Fig. 3. Data flow from the Java program counter to JOP microcode

Cache block replacement depends on the call tree, instea
instruction addresses. Thimethod caches easy to analyze



Method parameters and local variables are definelb@ds can even be implemented hysing Java bytecodes. During
These locals can reside in a stack frame of the methtite assembly of the JVM, all labels that represent an entry
and are accessed with an offset relative to the start of thsint for the bytecode implementation are used to generate
localsarea. Additional local variables (16) are available at thibe translation table. For all bytecodes for which no sutella
microcode level. These variables serve as scratch vasiable found, i.e. there is no implementation in microcodeno-
like registers in a conventional CPU. However, arithmetid a implementedaddress is generated. The instruction sequence
logic operations are performed on the stack. at this address invokes a static method from a system class
Some bytecodes, such as ALU operations and the short fofoom.jopdesign.sys.JVM). This class contains 256 static
access tdocals are directly implemented by an equivalent mimethods, one for each possible bytecode, ordered by the
crocode instruction (with a different encoding). Additadrin- bytecode value. The bytecode is used as the index in the
structions are available to access internal registers) maim- method table of this system class. This feature also allows f
ory and /O devices. A relative conditional branch (zero/ncthe easy configuration of resource usage versus performance
zero of TOS) performs control flow decisions at the microcode
level. For optimum use of the available memory resources,
all instructions are 8 bhits long. There are no variabledeng Cost, alongside energy consumption, is an important issue
instructions and every instruction, with the exceptionnafit, for embedded systems. The cost of a chip is directly related
is executed in a single cycle. To keep the instruction set thib the die size (the cost per die is roughly proportional to
dense, two concepts are applied: the square of the die area [21]). Chips with fewer gates also
Two types of operands, immediate values and branch disnsume less energy. Processors for embedded systems are
tances, normally force an instruction set to be longer thantl®refore optimized for minimum chip size.
bits. The instruction set is either expanded to 16 or 32 bits,One major design objective in the development of JOP was
as in typical RISC processors, or allowed to be of variabte create a small system that could be implemented in a low-
length at byte boundaries. A first implementation of the JVMost FPGA. Tabldl shows the resource usage for different
with a 16-bit instruction set showed that only a small numbeonfigurations of JOP and different soft-core processopgam
of different constants are necessary for immediate valnds anented in an Altera EP1C6 FPGA [22]. Estimating equivalent
relative branch distances. gate counts for designs in an FPGA is problematic. It is
In the current realization of JOP, the different immediattherefore better to compare the two basic structures, Logic
values are collected while the microcode is being assembl@dlls (LC) and embedded memory blocks.
and are put into the initialization file for the local RAM. T8&  All configurations of JOP contain a memory interface to a
constants are accessed indirectly in the same way as thHe I@&2bit static RAM and an 8-bit FLASH for the Java program
variables. They are similar to initialized variables, agesm and the FPGA configuration data. The minimum configu-
the fact that there are no operations to change their valegion implements multiplication and the shift operatidns
during runtime, which would serve no purpose and woulehicrocode. In the basic configuration, these operations are
waste instruction codes. implemented as a sequential Booth multiplier and a single-
A similar solution is used for branch distances. The assegycle barrel shifter. The typical configuration also congai
bler generates a VHDL file with a table for all found branclsome useful 1/0O devices such as an UART and a timer with
constants. This table is indexed using instruction bitdndur interrupt logic for multi-threading. The typical configtien
runtime. These indirections during runtime make it possibbf JOP needs about 30% of the LCs in a Cyclone EP1C6, thus
to retain an 8-bit instruction set, and provide 16 differedeaving enough resources free for application-specifiiclog
immediate values and 32 different branch constants. Fona ge As a reference, NIOS [23], Altera’s popular RISC soft-core,
eral purpose instruction set, these indirections wouldosep is also included in the list. NIOS has a 16-bit instructiot, se
too many restrictions. As the microcode only implements ttee 5-stage pipeline and can be configured with a 16 or 32-bit
JVM, this solution is a viable option. datapath. Version A is the minimum configuration of NIOS.
To simplify the logic for instruction decoding, the instruc Version B adds an external memory interface, multipliaatio
tion coding is carefully chosen. For example, one bit in theupport and a timer. Version A is comparable with the minimal
instruction specifies whether the instruction will increther configuration of JOP, and Version B with its typical configu-
decrement the stack pointer. The offset to accesdoitedsis ration.
directly encoded in the instruction. This is not the caselier = SPEAR [24] (Scalable Processor for Embedded Applica-
original encoding of the equivalent bytecodes (d@pd_ 0 is tions in Real-time Environments) is a 16-bit processor with
Oxla andiload_1 is Ox1b). deterministic execution times. SPEAR contains predicated
3) Flexible Implementation of Bytecode#&s mentioned instructions to support single-path programming [25]. BRE
above, some Java bytecodes are very complex. One solui®nncluded in the list as it is also a processor designed for
already described is to emulate them through a sequenceesl-time systems.
microcode instructions. However, some of the more complexTo prove that the VHDL code for JOP is as portable as
bytecodes are very seldom used. To further reduce the @soypossible, JOP was also implemented in a Xilinx Spartan-3
implications for JOP, in this case local memory, bytecodésPGA [26]. Only the instantiation and initialization coder f

IIl. RESOURCEUSAGE



TABLE Il

FPGASOFFCORE PROCESSORS IV. PERFORMANCE

Running benchmarks is problematic, both generally and

Processor Resources Memory  fmax especially in the case of embedded systems. The best bench-
[LC] [KB]  [MHz] mark would be the application that is intended to run on the

JOP Minimal 1,077 3.25 98 system being tested. To get comparable results SPEC psovide

JOP Basic 1,452 3.25 98 ;

JOP Typical 1831 3om 101 benchmark_s for various systems. However, the one for Java,

Lightfoot® 3,400 4 40 the SPECjvm98 [28], is usually too large for embedded

NIOS A 1,828 6.2 120 systems.

NIOS B 2,923 5.5 119 Due to the absence of atandard Java benchmark for

SPEAR 1,700 8 80

embedded systems, a small benchmark suit that should run on
even the smallest device is provided here. It contains akver
micro-benchmarks for evaluating the number of clock cycles
for single bytecodes or short sequences of bytecodes, and tw
application benchmarks. To provide a realistic workload fo

TABLE Il
GATE COUNT ESTIMATES FOR VARIOUS PROCESSORS

Processor Core  Memory  Sum.

[gate]  [gate]  [gate] embedded systems, a real-time application was adapted to
JOP 11K 40K 51K create the first application benchmark (Kfl). The applicai®
picoJava 128K 314K 442K taken from one of the nodes of a distributed motor control sys
alile 25K 590K 615K tem [29]. A simulation of both the environment (sensors and
Pentium MMX 1125K

actors) and the communication system (commands from the
master station) forms part of the benchmark, so as to simulat
the real-world workload. The second application benchmark
the on-chip memories is vendor-specific, whilst the rest ¢f an adaptation of a tiny TCP/IP stack for embedded Java.
the VHDL code can be shared for the different targets. JGfis benchmark contains two UDP server/clients, exchangin
consumes about the same LC count (1844 LCs) in the Sparpﬁgssages via a loopback device.

device, but has a slower clock frequency (83MHz). As we will see, there is a great variation in processing power

From this comparison we can see that we have achieved agross different embedded systems. To cater for this i@miat
objective of designing a small processor. The commercial Jaall benchmarks are ‘self adjusting’. Each benchmark cossis
processor, Lightfoot, is 2.3 times larger (and 2.5 timewsl) of an aspect that is benchmarked in a loop. The loop count
than JOP in the basic configuration. A typical 32-bit RIS@dapts itself until the benchmark runs for more than a second
processor consumes about 1.6 to 1.8 times the resources 9 number of iterations per second is then calculated, whic
JOP. However, the RISC processor can be clocked 20% fast@fans that higher values indicate better performance.
than JOP in the same technology. The only processor that i\l the benchmarks measure how often a function is exe-
similar in size is SPEAR. However, while SPEAR is a 16-bi¢uted per second. In the Kfl benchmark, this function costain
processor, JOP contains a 32-bit datapath. the main loop of the application that is executed in a peciodi

Table Il provides gate count estimates for JOP, picoJaveycle in the original application. In the benchmark the vait
the alile processor, and the Intel Pentium MMX processdr thihe next period is omitted, so that the time measured solely
is used in the benchmarks in the next section. Equivalemt gagpresents execution time. The UDP benchmark contains the
count for an LC varies between 5.5 and 7.4 — we chose generation of a request, transmitting it through the UDP/IP
factor of 6 gates per LC and 1.5 gates per memory bit for tls¢éack, generating the answer and transmitting it back as a
estimated gate count for JOP in the table. JOP is listed in thenchmark function. The iteration count is the number of
typical configuration that consumes 1831 LCs. The Pentiuraceived answers per second.

MMX contains 4.5M transistors [27] that are equivalent to The following list gives a brief description of the Java
1125K gates. systems that were benchmarked:

We can see from the table that the on-chip memory dom-JOP is implemented in a Cyclone FPGA, running at
inates the overall gate count of JOP, and to an even great®@0MHz. The main memory is a 32-bit SRAM (15ns) with an
extent, of the alile processor. The alile processor is difbutaccess time of 2 clock cycles. The benchmarked configuration
times larger than JOP. of JOP contains a 4KB method cache [20] organized in 16

blocks.

3The data for the Lightfoot processor is taken from the daeesfil]. The leJOS As an example for a low-end embedded device we
frequency used is that in a Vertex-Il device from Xilinx. JO&n be clocked yse the RCX robot controller from the LEGO MindStorms

at 100MHz in the Vertex-1l device, making this comparison dali series. It contains a 16-bit Hitachi H8300 microcontro|&9]
4As SPEAR uses internal memory blocks in asynchronous mode ittis n ’ !

possible to synthesize it without modification for the Cy@oRPGA. The running at 16MHz. 1eJOS [31] is a tiny interpreting JVM for
clock frequency of SPEAR in an Altera Cyclone is an estimateseaon the RCX.

following facts: SPEAR can be clocked at 40MHz in an APEX devand TINI is an enhanced 8051 clone running a software JVM
JOP can be clocked at 50MHz in the same device. )

5The factors are derived from the data provided for variousgssors and The results were t?ken from a custom board with a 20MHz
from the resource estimates in [19]. crystal, and the chip’s PLL is set to a factor of 2.




KVM is a port of the Sun’s KVM that is part of the Con- 100000 =
nected Limited Device Configuration (CLDC) [32] to Alteras
NIOS Il processor on MicroC Linux. NIOS is implemented
on a Cyclone FPGA and clocked with 50MHz. Besides the
different clock frequency this is a good comparison of an
interpreting JVM running in the same FPGA as JOP.

The benchmark results oKomodo were obtained by
Matthias Pfeffer [33] on a cycle-accurate simulation of Ko-
modo.

alile’'s JEMCore is a direct-execution Java processor thi
is available in two different versions: tr&80 and theaJ100
[7]. A development system, the JStamp [34], contains thé aJ&
with an 8-bit memory, clocked at 74MHz. The SaJe board fromn
Systronix contains an aJ100 that is clocked with 103MHz anc
contains 10ns 32-bit SRAM.

The EJC (Embedded Java Controller) platform [35] is a
typical example of a JIT system on a RISC processor. Th
system is based on a 32-bit ARM720T processor running &
74MHz. It contains up to 64 MB SDRAM and up to 16 MB
of NOR flash. |_|

gcj is the GNU compiler for Java. This configuration 0.1 ‘ ‘ ‘ ‘
represents the batch compiler solution, running on a 266 MH R P T T %&Q <@

. . N +°<~‘
Pentium under Linux.

MB is the real-lization of Java on a_R|SC processor fqr &#ly. 4. Performance comparison of different Java systems vpifttication
FPGA (Xilinx MicroBlaze [36]). Java is compiled to C with benchmarks. The diagrams show the geometric mean of the two roerich

v moiler for real-tim m 71 and th roar jterations per second — a higher value means higher perfaendhe top
? Java (?O P e or real-time systems [3 ] a dthe C prog d iagram shows absolute performance, while the bottom diagfaows the
is compiled with the standard GNU toolchain. result scaled to 1MHz clock frequency.

In Figure 4, the geometric mean of the two application

10000 1 —

1000 +—{ - ||

100 4

10 —

Performance [iterations/s]

1

L)OA

1000,0

100,0 1 7 —

10,0 1 —

Relative performance [iterations/s]

benchmarks is shown. The unit used for the result is itamatio TABLE IV

per second. Note that the vertical axis is logarithmic, in  APPLICATION BENCHMARKS ON DIFFERENTJAVA SYSTEMS IN

order to obtain useful figures to show the great variation in ITERATIONS PER SECOND- A HIGHER VALUE IS BETTER.

performance. The top diagram shows absolute performance

while the bottom diagram shows the same results scaled Frequency ~ K UDP/IP Geom. Mean  Scaled

L [MHz] [Iterations/s]

to a 1MHz clock frequency. The results of the application

benchmarks and the geometric mean are shown in Table 9P 1 10582 684 10,657 or
It should be noted that scaling to a single clock frequencyrini 40 64 29 43 11

could prove problematic. The relation between processmkcl KVM 50 36 16 24 0.5

frequency and memory access time cannot always be mainﬁé’g&(’do ?i 22%1 1%%% 1,233 gé

tained. To give an example, if we were to increase the resultgi100 103 14,148 6,415 9,527 02

of the 100MHz JOP to 1GHz, this would also involve reducingEJC 74 9,893 2,822 5,284 71

the memory access time from 15ns to 1.5ns. Processors Wiﬁgl‘fé fgg 133';3983 38,460 73,348 276

1GHz clock frequency are already available, but the fastest ’

asynchronous SRAM to date has an access time of 10ns. TABLE V

. . EXECUTION TIME IN CLOCK CYCLES FOR VARIOUSJVM BYTECODES
A. Discussion

When comparing JOP and the alile processor against leJOS, JOP 1eJOS TINI Komodo aJ80 aJ100
TINI, and KVM, we can see that a Java processor is up to 50@oad iadd 2 836 789 8 38 8
times faster than an interpreting JVM on a standard processd’ 1; 1‘:51% 13182% 4‘5 ‘:517 13
for an embedded system. The average performance of JOPicmplt taken 6 1609 1265 24 42 18
is even better than a JIT-compiler solution on an embeddedfi(;mlrélt n/taken 6 1520 1,211 24 40 14

getfie 23 1,879 2,398 48 142 23
system, as represented by the EJC system. _getstatic 15 1676 4463 80 102 15

Even when scaled to the same clock frequency, the compilaload 29 1,082 1,543 28 74 13

ing JVM on a PC (gcj) is much faster than either embedded,”VO';e i 1120% ‘;785795 %’%%59 3;3%% 324791 1222
. . . . Invoke static , ’
solution. However, the kernel of the application is smattten ;0\ c inierface 142 5004 6797 1617 531 148

4KB [20]. It therefore fits in the level one cache of the Pemtiu




JStamp gcj — ——JOP

MMX (16KB + 16KB). For a comparison with a Pentium class
processor we would need a larger application. 6
JOP is about 7 times faster than the aJ80 Java process

Relative execution time
=

Time [iteration]

Relative execution time

Time [iteration]

on the popular JStamp board. However, the aJ80 process
only contains an 8-bit memory interface, and suffers from th A A
bottleneck. The SaJe system contains the aJ100 with 32-b ’,‘\ I"\ "‘ M : :
10ns SRAMs and is a about 10% slower than JOP with it A L L
15ns SRAMs. yuUyyuyvyuyuUy
The MicroBlaze system is a representation of a Java batct
compilation system for a RISC processor. MicroBlaze is con. 0 Trrrrrrrrrrrerrmrerre e
figured with the same cachas JOP and clocked at the same
frequency. JOP is about four times faster than this solutior
thus showing that native execution of Java bytecodes isrfast
than batch-compiled Java on a similar system. However, th ¢
results of the MicroBlaze solution are at a preliminary sfag s .
as the Java2C compiler [37] is still under development. A A
The micro-benchmarks are intended to give insight intc s * 1 —
the implementation of the JVM. In Tabl¥/, we can see 3 ‘ . " ‘ ‘ ‘ ‘ ‘
the execution time in clock cycles of various bytecodes. As ¢ _ | \'/\'NVM”[\ [\ /f\ ’[\
almost all bytecodes manipulate the stack, it is not possibl ‘ A / ‘ J A A A j
to measure the execution time for a single bytecode. As I - e
minimum requirement, a second instruction is necessary t o
reverse the stack operation. For compiling versions of thi
JVM, these micro-benchmarks do not produce useful result:
The compiler performs optimizations that make it irnpos:-gib'l:ig. 5. Execution time of the main function for the Kfl benchmafke
to measure execution times at this fine a granularity. values are scaled to the minimum execution time. The bottomefighows a
For JOP we can deduce that the WCET for simple bytecodail of the top figure.
is also the average execution time. We can see that the
combination ofiload andiadd executes in two cycles, which o .
means that each of these two operations is executed in @sifgin @ PLL multiplier setting of ten, the aJ80 was about 12.8
cycle. Theiinc bytecode is one of the few instructions thalimes faster! Other PLL factors also resulted in a greatan th
do not manipulate the stack and can be measured alone./REr speedup. The only explanation we could find was that
iinc is not implemented in hardware, we have a total of 1e internal t|me,System.currentTlmeMlllls(), used fqr the )
cycles that are executed in microcode. It is fair to assurae tfp€nchmarks depends on the PLL setting. A comparison with
this comprises too great an overhead for an instructionishaﬁhe wall clock tlme showed that the internal time of the .aJ80
found in every iterative loop with an integer index. Howevet® 23% faster with a PLL factor of 1 and 2.4% faster with a
the decision to implement this instruction in microcode wa@Cctor of ten —a property we would not expect on a processor
derived from the observation that the dynamic instructio‘itl1at s marketed for real-time syst_ems. The SaJe board can
count foriin is only 2% [1]. also suffer from the problem described.
The sequence for the branch benchmditkc(nplt) contains _ Execution Time Jitter
the two load instructions that push the arguments onto the i o
stack. The arguments are then consumed by the branch inEOr real-time systems, the worst-case of the execution time
struction. This benchmark verifies that a branch requiresi%Of primary importance. We have measured the execution
constant four cycles on JOP, whether it is taken or not. times of sever_al iterations of the main function from the Kifl
During the evaluation of the aJile system, unexpected beh®¢nchmark. Figuré shows the measurements, scaled to the
ior was observed. The aJ80 on the JStamp board is clockedfimum execution time. _ .
7.3728MHz and the internal frequency can be set with a pLL.A period of four iterations can be seen. This period results
The aJ80 is rated for 80OMHz and the maximum PLL factdfom simulating the commands from the base station that are
that can be used is therefore ten. Running the benchmarks vi¥ecuted every fourth iteration. At iteration 10, a comméand
different PLL settings gave some strange results. For ekgmpptart the motor is issued. We see the resulting rise in eigcut
time at iteration 12 to process this command. At iteration 54
6The MicroBlaze with a 8KB data and 8KB instruction cache isuthl.6 tN€ Simulation triggers the end sensor and the motor is sthpp
times faster than JOP. However, a 16KB memory is not availablewrcost The different execution times in the different modes of
FPGAs and is an unbalanced system with respect to the LC/merelation.  the gpplication are inherent in the design of the simulation
As not all language constructs can be compiled, only the Kftherark . .
was measured. Therefore, the performance bar for MicroBgazrissing in However, the ratio between the Iongest and the Shortesjq)e”
Figure 4 is five for the JStamp, four for the gcj system and only three



for JOP. Therefore, a system with an adile processor neefi
to be 1.7 times faster than JOP in order to provide the same
WCET for this measurement. At iteration 33, we can see a
higher execution time for the JStamp system that is not sega
on JOP. This variation at iteration 33 is not caused by th¥]
benchmark. [11]

The execution time under gcj on the Linux system showed
some very high peaks (up to ten times the minimum, not show!
in the figures). This observation was to be expected, as the
gcj/Linux system is not a real-time solution. The Sun JIT-
solution was also measured, but is omitted from the figure. As]
a result of the invocation of the compiler at some point duyirin
the simulation, the worst-case ratio between the maximuyma]
and minimum execution time was 1313 — showing that a JIEI;—S]
compiler is impractical for real-time applications.

It should be noted that execution time measurement [is]
not a safe method for obtaining WCET estimates. However
LT . . . 7
in situations where no WCET analysis tool is available, ﬁg
can give some insight into the WCET behavior of different
systems.

V. CONCLUSION
[19]

In this paper, we presented a brief overview of the concepts
for a real-time Java processor, called JOP, and the evattuatj
of this architecture. We have seen that JOP is the small sg
hardware realization of the JVM available to date. Due to
the efficient implementation of the stack architecture, JOP
also smaller than aomparableRISC processor in an FPGA. |y
Implemented in an FPGA, JOP has the highest clock frequency
of all known Java processors. -

We compared JOP against several embedded Java systbg}
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